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IRIME: Mitigating exploitation-exploration
imbalance in RIME optimization
for feature selection

Jinpeng Huang,1 Yi Chen,1,* Ali Asghar Heidari,2 Lei Liu,3 Huiling Chen,1,5,* and Guoxi Liang4,*

SUMMARY

Rime optimization algorithm (RIME) encounters issues such as an imbalance between exploitation and
exploration, susceptibility to local optima, and low convergence accuracy when handling problems. This
paper introduces a variant of RIME called IRIME to address these drawbacks. IRIME integrates the soft
besiege (SB) and composite mutation strategy (CMS) and restart strategy (RS). To comprehensively vali-
date IRIME’s performance, IEEE CEC 2017 benchmark tests were conducted, comparing it against many
advanced algorithms. The results indicate that the performance of IRIME is the best. In addition, applying
IRIME in four engineering problems reflects the performance of IRIME in solving practical problems.
Finally, the paper proposes a binary version, bIRIME, that can be applied to feature selection problems.
bIRIMR performs well on 12 low-dimensional datasets and 24 high-dimensional datasets. It outperforms
other advanced algorithms in terms of the number of feature subsets and classification accuracy. In conclu-
sion, bIRIME has great potential in feature selection.

INTRODUCTION

In engineering design optimization problems, balancing resource allocation and constraint conditions is often challenging.1 When facing

real-world problems, the optimization process frequently involves multiple variables and diverse constraints, significantly increasing the dif-

ficulty of optimization.2 Engineering optimization also often considers factors such as performance and cost, leading to complex problems

with multiple variables and objectives. Among optimization problems, feature selection is a problem widely investigated by scholars, espe-

cially in today’s era of rapid information growth, where data abundance leads to issues like data redundancy, high computational costs, and

weakened model generalization abilities. Feature selection plays a crucial role in reducing computational expenses, simplifying models, and

enhancing their generalization capabilities. Commonly used feature selection methods include filter, wrapper, and embedded methods.3–6

Filter methods primarily determine the importance of features to the target variable based on statistical properties between features or the

relationship between feature variables and target variables. While filter methods can be independently analyzed without involving machine

learning, they overlook other connections between features. Embedded methods, although capable of uncovering complex relationships

between features, require consideration of intricate parameters and structures and are influenced by themachine learningmodel.Meanwhile,

wrapper methods, favored by many researchers because of their straightforward nature and ease of implementation, face a challenge when

dealing with an n-dimensional feature dataset, resulting in possible combinations of features.7,8 Faced with such complex computations, re-

searchers have started using metaheuristic algorithms as a feasible solution for wrapper methods.

Heuristics are problem-solving strategies that use basic principles or shortcuts to quickly uncover approximate answers, generally valuing

speed above accuracy.9–13 Metaheuristics, on the other hand, work at a higher abstraction level, directing the search of solution spaces.14

They enable the search of optimum or nearly optimal solutions across several issue domains by continually refining and adapting heuristic

techniques, so overcoming the constraints of individual problem settings.15 Metaheuristic algorithms represent advanced optimization tech-

niques that simulate certain biological or physical phenomena found in nature. These algorithms can generally be categorized into physics-

based, swarm intelligence-based, and evolution-inspired. Physics-based metaheuristic algorithms, such as the sine cosine algorithm (SCA),16

RUNge Kutta optimizer (RUN),17 weighted mean of vectors (INFO),18 simulated annealing (SA),19 gravitational search algorithm (GSA),20 and

rime optimization algorithm (RIME),21 draw inspiration from different natural entities. SCA is inspired by trigonometric functions like sine and

cosine, simulating their properties for the search process. SA is inspiredbymaterial cooling fromhigh temperatures to a stable state, involving

the probabilistic selection of optimal solutions. Newton’s law of universal gravitation inspires GSA. The algorithm is modeled based on this
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concept, with individual fitness values treated as mass in the gravitational formula. An adaptive gravitational constant is introduced into GSA.

RIME simulates the growth of rime-ice in nature,modeling both soft-rime and hard-rime and eventually incorporating a greedy selection strat-

egy. Swarm intelligence-based metaheuristic algorithms have seen rapid development, featuring algorithms like particle swarm optimizer

(PSO),22 water cycle algorithm (WCA),23 gray wolf optimizer (GWO),24 hunger games search (HGS),25 slime mold algorithm (SMA),26,27 Harris

hawks optimizer (HHO),28 moth-flame optimization (MFO),29 liver cancer algorithm (LCA),30 parrot optimizer (PO),31 colony predation algo-

rithm (CPA),32 among others. SMA draws inspiration from the foraging process of slimemold, including aspects like capturing, encircling, and

approaching food. HHO mathematically models the soft besiege (SB) and hard besiege processes of Harris hawks. MFO involves the math-

ematical modeling of moths’ attraction to flames. In MFO, the number of flames is adjusted based on the iteration count, and flames are

selected according to their fitness values. The authormodelsmoths’ spiraling flight behavior when they are close to flames. Evolution-inspired

metaheuristic algorithms primarily include differential evolution (DE),33 genetic algorithm (GA),34 and biogeography-based optimization

(BBO).35 DE operates through mutation, crossover, and selection operations, guiding individuals toward potentially better solutions. GA

treats each individual as a chromosome, facilitating genetic operations among chromosomes to achieve search outcomes. BBO models

migration and mutation in biogeography, relying on migration probability for population updates. These algorithms possess robust optimi-

zation capabilities and are expected to demonstrate superior performance in various applications such as fault identification,36 vehicle

communication,37 text privacy,38 hemodialysis prediction,39 target tracking,40 economic emission,41,42 and intrusion detection.43

As scholars delve into the study of metaheuristic algorithms, numerous outstanding variants have emerged and been successfully applied

in various domains.44–47 Ozsoydan et al.48 modified the mutation mechanism of elite wolves, proposing a new variant of GWO that effectively

tackledmultiple combinatorial problems and the 0–1 knapsack problem. Dhargupta et al.49 utilized spearman’s rank correlation coefficient to

Table 1. IEEE CEC 2017 benchmark functions (Search Range: ½�100;100�D )
Class No. Functions Optimum

Unimodal F1 Shifted and Rotated Bent Cigar Function 100

F2 Shifted and Rotated Bent Sum of Different Power Function 200

F3 Shifted Rotated Zakharov Function 300

Multimodal F4 Shifted and Rotated Rosenbrock’s Function 400

F5 Shifted and Rotated Rastrigin’s Function 500

F6 Shifted and Rotated Expanded Scaffer’s F6 Function 600

F7 Shifted and Rotated Lunacek Bi_Rastrigin’s Function 700

F8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800

F9 Shifted and Rotated Levy Function 900

F10 Shifted and Rotated Schwefel’s Function 1000

Hybrid F11 Hybrid Function 1 (N = 3) 1100

F12 Hybrid Function 2 (N = 3) 1200

F13 Hybrid Function 3 (N = 3) 1300

F14 Hybrid Function 4 (N = 4) 1400

F15 Hybrid Function 5 (N = 4) 1500

F16 Hybrid Function 6 (N = 4) 1600

F17 Hybrid Function 6 (N = 5) 1700

F18 Hybrid Function 6 (N = 5) 1800

F19 Hybrid Function 6 (N = 5) 1900

F20 Hybrid Function 6 (N = 6) 2000

Composition F21 Composition Function 1 (N = 3) 2100

F22 Composition Function 2 (N = 3) 2200

F23 Composition Function 3 (N = 4) 2300

F24 Composition Function 4 (N = 4) 2400

F25 Composition Function 5 (N = 5) 2500

F26 Composition Function 6 (N = 5) 2600

F27 Composition Function 7 (N = 6) 2700

F28 Composition Function 8 (N = 6) 2800

F29 Composition Function 9 (N = 3) 2900

F30 Composition Function 10 (N = 3) 3000
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determine whether wolf packs engage in opposition learning, enhancing the convergence speed and capability of populations within GWO.

Deng et al.50 divided the SMA into two populations dynamically, adjusting population sizes to balance the algorithm’s exploitation and explo-

ration capabilities and successfully applying it to real-world engineering problems. Samantaray et al.51 combined SMAwith PSO, successfully

applying this hybrid approach to predict flood flow rates. Tan et al.52 combined the whale optimization algorithm (WOA) with the equilibrium

optimizer, validating its performance on benchmark test sets. Wang et al.53 enhanced population diversity in WOA by reducing intra-popu-

lation similarity, ultimately applying it to multi-threshold image segmentation tasks. Kumar et al.54 augmented the global search capability of

HHO through opposition learning, successfully addressingmulti-objective hydrothermal power generation scheduling problems. Tian et al.55

proposed a novel initialization method, incorporating elite opposition learning to improve HHO populations, ultimately applying it to engi-

neering problems. Tiwari et al.56 addressed issues such as poor population diversity and inadequate exploration capabilities in DE. They

improved DE by incorporating ideas from PSO to enhance its global search ability. Additionally, they changed the crossover rate of DE, pro-

posing a new crossover rate, and introduced a new selection method to further promote DE’s convergence capabilities, successfully applied

to engineering design optimization problems. Pham et al.57 proposed a strategy of opposition learning and roulette selection to improve the

global optimization capability of SCA. The enhanced SCA maintains a balanced exploration and exploitation similar to the original SCA but

with increased stability, ideal for challenging real-world optimization problems. Huang et al.58 combined various strategies, includingNelder-

Mead simplex, opposition learning, and spiral strategy, to enhance beluga whale optimization (BWO). Combining different strategies at

different algorithm stages improved BWO’s performance, successfully applied it to engineering design problems, and tested it on the

CECbenchmark dataset. Gomes et al.59 proposed and compared a hybrid algorithmwithGA. They appliedmetaheuristic algorithms to chan-

nel parameter estimation and successfully demonstrated GA’s advantages over the hybrid algorithm in channel parameter estimation. Gun-

dogdu et al.60 successfully applied an improved GWO to photovoltaic systems. They improved GWO to escape local optima, enhancing per-

formance in photovoltaic system applications. Yu et al.61 improved the teaching-learning-based optimization algorithm (TLBO) using

reinforcement learning to enhance TLBO’s update phase, successfully applied to wind farm data problems. Moustafa et al.62 applied mantis

search algorithm (MSA) to economic dispatch in combined heat and power systems, drawing inspiration from collective intelligence of

mantises. Al-Areeq et al.63 utilized a hybrid two-population intelligence algorithm for flood hazard assessment. Tu et al.64 combined

GWO andHHO into HGWO, improving collective search ability, convergence speed, and accuracy compared to GWO, applied to real-world

engineering problems. Combining optimization algorithms is a crucial approach to improving metaheuristic algorithms. Silva et al.65

Table 2. The parameters of the algorithm involved

Algorithm Parameters

RIME w = 5, E =
ffiffiffiffiffiffiffiffi
t=T

p
SCA c1 = rand, c2 = rand, l = 2

WOA b = 1, r1 = rand, r2 = rand

DE beta˛ ½0:2;0:8�, pcr = 0:2

SSA c1 = rand, c2 = rand, l = 2

PSO wmax = 0:9, wmin = 0:2, c1 = c2 = 2

MFO b = 1, a = � 1+ FEsð� 1 =MaxFEsÞ, t = ða � 1Þrand + 1

GWO r1 = rand, r2 = rand, a = 2 � FEsð2 =MaxFEsÞ
BA Qmin = 0, Qmax = 2

CS beta = 1:5, pa = 0:25

FA a = 0:5, betamin = 0:2

CPA a = expð9 � 18FEs =MaxFEsÞ, S0 = að1 � FEs =MaxFEsÞ
HHO c = 2ð1 � ðFEs =MaxFEsÞÞ, Escaping Energy = cð2rand � 1Þ
EBOwithCMAR memorysize = 6

LSHADE_cnEpSi pb = 0:4, ps = 0:5

ALCPSO w = 0:4, c1 = 2, c2 = 2, T = 2

CLPSO c = 1:49445

LSHADE p best rate = 0:11, max popsize = popsize

SADE numst = 4

JADE c = 0:1, crm = 0:5, fm = 0:5

RCBA Qmin = 0, Qmax = 2

EPSO nsize = 3, LP = 50

CBA Qmin = 0, Qmax = 2

LWOA b = 1, beta = 1:5
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Figure 1. The history trajectory analysis for IRIME

(A) The search trajectory of IRIME, (B) Average fitness of IRIME, (C) One-dimensional trajectory of IRIME, (D) convergence curves for IRIME (red) and RIME (blue).
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combined ant colony optimization (ACO) and GA, enhancing ACO’s convergence capability and mitigating the algorithm’s tendency to get

stuck in local optima, applied to sustainable solution problems. Moreover, metaheuristic algorithms have found extensive applications in the

domain of feature selection.

Peng et al.66 adopted hierarchical strategies to enhance HHO, conducting feature selection on both low and high-dimensional datasets.

Yu et al.67 improvedWOAusing various strategies, including sine initialization and employed a kernel extreme learningmachine as a classifier

for feature selection. AbdelAty et al.68 utilized chaos theory to boost the convergence capability of the hunter-prey optimization algorithm,

successfully applying it to feature selection. Al-Khatib et al.69 enhanced lemurs optimization by integrating local search strategies and oppo-

sition learning, evaluating feature selection performance on UCI datasets. Zaimoglu et al.70 employed different chaos learning methods to

improve the herd optimization algorithm and conducted feature selection tests across multiple classifiers. Chhabra et al.71 improved

bald eagle search by incorporating three distinct enhancement strategies at different stages of algorithm execution, successfully applying

them to feature selection. Pan et al.72 improved the initialization strategy of GWO and enhanced GWO using differential and

Figure 2. Balance analysis for IRIME and RIME
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Figure 3. Algorithm diversity analysis for IRIME and RIME
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competition-guided strategies for feature selection in high-dimensional data. Askr et al.73 used various strategies to enhance the exploration

and exploitation capabilities of the golden jackal optimization (GJO) algorithm. They proposed a binary form of GJO and tested it for feature

selection on multiple high-dimensional datasets. Wang et al.74 made improvements to the transfer function, introducing a new function spe-

cifically targeting the deficiencies of the GWO in handling feature selection problems. They applied different enhancement methods to elite

and ordinary wolves within the population to enhance the balance between exploration and exploitation in GWO. Ye et al.75 enhanced the

optimization capability of the hybrid breeding optimization using the elite opposition mechanism and Levy flight strategy. They combined

different classifiers for intrusion detection feature selection problems. Yang et al.76 focused on feature space, dividing it into regions and pro-

posing a new initialization strategy. They successfully applied the golden eagle optimizer to solve feature selection problems in medium to

small-dimensional spaces. Chakraborty et al.77 improved theWOA using a horizontal crossing strategy and collaborative hunting. They intro-

duced a binary version of WOA and combined it with the K-nearest neighbor for feature selection on UCI datasets. Abdelrazek et al.78 incor-

porated different chaotic mappings into the dwarf mongoose optimization algorithm (DMO), enabling DMO to better adapt to wrapper-

based feature selection methods. The improved algorithm was validated on various UCI datasets, demonstrating competitive performance

compared to other metaheuristic algorithms. Mostafa et al.79 used spider wasp optimization to enhance DE, improving DE’s problem-solving

capabilities and incorporating methods to enhance solution quality, specifically applied to feature selection. As per the no free lunch (NFL)80

theorem, no single algorithm can address all feature selection tasks, especially in complex optimization environments, where RIME tends to

get stuck in local optima and encounter slow convergence issues. Hence, this paper develops a variant of RIME to enhance its performance in

complex optimization environments and with intricate datasets. RIME, a new algorithm proposed by Su in 2023,21 has seen limited use in

feature selection studies.

Research and application of RIME is underway. Yu et al.81 combined the triangular game search strategy and random follower search strat-

egy to improve RIME, enhancing its global search capability and inter-population information exchange capabilities. The enhanced RIMEwas

then applied in the diagnostic process of pulmonary hypertension. Yang et al.82 applied the improved RIME in photovoltaic systems to main-

tain temperature stability. Zhong et al.83 improved RIME by utilizing Latin hypercube sampling and distance-based selectionmechanisms and

enhanced the hard-rime process, ultimately applying the improved RIME to engineering design problems. Zhu et al.84 improved RIME using

the Gaussian diffusion and interactive mechanism strategy, which effectively solvedmulti-threshold image segmentation problems. Li et al.85

also applied the improved RIME in multi-threshold image segmentation.

In this paper, to further enhance the capability of RIME in feature selection applications, we introduced SB, composite mutation strategy,

and restart strategy (CMS-RS) into RIME, naming it IRIME. SB expands the search space of RIME, increases population diversity in the early

stage, and effectively prevents the problem of local optima caused by greedy strategies. Additionally, CMS encourages more in-depth

exploitation at the current position of RIME, to some extent, enhancing RIME’s exploitation abilities. RS keeps an eye on whether RIME falls

into local optima and restarts when it does. The combination of thesemechanisms involves adaptive parameters and does not run in a singular

form like classical PSO and DE, but instead has multiple optimization methods. In sum, the combination of these approaches balances the

exploration and exploitation abilities of RIME. To validate IRIME’s performance, this study conducted tests on the IEEE CEC 2017 benchmark

tests and compared themwith other advanced algorithms, demonstrating significant advantages for IRIME. In addition, IRIME’s performance

in engineering design problems also reflects its ability to solve practical problems. Finally, it applied to feature selection in low-dimensional

and high-dimensional datasets. In summary, this paper’s primary contributions encompass.

� Proposed a variant of RIME named IRIME.
� This paper effectively enhances the population diversity of RIME by using SB, expands the search space, and enhances the exploratory

ability.

Table 3. Comparison results between IRIME and IRIMEs

Overall Rank

Algorithm Rank +/ = /- Avg

IRIME50 1 � 1.7

IRME30 3 10/19/1 2.4

IRIME100 2 7/18/5 1.866667

Table 4. Comparison results between IRIME and RIMEs

Overall Rank

Algorithm Rank +/ = /- Avg

IRIME 1 � 1.433333

SBRIME 3 23/4/3 3.133333

CMSRSRIME 2 9/18/3 2.066667

RIME 4 28/2/0 3.366667
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� This paper integrates CMS-RS to improve the exploitation capacity of RIME and explores new solutions when stuck in a local optimum.

� IRIME has demonstrated excellent performance in IEEE CEC 2017 benchmark functions and demonstrated the ability to solve practical

problems in engineering design.
� The paper proposes a binary version of IRIME applied to feature selection problems, which respectively achieves good results on high-

and low-dimensional datasets.

RESULTS AND DISCUSSION

Experimental design and analysis of results

A series of systematic experiments were conducted in this study to validate the efficacy of the RIME variant. The IEEE CEC 2017 benchmark

functions were utilized,86 comprising functions categorized into four types: simple unimodal (F1-F3), simple multimodal (F4-F10), hybrid

(F11-F20), and composite functions (F21-F30),87 as shown in Table 1. The IEEE CEC 2017 benchmark functions were a set of standard functions

used during the 2017 IEEE congress on evolutionary computation for evaluating the performance of evolutionary algorithms and other opti-

mization algorithms.88,89 These functions are designed to test different optimization problem settings and have undergone extensive

research and validation to ensure that they pose a certain level of complexity and diversity, effectively evaluating the performance of optimi-

zation algorithms. The experiments involved historical trajectory analysis, balance and diversity analyses of IRIME, stability analysis, and abla-

tion studies. A comparison was made against 13 conventional algorithms and 11 advanced algorithms. In addition, apply IRIME to 4 practical

engineeringproblems to verify its ability to solve engineering problems. Finally, it was applied to 12 low-dimensional and 24 high-dimensional

datasets to validate its performance in feature selection. To ensure statistical significance in the experimental results, non-parametric statis-

tical tests such as the Wilcoxon signed-rank test90 were employed, with a significance level set at 0.05. Additionally, average (AVG) and stan-

dard deviation (STD) analyses were used, and ranking was conducted using the Friedman test.91 In testing the IEEE CEC 2017 benchmark

function, all experiments referred to previous research to minimize bias as much as possible.

The experiments in this study were conducted usingMATLAB R2020a on a system running theWindows 11 operating system, powered by

an Intel(R) Core(TM) i5-12400 12th generation processor clocked at 2.50 GHz. The relevant parameters for the algorithms tested alongside

IRIME are listed in Table 2.

Qualitative analysis of IRIME

Analysis of historical search trajectories. In Figure 1, F1 represents a unimodal function. Observing Figures 1B and 1D, it is apparent that

IRIME converges to smaller fitness values. Moreover, the sudden increase in the average fitness of all agents in later iterations is due to the

CMS-RS initiating a restart upon identifying local optima, thereby exploring new solutions and enhancing the possibility of discovering po-

tential solutions. In Figure 1A, the red dots indicate the positions where the best solution has been found so far, while the black dots represent

the trajectory points during the search. Initially, individuals are randomly distributed in the solution space, but with IRIME iterations, they grad-

ually approach the peak of the unimodal function. In Figure 1C, the one-dimensional trajectory also shows that IRIME has a broader search

space in both the initial and final stages than RIME. In the middle stage of IRIME, there is a bias toward exploitation: initially influenced by SB

and later influenced by RS, with CMS contributing more to exploitation in the middle stage. For functions F4-F10, representing simple multi-

modal functions, Figure 1A shows that IRIME’s individuals are distributed across each peak at the onset. Gradually, IRIME discovers better

peaks and exploits them. In Figures 1B and 1D, IRIME consistently achieves better fitness values than RIME. When IRIME gets stuck in local

optima, the CMS-RS opens up new spaces. Figure 1C also indicates that IRIME initially explores multiple peaks and gradually converges to a

better peak, which is evident in the selected region, which shows better fitness values than RIME. Similarly, in composite functions F21 and

F22, IRIME initially exhibits a larger search space than RIME and converges to better fitness values later, discovering regions where RIME fails

to reach.

Balance and diversity analysis. This section utilizes the IEEE CEC 2017 benchmark functions to evaluate the balance and diversity of

IRIME and RIME. As depicted in Figures 2 and 3, the blue line represents the algorithm in an exploitation phase, the red line illustrates

Figure 4. The Friedman ranking of IRIME and RIMEs

ll
OPEN ACCESS

8 iScience 27, 110561, August 16, 2024

iScience
Article



Table 5. Comparison of IRIME with RIMEs

F1 F2 F3

AVG STD AVG STD AVG STD

IRIME 1.000000E+02 4.341879E-07 1.208397E+04 1.692978E+04 3.000675E+02 6.544860E-02

CMSRSRIME 1.000000E+02 6.787999E-07 9.608267E+03 2.901084E+04 3.000137E+02 1.440701E-02

SBRIME 6.912754E+03 3.342332E+03 1.903663E+04 3.287184E+04 3.019264E+02 7.738878E-01

RIME 6.740600E+03 4.683236E+03 1.725470E+04 4.617363E+04 3.016142E+02 7.393312E-01

F4 F5 F6

AVG STD AVG STD AVG STD

IRIME 4.049188E+02 1.660907E+01 5.612429E+02 1.547367E+01 6.000036E+02 1.901825E-03

CMSRSRIME 4.119034E+02 2.428008E+01 5.592430E+02 1.695952E+01 6.000025E+02 1.635151E-03

SBRIME 4.822844E+02 2.432146E+01 5.940733E+02 2.538615E+01 6.008424E+02 7.132176E-01

RIME 4.934413E+02 3.982441E+01 5.792156E+02 2.035945E+01 6.003355E+02 3.274886E-01

F7 F8 F9

AVG STD AVG STD AVG STD

IRIME 7.854226E+02 1.459656E+01 8.592915E+02 1.276500E+01 9.000000E+02 1.360593E-11

CMSRSRIME 7.875552E+02 1.590540E+01 8.632096E+02 1.265242E+01 9.031533E+02 9.154477E+00

SBRIME 8.092856E+02 2.294600E+01 8.825459E+02 2.181813E+01 1.832479E+03 8.498307E+02

RIME 8.196870E+02 2.584547E+01 8.795674E+02 2.032560E+01 1.300574E+03 5.075069E+02

F10 F11 F12

AVG STD AVG STD AVG STD

IRIME 3.370405E+03 6.680517E+02 1.142597E+03 2.458383E+01 3.778128E+03 1.308558E+03

CMSRSRIME 3.527053E+03 4.907452E+02 1.148122E+03 2.141947E+01 3.759469E+03 1.719976E+03

SBRIME 3.618576E+03 5.236817E+02 1.276824E+03 7.583414E+01 6.747955E+06 3.731713E+06

RIME 3.402741E+03 6.191174E+02 1.231434E+03 6.460259E+01 4.432634E+06 2.177431E+06

F13 F14 F15

AVG STD AVG STD AVG STD

IRIME 1.334285E+03 8.006018E+00 1.444883E+03 1.161457E+01 1.559461E+03 2.867685E+01

CMSRSRIME 1.338540E+03 9.647202E+00 1.449102E+03 1.254535E+01 1.569876E+03 3.745820E+01

SBRIME 4.021342E+03 3.087106E+03 1.564542E+03 8.300780E+01 4.034866E+03 3.706339E+03

RIME 4.693434E+03 2.467541E+03 1.504226E+03 3.706804E+01 6.473199E+03 4.852897E+03

F16 F17 F18

AVG STD AVG STD AVG STD

IRIME 2.153008E+03 2.439803E+02 1.937497E+03 8.960966E+01 1.363427E+04 8.005798E+03

CMSRSRIME 2.256912E+03 2.333114E+02 1.999397E+03 1.131100E+02 1.223189E+04 1.042454E+04

SBRIME 2.290189E+03 2.808756E+02 2.041873E+03 8.707292E+01 7.422992E+04 5.051162E+04

RIME 2.348066E+03 2.163382E+02 2.026551E+03 1.694096E+02 1.018748E+05 7.327155E+04

F19 F20 F21

AVG STD AVG STD AVG STD

IRIME 2.014868E+03 2.572843E+02 2.189910E+03 8.610377E+01 2.134962E+03 3.507469E+01

CMSRSRIME 2.925334E+03 3.347182E+03 2.181714E+03 9.010563E+01 2.125485E+03 3.190956E+01

SBRIME 4.612865E+03 4.464702E+03 2.361028E+03 1.289487E+02 2.207251E+03 3.255049E+01

RIME 7.662323E+03 6.550908E+03 2.290457E+03 1.005639E+02 2.214770E+03 3.275008E+01

(Continued on next page)
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the algorithm in an exploration phase, and the green line indicates an increasing trend when the exploration outweighs the exploitation

or a decreasing trend otherwise. As shown in the graphs for unimodal functions F2 and F3, the variant of RIME proposed in this paper,

IRIME, tends to be explored more extensively in the early stages. This appropriate increase in the exploration phase expedites the al-

gorithm’s convergence and mitigates the susceptibility to local optima. In contrast, RIME spends less time exploring F2 and F3, partic-

ularly with only 1.6321% in F2. This results in slow convergence of the algorithm in unimodal functions. However, the integration of SB

effectively enhances IRIME’s exploratory capability, accelerating convergence. As observed in the diversity graph, IRIME’s individuals

are initially distributed across a broader space due to SB’s influence, leading to higher diversity than RIME. During the mid-phase,

extensive exploitation occurs, and a sudden rise in diversity toward the end is attributed to CMS-RS’s role, which detects the algorithm’s

local entrapment and enhances IRIME’s precision. In the case of simple multimodal functions F8 and F10, RIME exhibits minimal explo-

ration, especially in F10. This starkly contrasts IRIME, where the exploration capability exceeds 20%, while RIME’s exploration capability

is only around 2%. Consequently, RIME is highly prone to local optima, only developing around specific peaks and failing to explore

potentially more fruitful regions. The diversity curve further demonstrates that IRIME possesses greater initial population diversity

and engages in substantial exploitation in the mid-phase, and after exploitation stagnation, IRIME attempts to break out of local optima

to find better solutions. For hybrid functions F13, F15, and F20, RIME only explores about 1%, whereas IRIME explores more extensively.

Additionally, the population’s diversity increases. CMS-RS also plays a role in discovering better solutions in the later phase. A similar

pattern emerges for functions F21, F23, and F29, where RS and CMS-RS balance the exploration and exploitation capabilities of the

original RIME, increasing population diversity and enhancing convergence accuracy. This also empowers IRIME to escape local optima.

In conclusion, the combination of SB and CMS-RS equips IRIME with superior balance and diversity, allowing it to escape local optima

more effectively.

Parameter sensitivity experiment

The selection of parameters critically influences algorithm’s performance; therefore, conducting a parameter sensitivity analysis is essential.92

This analysis evaluates how different parameter values affect the performance of the algorithm, thereby optimizing algorithm efficiency and

ensuring robustness under various conditions.93,94 In this paper, most parameters used in IRIME are supported by theoretical or empirical

justifications from original papers. The only point of contention is the threshold at which the restart strategy in CMS-RS begins to execute.

Asmentioned earlier, the threshold is set at 50. To verify the appropriateness of this threshold, this paper conducted experiments at threshold

values of 30, 50, and 100, represented as IRIME30, IRIME50, and IRIME100, respectively.

The experimental results are shown in Table 3. The symbols ‘‘+/ = /-’’ represent whether IRIME performs significantly better, equal to, or

worse than other algorithms in this experiment on the Wilcoxon signed-rank test. From the table, it can be seen that the choice of threshold

Table 5. Continued

F22 F23 F24

AVG STD AVG STD AVG STD

F22 F23 F24

AVG STD AVG STD AVG STD

IRIME 2.259745E+03 1.569471E+01 2.500000E+03 8.301258E-06 2.600000E+03 1.888236E-13

CMSRSRIME 2.263672E+03 1.606741E+01 2.845609E+03 1.510916E+01 3.394899E+03 1.332673E+01

SBRIME 2.311125E+03 3.239709E+01 2.500972E+03 8.935810E-01 2.600053E+03 5.355676E-02

RIME 2.282943E+03 2.054662E+01 2.884192E+03 3.074977E+01 3.360063E+03 1.826656E+02

F25 F26 F27

AVG STD AVG STD AVG STD

IRIME 2.707120E+03 3.899517E+01 2.800000E+03 7.208242E-10 2.920793E+03 1.138842E+02

CMSRSRIME 2.918437E+03 2.484449E+01 5.090513E+03 1.921404E+02 3.437174E+03 3.633907E+01

SBRIME 2.700552E+03 3.402318E-01 2.800529E+03 4.689096E-01 2.902733E+03 9.562687E-01

RIME 2.965889E+03 4.976697E+01 4.887692E+03 9.898190E+02 3.547105E+03 7.414412E+01

F28 F29 F30

AVG STD AVG STD AVG STD

IRIME 3.031860E+03 7.474622E+01 3.255024E+03 1.067390E+02 5.978167E+03 3.490858E+03

CMSRSRIME 4.714342E+03 8.194617E+02 3.418242E+03 1.152990E+02 1.069414E+04 4.913513E+03

SBRIME 3.000791E+03 6.112466E-01 3.109261E+03 4.379583E+00 6.810517E+04 8.243885E+04

RIME 3.350192E+03 3.439794E+02 3.545178E+03 1.500152E+02 3.456162E+04 2.103248E+04
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affects the overall performance of IRIME. However, the differences are not pronounced formost functions. As per the results, the performance

difference between IRIME30 and IRIME50 is insignificant in 19 functions, while between IRIME100 and IRIME50, the difference is insignificant in

18 functions. On the whole, the overall performance of the IRIME algorithm is better when the threshold is set at 50. As shown in the table, the

average ranking of IRIME50 is smaller, with a final score of 1.7.

The influence of SB and CMS-RS

In this section, we specifically examine the precise impact of SB and CMS-RS on RIME using the IEEE CEC 2017 benchmark functions. In this

experiment, the population size was set to 30, problem dimensionality was set to 30, and the maximum iteration count was 300,000. To elim-

inate potential incidental influences, each algorithm ran independently 30 times. SBRIME represents RIME integrated with SB, while

CMSRSRIME denotes RIME integrated with CMS-RS. The symbols "+/ = /-" represent whether IRIME performs significantly better, equal

to, or worse than other algorithms in this experiment on the Wilcoxon signed-rank test.

Table 4 shows that the average ranking of IRIME is 1.43333, securing the top position. This indicates that combining these two methods

improves RIME in various aspects. Compared to the original RIME, 28 out of 30 benchmark functions perform better, while two functions

converge to the same outcome. This suggests that the incorporation of SB and CMS-RS has not adversely affected RIME. We conducted

Figure 5. Convergence curves of IRIME and RIMEs at IEEE CEC 2017

ll
OPEN ACCESS

iScience 27, 110561, August 16, 2024 11

iScience
Article



a Friedman ranking, as depicted in Figure 4. From the Friedman ranking, it is evident that IRIME ranks first, and the algorithm’s performance

improves with each additional mechanism integrated.

Table 5 presents specific comparative data of the algorithms, with bold text highlighting the best results obtained among all algorithms. It

also includes convergence graphs, as depicted in Figure 5. The graph and the table show that solely incorporating SB or CMS-RS does not

lead the algorithm to perform optimally. Solely adding SB enhances population diversity, boosting RIME’s exploratory capability. This

improvement is evident in RIME’s performance on composite functions like F22 and F23. However, it does not manifest advantages in unim-

odal functions like F3 or multimodal functions like F8. Solely incorporating CMS-RS strengthens the algorithm’s performance on unimodal

functions such as F1, multimodal functions like F4 and F5, and hybrid functions like F11 and F12. However, CMS-RS does not demonstrate

significant effects on composite functions, mainly because it effectively improves RIME’s convergence capability, meeting the requirements

for local exploitation and, to some extent, providing the ability to escape local optima. Yet, it offers less in terms of population diversity and

weaker exploratory capabilities. Only through the comprehensive integration of SB and CMS-RS can IRIME achieve the top-ranking position.

Additionally, Table 6 provides the algorithm’s p-values. From a statistical perspective, IRIME holds a dominant position acrossmost functions.

Stability testing of IRIME

Stability experiments were conducted in this section to validate the stability of IRIME. The parameter settings remained mostly similar to the

previous experiments, except for variations in dimensions (30, 50, and 100). The specific experimental data is shown in Table 7. The table

shows that IRIME outperforms RIME in 30, 29, and 29 benchmark functions across different dimensions, demonstrating significantly better

stability than RIME. Particularly on functions like F6 and F26, as the dimensions increase, RIME’s convergence to the optimal value also grows,

but IRIME maintains convergence at similarly low optimal values. A Friedman ranking was computed, as shown in Figure 6, demonstrating

IRIME’s significant advantage as the dimensionality increases. In summary, with changing problem dimensions, IRIME sustains its competi-

tiveness, showcasing remarkable stability and maintaining strong performance.

Comparison with conventional algorithms

In this section, IRIME was primarily compared against 13 conventional algorithms: RIME,21 SCA,16 WOA,95 DE,33 SSA,96 PSO,97 MFO,29

GWO,98 BA,99 CS,91 FA,100 CPA32 andHHO.28 Table 8 illustrates that IRIME achieves an average ranking of 1.733333, indicating its exceptional

performance across all 30 benchmark test functions. Detailed experimental data is provided in Table 9. Upon careful comparison with SCA,

WOA, DE, PSO, MFO, GWO, FA, and RIME, IRIME does not exhibit noticeably poorer performance than these algorithms. Furthermore,

compared to other algorithms such as CPA, HHO, etc., there are many cases where IRIME is significantly superior. For a visual representation

of IRIME’s performance, convergence curve plots were generated, as depicted in Figure 7. These curves demonstrate IRIME’s distinctive char-

acteristics compared to RIME, especially evident in simple unimodal functions F1, multimodal functions F4, F5, F7, F8 and F10, hybrid

Table 6. p�value of Wilcoxon signed�rank test between IRIME and other RIMEs

F1 F2 F3 F4 F5 F6

CMSRSRIME 2.9574621307E-03 1.0746884002E-01 3.4052567233E-05 4.7794743855E-01 4.7794743855E-01 6.0350064738E-03

SBRIME 1.7343976283E-06 4.1653380739E-01 1.7343976283E-06 1.9209211049E-06 2.1630223984E-05 1.7343976283E-06

RIME 1.7343976283E-06 3.4934556237E-01 1.7343976283E-06 1.7343976283E-06 3.3788544377E-03 1.7343976283E-06

F7 F8 F9 F10 F11 F12

CMSRSRIME 7.3432529144E-01 2.5364409755E-01 1.6367234818E-01 4.0483472216E-01 1.1092566513E-01 4.6528258188E-01

SBRIME 3.5888445045E-04 1.2505680433E-04 1.7343976283E-06 9.3675596532E-02 1.7343976283E-06 1.7343976283E-06

RIME 4.0715116266E-05 7.1570338462E-04 1.7343976283E-06 7.0356369987E-01 2.3534209951E-06 1.7343976283E-06

F13 F14 F15 F16 F17 F18

CMSRSRIME 1.2543823903E-01 4.7794743855E-01 2.8947707171E-01 6.8713630797E-02 8.7296677536E-03 3.3885615525E-01

SBRIME 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 5.4462503972E-02 2.2248266458E-04 1.7343976283E-06

RIME 1.7343976283E-06 2.1266360107E-06 1.7343976283E-06 2.1052603409E-03 2.8485956185E-02 1.7343976283E-06

F19 F20 F21 F22 F23 F24

CMSRSRIME 3.0861485053E-01 7.0356369987E-01 1.5885549929E-01 1.6502656562E-01 1.7343976283E-06 1.7343976283E-06

SBRIME 2.3534209951E-06 4.8602606067E-05 2.3534209951E-06 4.7292023374E-06 1.7343976283E-06 1.7343976283E-06

RIME 1.7343976283E-06 4.1955098606E-04 1.7343976283E-06 8.1877534396E-05 1.7343976283E-06 1.7343976283E-06

F25 F26 F27 F28 F29 F30

CMSRSRIME 1.9209211049E-06 1.7343976283E-06 1.9209211049E-06 1.7333066442E-06 1.9729484516E-05 1.6046383717E-04

SBRIME 3.1123151154E-05 1.7343976283E-06 3.1123151154E-05 5.7096495243E-02 4.7292023374E-06 3.1816794110E-06

RIME 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.9209211049E-06 1.9209211049E-06
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Table 7. Stability testing of IRIME and RIME

Metric

30 50 100

IRIME RIME IRIME RIME IRIME RIME

AVG 1.000000E+02 1.028739E+04 8.150018E+03 3.498054E+04 3.587010E+04 5.599304E+05

STD 6.624418E-07 1.822468E+04 1.360977E+04 1.030577E+04 2.748387E+04 1.181859E+05

AVG 6.779600E+03 3.152160E+04 3.707965E+13 8.353509E+13 9.181274E+56 1.820439E+80

STD 8.247370E+03 6.815905E+04 1.077243E+14 2.980378E+14 3.252605E+57 9.948538E+80

AVG 3.000804E+02 3.017968E+02 9.127787E+02 5.914656E+02 9.806014E+04 9.242816E+04

STD 8.807603E-02 7.545155E-01 3.786835E+02 1.216696E+02 1.448744E+04 1.933928E+04

AVG 4.161644E+02 4.904783E+02 4.920837E+02 5.228727E+02 6.357680E+02 6.980471E+02

STD 2.870048E+01 3.720042E+01 1.411291E+01 4.746566E+01 4.853969E+01 4.424859E+01

AVG 5.619552E+02 5.836654E+02 6.267921E+02 6.818772E+02 8.695937E+02 9.965034E+02

STD 1.790301E+01 1.722221E+01 2.854613E+01 3.959170E+01 6.564103E+01 8.890611E+01

AVG 6.000026E+02 6.002950E+02 6.000213E+02 6.027180E+02 6.002694E+02 6.182405E+02

STD 1.369855E-03 2.141152E-01 8.625810E-03 1.841028E+00 1.523005E-01 4.611132E+00

AVG 7.840374E+02 8.168247E+02 8.740425E+02 9.318452E+02 1.181254E+03 1.294812E+03

STD 1.300727E+01 2.777899E+01 1.874723E+01 4.792427E+01 6.421225E+01 9.746528E+01

AVG 8.621855E+02 8.839896E+02 9.318084E+02 9.770503E+02 1.184238E+03 1.324732E+03

STD 1.320405E+01 1.835873E+01 2.928632E+01 3.136398E+01 6.472031E+01 8.014492E+01

AVG 9.000181E+02 1.124300E+03 9.045256E+02 3.715535E+03 1.520706E+03 1.770827E+04

STD 8.398819E-02 2.651242E+02 8.449065E+00 1.840252E+03 7.826171E+02 7.679602E+03

AVG 3.403375E+03 3.318342E+03 6.472167E+03 6.607002E+03 1.483534E+04 1.553603E+04

STD 5.195037E+02 4.690800E+02 7.651949E+02 7.082011E+02 1.171622E+03 1.278887E+03

AVG 1.144627E+03 1.235619E+03 1.213375E+03 1.566197E+03 1.639799E+03 2.527533E+03

STD 1.801979E+01 7.120005E+01 2.596203E+01 1.123408E+02 1.378813E+02 2.185059E+02

AVG 3.259220E+03 3.185041E+06 6.215314E+03 8.247759E+06 2.146365E+04 9.556442E+07

STD 9.613443E+02 2.533263E+06 2.619565E+03 3.820874E+06 9.818197E+03 3.444275E+07

AVG 1.339929E+03 3.903406E+03 1.038753E+04 5.893687E+04 2.624556E+04 2.400604E+05

STD 1.078343E+01 3.101797E+03 7.408806E+03 4.089735E+04 1.241422E+04 8.196934E+04

AVG 1.443579E+03 1.497542E+03 1.466908E+03 1.651542E+03 1.532119E+03 1.599748E+04

STD 9.549785E+00 2.906395E+01 1.731724E+01 5.900106E+01 2.628161E+01 7.791170E+03

AVG 1.560320E+03 7.576501E+03 2.017887E+03 4.234476E+03 8.630684E+03 5.690617E+04

STD 3.352494E+01 6.640569E+03 7.957409E+02 2.180854E+03 9.731233E+03 2.010337E+04

AVG 2.189042E+03 2.341539E+03 2.641367E+03 2.967189E+03 5.169371E+03 5.974952E+03

STD 2.485710E+02 3.008552E+02 3.246147E+02 4.208589E+02 6.400325E+02 5.933374E+02

AVG 1.932272E+03 2.019690E+03 2.303726E+03 2.577466E+03 4.363901E+03 4.793590E+03

STD 1.219315E+02 1.098334E+02 2.243114E+02 2.717036E+02 4.906362E+02 5.352419E+02

AVG 1.321118E+04 1.282609E+05 1.076984E+05 6.718929E+05 8.873835E+05 2.215444E+06

STD 1.040334E+04 9.873021E+04 4.224163E+04 4.070633E+05 4.590897E+05 7.540629E+05

AVG 1.996303E+03 8.668593E+03 9.349882E+03 1.402825E+04 6.842005E+03 4.190986E+04

STD 2.888304E+02 7.195163E+03 1.038581E+04 1.488471E+04 3.688717E+03 2.169956E+04

AVG 2.171758E+03 2.261173E+03 2.579609E+03 2.792553E+03 4.184473E+03 4.741982E+03

STD 7.861606E+01 9.435565E+01 2.374063E+02 2.490740E+02 4.799121E+02 4.920016E+02

AVG 2.129702E+03 2.194063E+03 2.212182E+03 2.270509E+03 2.250000E+03 2.250002E+03

STD 3.233579E+01 2.859524E+01 3.470840E+01 3.920999E+01 1.705788E-06 1.661872E-04

AVG 2.261555E+03 2.278551E+03 2.339057E+03 2.389399E+03 2.350000E+03 2.350000E+03

STD 1.980115E+01 1.982225E+01 2.854209E+01 4.896348E+01 8.275093E-09 9.695178E-06

AVG 2.500000E+03 2.877338E+03 2.522419E+03 3.249900E+03 2.500380E+03 3.959631E+03

(Continued on next page)
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functions F11, F12, F13, F14, F17, and F18, and composite functions F21 and F22. This notable performance is primarily attributed to balancing

RIME’s exploration and exploitation abilities by SB and CMS-RS, enabling IRIME’s ability to escape local optima. Moreover, the Friedman

ranking chart in Figure 8 positions IRIME at the top. To indicate the statistical significance of IRIME’s superiority over other algorithms, a table

presenting p-values of the Wilcoxon signed-rank test is included in Table10.

Comparison with advanced algorithms

To further validate IRIME’s performance, this study compared it with some advanced algorithms using the IEEE CEC 2017 benchmark test

suite. These algorithms include EBOwithCMAR,101 LSHADE_cnEpSi,86 ALCPSO,102 CLPSO,103 LSHADE,104 SADE,105 JADE,106 RCBA,107

EPSO,108 CBA,109 and LWOA,110 The specific experimental data is detailed in Table 11. The results in the table highlight that IRIME, alongside

some advanced algorithms, achieves performance near the theoretical optimum in functions such as F1, F3, F6, and F9. Compared to excep-

tional variants of DE like JADE and SADE, IRIME demonstrates some drawbacks in multimodal functions (F4, F5, F7, and F10) and hybrid func-

tions (F12, F16, F17, and F18). This can be attributed to the limitations of SB and CMS-RS in improving convergence accuracy. Nevertheless,

these limitations do not significantly impact IRIME’s overall performance. IRIME can also find very good results on multimodal functions F7

and F8, indicating that IRIME is not uniformly poor on multimodal functions. In addition, the hybrid functions F11, F13, F14, and F15 can also

reflect excellent results, demonstrating that the disadvantage of IRIME on hybrid functions is not significant. Particularly in composite func-

tions (F23, F24, F25, F26, F27, F28 and F29), IRIME exhibits advantages that aren’t present in these advanced algorithms, such as

EBOwithCMAR, LSHADE_cnEpSi, ALCPSO, and CLPSO.When compared to other successful improvements in swarm intelligence algorithms

like RCBA, CBA, and LWOA, IRIME outperforms them in convergence capability, especially in simple unimodal functions such as F1 and F2.

Despite potential shortcomings in convergence accuracy, IRIME’s strong exploration abilities and the balance between exploration and

exploitation elevate its average ranking to the top among these algorithms, as depicted in Table 12.

Table 7. Continued

Metric

30 50 100

IRIME RIME IRIME RIME IRIME RIME

STD 9.799078E-06 2.785766E+01 1.227458E+02 5.579856E+01 3.389571E-01 8.897769E+01

AVG 2.600000E+03 3.299834E+03 2.600000E+03 3.829701E+03 2.600019E+03 5.362005E+03

STD 2.533334E-13 2.579968E+02 4.619013E-06 6.618639E+01 2.013730E-02 9.411192E+01

AVG 2.707120E+03 2.973604E+03 2.881642E+03 3.051111E+03 2.700225E+03 3.340697E+03

STD 3.899625E+01 5.501906E+01 1.531719E+02 2.489686E+01 2.330694E-01 6.969830E+01

AVG 2.800000E+03 5.014069E+03 2.800000E+03 7.360208E+03 2.800134E+03 1.570043E+04

STD 4.776900E-13 9.979314E+02 2.963824E-05 1.592764E+03 1.101589E-01 1.136894E+03

AVG 2.918219E+03 3.594628E+03 2.971923E+03 3.994026E+03 3.097434E+03 5.449449E+03

STD 9.978696E+01 8.565568E+01 2.188521E+02 1.697183E+02 5.004242E+02 3.176788E+02

AVG 3.023799E+03 3.412600E+03 3.275639E+03 3.342462E+03 3.000172E+03 3.407231E+03

STD 7.300070E+01 4.842390E+02 1.299708E+02 3.360505E+01 1.083659E-01 4.757740E+01

AVG 3.240401E+03 3.560112E+03 3.569520E+03 4.500026E+03 5.375933E+03 6.954458E+03

STD 6.760153E+01 1.833220E+02 2.907660E+02 3.105699E+02 4.990865E+02 5.511103E+02

AVG 6.144891E+03 4.017941E+04 2.279465E+04 7.241399E+05 9.420026E+03 6.578093E+06

STD 3.632263E+03 2.698645E+04 1.915455E+03 4.691778E+05 2.867600E+03 2.615942E+06

Figure 6. Friedman ranking of IRIME in different dimensions
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To provide a clear visual representation of IRIME’s performance, this study developed convergence curve graphs, in Figure 9. From the

graph, it is evident that IRIME does not exhibit outstanding convergence speed. The red curve initially positions relatively higher among

numerous algorithms. However, unlike other algorithms that directly converge near a local optimum and struggle to escape, IRIME demon-

strates more excellent exploitation capabilities. Despite its slower initial convergence, IRIME and CMS-RS effectively explore and break away

from local optima. This ability enables IRIME to converge to better positions in functions such as F9, F13, and F27. Likewise, to assess whether

IRIME statistically outperforms these advanced algorithms, a Friedman ranking graph was generated in Figure 10. It is evident from the graph

that IRIME secures the top rank among these algorithms, with a value of 3.71. JADE is still a strong algorithm, and IRIME has a slight advantage

over JADE. Variations of other DEs, such as SADE and SHADE, also rank closely behind IRIME and JADE, demonstrating excellent perfor-

mance. It is worth mentioning that EBOwithCMAR also achieves results similar to DE variants and ranks fourth, even more competitive

than SHADE. Specific p-values are available in Table 13. From the p-value of theWilcoxon signed-rank test, it can be seen that IRIME is signif-

icantly superior to other algorithms in most cases.

The experiments for engineering design

To further validate the performance of IRIME in practical applications, this paper applies IRIME to five real-world engineering problems,

including the tension compression string problem (TCSP), cantilever beam problem (CBP), I-beam problem (IBP), and Belleville spring

problem (BSP). It compares it with some algorithms that perform excellently in engineering design. The maximum number of iterations

in the engineering problems is set to 2000, and the population size is 50. The purpose of this setup is to follow the original RIME21

paper.

TCSP. The TCSP111 is an optimization problem involving three variables: the number of effective coils (N), average coil diameter (D), and

wire diameter (d). As shown in Figure 11, the TCSP problem can be formulated as follows:

Consider x! = ½x1x2x3� = ½dDN�

Objective function f ð x!Þmin = x21x2x3 + 2x21x2

Subject to h1ð x!Þ = 1 � x32x3
71785x41

%0;

h2ð x!Þ = 4x22 � x1x2
12566ðx2x31 � x41Þ

+
1

5180x21
� 1% 0;

h3ð x!Þ = 1 � 140:45x1
x32x3

%0;

h4ð x!Þ = x1+x2
1:5

� 1%0;

Table 8. Comparison results between IRIME and conventional algorithms

Overall Rank

Algorithm Rank +/ = /- Avg

IRIME 1 � 1.733333

SCA 13 30/0/0 12.2

WOA 11 27/3/0 10.3

DE 3 25/2/3 5

SSA 6 29/0/1 5.833333

PSO 9 30/0/0 8.366667

MFO 12 30/0/0 10.93333

GWO 8 28/2/0 7.566667

BA 10 28/1/1 9.366667

CS 5 27/2/1 5.766667

FA 14 30/0/0 12.3

CPA 2 18/4/8 3.333333

HHO 7 22/2/6 6.9

RIME 3 29/1/0 5
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Table 9. Comparison of IRIME with conventional algorithms

F1 F2 F3

AVG STD AVG STD AVG STD

IRIME 1.000000E+02 8.228886E-07 1.092587E+04 2.557057E+04 3.000768E+02 8.230567E-02

SCA 1.841382E+10 3.722769E+09 7.136067E+32 1.990604E+33 3.706668E+04 4.666736E+03

WOA 6.004626E+06 6.340405E+06 2.066092E+29 1.113738E+30 1.338299E+04 5.360271E+03

DE 1.333382E+02 1.663241E+02 1.983923E+25 3.478891E+25 1.996025E+04 3.770712E+03

SSA 2.792499E+03 3.017484E+03 4.056705E+06 2.112276E+07 3.000000E+02 8.818389E-09

PSO 1.389773E+08 1.936371E+07 2.561524E+12 2.515226E+12 6.259001E+02 3.466948E+01

MFO 1.178499E+10 5.277154E+09 4.606288E+38 2.268979E+39 1.139089E+05 5.365509E+04

GWO 3.656408E+09 2.680374E+09 8.477831E+28 2.813243E+29 3.158195E+04 9.978276E+03

BA 3.979009E+05 1.875329E+05 2.001667E+02 9.128709E-01 3.000746E+02 4.876542E-02

CS 1.000000E+10 0.000000E+00 1.000000E+10 0.000000E+00 1.185032E+04 2.895928E+03

FA 1.422799E+10 1.490877E+09 2.637550E+34 2.817855E+34 5.846299E+04 8.407209E+03

CPA 2.114254E+03 2.746738E+03 1.107555E+05 5.629322E+05 3.000000E+02 1.708056E-07

HHO 1.397816E+07 2.883833E+06 2.473100E+12 7.349195E+12 2.801396E+03 1.243863E+03

RIME 7.124393E+03 4.505485E+03 2.058783E+04 5.563495E+04 3.016689E+02 7.524137E-01

F4 F5 F6

AVG STD AVG STD AVG STD

IRIME 4.047558E+02 1.615793E+01 5.592333E+02 1.350497E+01 6.000030E+02 2.016607E-03

SCA 1.374591E+03 2.771825E+02 7.588440E+02 1.443074E+01 6.417769E+02 5.229569E+00

WOA 5.840244E+02 5.335661E+01 6.972605E+02 4.197744E+01 6.644217E+02 1.299889E+01

DE 4.901688E+02 3.989320E+01 6.123099E+02 1.004958E+01 6.000000E+02 0.000000E+00

SSA 4.880627E+02 3.685931E+01 6.083748E+02 3.205830E+01 6.293176E+02 1.206613E+01

PSO 4.559716E+02 3.206651E+01 6.922583E+02 2.502204E+01 6.343293E+02 1.113896E+01

MFO 1.249248E+03 7.468984E+02 7.099112E+02 3.925173E+01 6.444544E+02 9.505611E+00

GWO 6.646073E+02 1.181156E+02 5.870130E+02 2.823283E+01 6.064975E+02 3.413389E+00

BA 4.492754E+02 5.335580E+01 7.378640E+02 4.005934E+01 6.715805E+02 1.149586E+01

CS 4.193988E+02 2.958199E+01 6.269874E+02 2.190149E+01 6.269248E+02 8.245281E+00

FA 1.482195E+03 1.539432E+02 7.535040E+02 1.239110E+01 6.437613E+02 3.892201E+00

CPA 4.741417E+02 4.920473E+01 6.277521E+02 2.556818E+01 6.000000E+02 1.993686E-07

HHO 5.452018E+02 3.950364E+01 6.738793E+02 1.994907E+01 6.526138E+02 3.710877E+00

RIME 4.869630E+02 2.962177E+01 5.771337E+02 1.783255E+01 6.003665E+02 2.821859E-01

F7 F8 F9

AVG STD AVG STD AVG STD

IRIME 7.883173E+02 1.821927E+01 8.592822E+02 1.301643E+01 9.000454E+02 1.386272E-01

SCA 1.203477E+03 5.847467E+01 1.077141E+03 2.148756E+01 7.055291E+03 1.483905E+03

WOA 1.305250E+03 1.357140E+02 1.079100E+03 5.445599E+01 9.026235E+03 3.453609E+03

DE 8.431410E+02 9.738404E+00 9.123994E+02 6.583571E+00 9.000000E+02 2.985563E-14

SSA 8.727399E+02 4.585326E+01 9.195604E+02 3.175260E+01 3.902221E+03 1.700013E+03

PSO 9.195953E+02 1.906608E+01 1.041707E+03 3.675778E+01 6.310334E+03 2.485837E+03

MFO 1.223923E+03 2.587419E+02 1.007102E+03 4.956693E+01 8.133813E+03 2.578392E+03

GWO 8.687501E+02 5.299589E+01 8.966145E+02 2.657562E+01 2.549040E+03 8.862296E+02

BA 1.672298E+03 2.052284E+02 1.121454E+03 5.642799E+01 1.596200E+04 4.562495E+03

CS 8.931793E+02 2.914000E+01 9.358801E+02 2.485981E+01 5.137085E+03 1.624264E+03

FA 1.378286E+03 4.499559E+01 1.053642E+03 1.212715E+01 5.904095E+03 5.642448E+02

CPA 8.489678E+02 3.506446E+01 8.985005E+02 2.920458E+01 3.316187E+03 7.771718E+02

(Continued on next page)
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Table 9. Continued

F7 F8 F9

AVG STD AVG STD AVG STD

HHO 1.302266E+03 9.362298E+01 1.076979E+03 4.260311E+01 7.620443E+03 1.098960E+03

RIME 8.108969E+02 2.663949E+01 8.771250E+02 1.542515E+01 1.282633E+03 7.780124E+02

F10 F11 F12

AVG STD AVG STD AVG STD

IRIME 3.113983E+03 4.683815E+02 1.130403E+03 1.468068E+01 3.319172E+03 7.705038E+02

SCA 7.981345E+03 3.150563E+02 3.022295E+03 6.445754E+02 1.574493E+09 3.979278E+08

WOA 5.934370E+03 7.789161E+02 1.481984E+03 8.519552E+01 1.382265E+08 7.101250E+07

DE 5.672989E+03 2.624536E+02 1.152053E+03 8.966502E+00 2.025299E+04 4.813425E+04

SSA 4.452536E+03 7.094846E+02 1.344872E+03 7.211084E+01 9.182351E+06 5.040467E+06

PSO 5.643005E+03 5.073707E+02 1.347653E+03 5.680875E+01 8.995054E+07 3.766610E+07

MFO 5.147688E+03 8.203648E+02 8.873480E+03 7.933486E+03 1.033950E+09 1.367383E+09

GWO 3.885633E+03 9.366685E+02 2.439886E+03 1.375237E+03 2.211911E+08 5.231662E+08

BA 5.665602E+03 6.360143E+02 1.463662E+03 1.486178E+02 7.653362E+06 7.277742E+06

CS 4.458374E+03 2.296132E+02 1.185109E+03 1.742362E+01 9.666740E+09 1.825338E+09

FA 7.802109E+03 2.450349E+02 4.351898E+03 6.829350E+02 2.681007E+09 3.497603E+08

CPA 3.335836E+03 4.680002E+02 1.153764E+03 2.469058E+01 6.094811E+04 5.596317E+04

HHO 4.635003E+03 5.314861E+02 1.373707E+03 9.325560E+01 5.779730E+07 3.642617E+07

RIME 3.409716E+03 5.427260E+02 1.236769E+03 6.668725E+01 3.654135E+06 2.400589E+06

F13 F14 F15

AVG STD AVG STD AVG STD

IRIME 1.336538E+03 8.473889E+00 1.443824E+03 8.556915E+00 1.553682E+03 2.436474E+01

SCA 1.135809E+08 3.597453E+07 1.857652E+05 8.431296E+04 4.841776E+06 2.356802E+06

WOA 1.000657E+05 7.298211E+04 2.780113E+05 1.802183E+05 5.291920E+04 8.617273E+04

DE 1.412306E+03 3.210871E+02 1.464071E+03 7.837059E+00 1.550860E+03 1.334677E+01

SSA 9.785285E+04 1.030243E+05 2.465348E+04 2.001924E+04 3.396406E+04 1.937665E+04

PSO 2.672529E+06 6.920589E+05 2.900206E+04 1.903076E+04 3.161740E+05 1.329552E+05

MFO 8.890284E+07 2.019387E+08 4.818146E+05 1.166317E+06 4.578076E+04 4.589563E+04

GWO 1.493141E+07 2.605109E+07 1.207818E+05 1.325602E+05 2.080886E+06 1.127817E+07

BA 2.056385E+05 1.475900E+05 1.764583E+04 8.026951E+03 9.857857E+04 9.742760E+04

CS 1.403952E+03 2.910464E+01 1.467773E+03 8.666795E+00 1.566742E+03 1.286895E+01

FA 4.300832E+08 1.161389E+08 3.545473E+05 1.403319E+05 5.339371E+07 1.919045E+07

CPA 3.945263E+03 2.400788E+03 1.467093E+03 3.012936E+01 7.282572E+03 4.871670E+03

HHO 1.949828E+05 8.419094E+04 4.341608E+04 3.603063E+04 3.486027E+04 1.511152E+04

RIME 4.237048E+03 2.386911E+03 1.521076E+03 4.668063E+01 7.385270E+03 4.797001E+03

F16 F17 F18

AVG STD AVG STD AVG STD

IRIME 2.157519E+03 2.319810E+02 1.942563E+03 8.414615E+01 1.227806E+04 8.274997E+03

SCA 3.297912E+03 2.433252E+02 2.544122E+03 1.996151E+02 1.843845E+06 9.558486E+05

WOA 3.325774E+03 4.574786E+02 2.621453E+03 3.052444E+02 4.481267E+06 3.637390E+06

DE 2.025687E+03 1.610609E+02 1.965870E+03 4.022178E+01 3.533861E+05 1.845308E+05

SSA 2.392214E+03 2.408053E+02 2.084263E+03 1.671643E+02 6.859217E+04 5.922140E+04

PSO 2.668135E+03 2.316809E+02 2.379098E+03 2.458484E+02 8.997152E+04 4.816071E+04

MFO 3.191869E+03 4.313203E+02 2.382983E+03 2.636714E+02 2.996153E+05 6.695035E+05

(Continued on next page)
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Table 9. Continued

F16 F17 F18

AVG STD AVG STD AVG STD

GWO 2.252737E+03 2.427924E+02 1.984203E+03 1.120046E+02 7.415711E+05 1.403432E+06

BA 3.490398E+03 5.264603E+02 2.771914E+03 3.374694E+02 6.745901E+04 2.947320E+04

CS 2.458258E+03 1.646827E+02 2.093107E+03 8.895653E+01 2.839660E+04 8.739249E+03

FA 3.171391E+03 1.900067E+02 2.556076E+03 1.239653E+02 2.123477E+06 7.703717E+05

CPA 2.638873E+03 3.589458E+02 2.035829E+03 1.520298E+02 8.337727E+04 5.771694E+04

HHO 2.853986E+03 4.348123E+02 2.518518E+03 2.613917E+02 1.479073E+06 1.536378E+06

RIME 2.361515E+03 2.358123E+02 1.997354E+03 1.314076E+02 1.082342E+05 6.657172E+04

F19 F20 F21

AVG STD AVG STD AVG STD

IRIME 2.332181E+03 1.864812E+03 2.192876E+03 9.492175E+01 2.136135E+03 3.352597E+01

SCA 2.168794E+07 1.687208E+07 2.650003E+03 1.360133E+02 3.142386E+03 2.110077E+02

WOA 7.039075E+05 7.090756E+05 2.762562E+03 1.563571E+02 2.275860E+03 3.276134E+01

DE 4.947694E+03 2.473822E+03 2.216929E+03 4.611997E+01 2.187477E+03 1.809598E+01

SSA 1.667896E+05 1.140472E+05 2.432897E+03 1.772135E+02 2.203093E+03 3.248284E+01

PSO 3.430261E+05 1.514502E+05 2.653687E+03 1.678977E+02 2.177850E+03 3.668529E+01

MFO 3.757899E+05 1.837212E+06 2.678688E+03 2.917192E+02 2.874566E+03 8.105786E+02

GWO 5.753903E+04 6.494282E+04 2.350499E+03 1.051505E+02 2.337764E+03 7.529951E+01

BA 2.695612E+05 1.461260E+05 2.978931E+03 2.096352E+02 2.161001E+03 4.171884E+01

CS 1.931255E+03 5.385502E+00 2.480485E+03 8.794099E+01 2.141894E+03 3.215894E+01

FA 3.416584E+07 1.587037E+07 2.599760E+03 9.585333E+01 3.244746E+03 1.713522E+02

CPA 4.131226E+03 2.932877E+03 2.409347E+03 1.245356E+02 2.192308E+03 2.812837E+01

HHO 1.482658E+05 9.248775E+04 2.802366E+03 2.084324E+02 2.264632E+03 2.386389E+01

RIME 8.102371E+03 6.772024E+03 2.285830E+03 1.169991E+02 2.197692E+03 3.982284E+01

F22 F23 F24

AVG STD AVG STD AVG STD

IRIME 2.265552E+03 1.375038E+01 2.500000E+03 2.412039E-05 2.600000E+03 2.234190E-13

SCA 2.469766E+03 1.862005E+01 3.280074E+03 5.293000E+01 3.860830E+03 7.261677E+01

WOA 2.434663E+03 4.591771E+01 3.152556E+03 1.486188E+02 2.826444E+03 4.640745E+02

DE 2.312139E+03 9.803931E+00 2.873856E+03 1.165131E+01 3.396319E+03 7.143519E+00

SSA 2.302442E+03 2.696481E+01 2.899683E+03 4.591268E+01 2.600461E+03 1.754068E+00

PSO 2.424424E+03 2.981972E+01 4.664458E+03 5.424066E+02 2.667356E+03 4.579105E+00

MFO 2.397898E+03 4.542225E+01 2.955630E+03 3.010570E+01 3.492602E+03 4.045296E+01

GWO 2.294783E+03 2.927255E+01 2.885035E+03 4.101812E+01 3.028401E+03 3.720900E+02

BA 2.490033E+03 5.712484E+01 3.541796E+03 2.055549E+02 2.846532E+03 4.871311E+02

CS 2.344756E+03 2.801735E+01 2.913872E+03 2.132308E+01 2.869770E+03 2.713068E+02

FA 2.445136E+03 1.294870E+01 3.103677E+03 1.621235E+01 3.691747E+03 1.601300E+01

CPA 2.313971E+03 2.535603E+01 2.500000E+03 0.000000E+00 2.600000E+03 0.000000E+00

HHO 2.428248E+03 2.689161E+01 2.500000E+03 0.000000E+00 2.600000E+03 0.000000E+00

RIME 2.288698E+03 1.933506E+01 2.875461E+03 1.894064E+01 3.218714E+03 3.332643E+02

F25 F26 F27

AVG STD AVG STD AVG STD

IRIME 2.700000E+03 3.014049E-06 2.800000E+03 7.966475E-13 2.917703E+03 9.696226E+01

SCA 3.620928E+03 1.263230E+02 7.789088E+03 1.025837E+03 4.061770E+03 1.175104E+02

(Continued on next page)
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Variaable ranges 0:05% x1 %2:00;
0:25% x2 %1:30;
2:00% x3 %15:0

As shown in Table 14, compared with the other five excellent algorithms, IRIME can achieve better results, with the final optimal value be-

ing 0.012665.

CBP. In CBP,117 the goal is to optimize the performance of the beam while minimizing its weight. There are five variables representing the

height of the cross-section, as shown in Figure 12. The mathematical expression of this problem is as follows:

Consider z! = ½z1z2z3z4z5�
Objective function f ð z!Þmin = 0:6224ðz1 + z2 + z3 + z4 + z5Þ

Subject to gð z!Þ = 61

z21
+
27

z22
+
19

z23
+
7

z24
+
1

z25
� 1%0

Variable range 0:01% z1; z2; z3; z4; z5 %100

Table 15 shows that IRIME can ultimately achieve 1.339957, which is unattainable by the other four algorithms compared in CBP.

Table 9. Continued

F25 F26 F27

AVG STD AVG STD AVG STD

WOA 2.717575E+03 9.626031E+01 3.542405E+03 1.941872E+03 3.968988E+03 2.352272E+02

DE 2.912818E+03 4.515466E+00 5.310729E+03 3.259103E+02 3.440492E+03 2.054747E+01

SSA 2.956126E+03 4.508026E+01 2.803337E+03 1.825686E+01 3.603933E+03 8.474287E+01

PSO 2.953735E+03 3.770860E+01 3.409442E+03 3.172684E+01 5.031577E+03 7.931823E+02

MFO 3.699591E+03 7.905559E+02 6.711784E+03 5.120422E+02 3.590907E+03 6.526928E+01

GWO 3.212052E+03 1.861504E+02 4.866584E+03 9.148374E+02 3.681051E+03 9.477657E+01

BA 3.013904E+03 8.224810E+01 5.309482E+03 3.576900E+03 3.906917E+03 1.275351E+02

CS 2.907161E+03 8.298785E+00 3.789000E+03 1.166225E+03 3.509616E+03 7.246362E+01

FA 4.108952E+03 1.520293E+02 7.293080E+03 1.459334E+02 3.902377E+03 8.965520E+01

CPA 2.700000E+03 0.000000E+00 2.800000E+03 0.000000E+00 2.900000E+03 0.000000E+00

HHO 2.700000E+03 0.000000E+00 2.800000E+03 0.000000E+00 2.900000E+03 0.000000E+00

RIME 2.956893E+03 4.093764E+01 5.213364E+03 8.405995E+02 3.566066E+03 7.106036E+01

F28 F29 F30

AVG STD AVG STD AVG STD

IRIME 3.034850E+03 8.227287E+01 3.279330E+03 8.123477E+01 5.583571E+03 2.871580E+03

SCA 5.650824E+03 5.471978E+02 4.271864E+03 2.801958E+02 7.855927E+06 1.863115E+07

WOA 3.308537E+03 6.514672E+02 4.361104E+03 4.091531E+02 1.826287E+06 1.767812E+06

DE 3.941911E+03 6.995067E+02 3.466897E+03 8.981603E+01 6.628119E+04 2.352216E+04

SSA 3.305292E+03 3.583736E+02 3.771022E+03 1.643812E+02 1.179055E+06 1.017255E+06

PSO 3.311009E+03 1.132244E+02 4.050026E+03 2.446224E+02 2.561684E+06 1.127760E+06

MFO 4.866595E+03 7.300049E+02 4.138832E+03 2.317888E+02 1.941961E+06 2.782699E+06

GWO 3.705572E+03 2.929996E+02 3.524327E+03 1.794326E+02 1.259130E+06 4.317675E+06

BA 3.415627E+03 5.750275E+02 4.654428E+03 4.556327E+02 1.054830E+06 6.501027E+05

CS 3.228935E+03 4.607668E+01 3.677880E+03 1.126906E+02 7.589453E+03 1.446341E+03

FA 4.068826E+03 1.044341E+02 4.559695E+03 1.650738E+02 1.171501E+08 3.086506E+07

CPA 3.000000E+03 0.000000E+00 3.100000E+03 0.000000E+00 3.200000E+03 0.000000E+00

HHO 3.000000E+03 0.000000E+00 3.100000E+03 0.000000E+00 3.200000E+03 0.000000E+00

RIME 3.549195E+03 6.610575E+02 3.609103E+03 1.811955E+02 3.838771E+04 2.085730E+04
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Figure 7. Convergence curves of IRIME and conventional algorithms at IEEE CEC 2017
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IBP. IBP 120 is about reducing vertical displacement in the design process of I-beam. This problem involves four variables as shown in Fig-

ure 13. The specific expression of IBP is as follows:

Consider x! = ½x1x2x3x4�

Objective function f ð x!Þmin =
5000

x3ðx2 � 2x4Þ
12

+
x1x34
6

+2x1x4
�x2 � x4

2

�2

Subject to gð x!Þ = 2x1x3 + x3ðx2 � 2x4Þ

Variablerange 10% x1 % 50
10% x2 % 80
0:9% x3 %5
0:9% x4 %5

From Table 16, it can be seen that under the same running environment as RIME, IRIME will have better results. Compared with the other

algorithms, IRIME can also achieve very good results, and ultimately IRIME can get 0.013074.

BSP. BSP122 involves four variables to make the Belleville spring’s mass as small as possible while satisfying constraints. This problem in-

volves four variables, as shown in Figure 14. Its mathematical expression is as follows:

Consider x! = ½x1x2x3x4� = ½DeDith�

Objectivefunction f ð x!Þmin = 0:07075tp
�
D2

e � D2
i

�
K =

De

Di
;Pmax = 5400;a =

�
K � 1

K

�2 6

p ln K
; a =

t

h
;

b =

�
K � 1

ln K
� 1

�
6

p ln K
;g =

�
K � 1

2

�
6

p ln K
;E = 30e6Psi

m = 0:3; dmax = 0:2;S = 200KPsi;Dmax = 12:01;H = 2; dl = hf ðaÞ

Subjectto h1ð x!Þ = 4Edmax

aD2
eð1 � m2Þ

h
gt + b

�
h � dmax

2

�i
� S% 0;

h2ð x!Þ = Pmax � 4Edmax

aD2
eð1 � m2Þ

h
tðh � dmaxÞ

�
h � dmax

2

�
+ t3

i
%0;

h3ð x!Þ = dmax � dl % 0;

h4ð x!Þ = t + h � H%0;

h5ð x!Þ = De � Dmax %0;

h6ð x!Þ = Di � De %0;

h7ð x!Þ = h

De � Di
� 0:3% 0;

Figure 8. The Friedman ranking of IRIME and conventional algorithms
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Table 10. p�value of Wilcoxon signed�rank test between IRIME and conventional algorithms

F1 F2 F3 F4 F5 F6

SCA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

WOA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

DE 5.7516532694E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

SSA 1.7343976283E-06 1.3594767037E-04 1.7343976283E-06 2.8785992194E-06 3.5152372790E-06 1.7343976283E-06

PSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06

MFO 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

GWO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.1630223984E-05 1.7343976283E-06

BA 1.7343976283E-06 9.3385961710E-06 5.9993592817E-01 1.4772761749E-04 1.7343976283E-06 1.7343976283E-06

CS 4.3204630578E-08 1.7126865599E-06 1.7343976283E-06 5.4462503972E-02 1.9209211049E-06 1.7343976283E-06

FA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

CPA 1.7343976283E-06 5.5774268620E-01 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

HHO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

RIME 1.7343976283E-06 7.3432529144E-01 1.7343976283E-06 2.1266360107E-06 6.1564062070E-04 1.7343976283E-06

F7 F8 F9 F10 F11 F12

SCA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

WOA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

DE 1.7343976283E-06 1.7343976283E-06 1.6976242501E-06 1.7343976283E-06 2.1630223984E-05 1.7343976283E-06

SSA 1.7343976283E-06 3.1816794110E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06

PSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

MFO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

GWO 2.6033283895E-06 3.5152372790E-06 1.7343976283E-06 8.9187274245E-05 1.7343976283E-06 1.7343976283E-06

BA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

CS 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06

FA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

CPA 1.9209211049E-06 4.7292023374E-06 1.7343976283E-06 2.0588822306E-01 4.5335631776E-04 1.7343976283E-06

HHO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

RIME 1.1973382000E-03 4.8602606067E-05 1.7343976283E-06 1.3974564120E-02 3.1816794110E-06 1.7343976283E-06

F13 F14 F15 F16 F17 F18

SCA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

WOA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06

DE 3.5008956820E-02 1.7343976283E-06 8.6121251974E-01 3.6826128416E-02 4.2766688017E-02 1.7343976283E-06

SSA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 4.5335631776E-04 8.9443006475E-04 1.7343976283E-06

PSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 3.8821823861E-06 2.1266360107E-06 1.7343976283E-06

MFO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.1266360107E-06 1.7343976283E-06 1.9209211049E-06

GWO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 6.8713630797E-02 1.8462187723E-01 1.7343976283E-06

BA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06

CS 1.7343976283E-06 2.8785992194E-06 1.7518393580E-02 4.4493372835E-05 1.6394463017E-05 2.3534209951E-06

FA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

CPA 1.7343976283E-06 3.5888445045E-04 1.9209211049E-06 2.8434237746E-05 6.4242118722E-03 4.2856858692E-06

HHO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 6.3391355731E-06 1.7343976283E-06 1.7343976283E-06

RIME 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 3.3788544377E-03 4.4918903765E-02 1.7343976283E-06

F19 F20 F21 F22 F23 F24

SCA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

WOA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 3.1250000000E-02

DE 2.3704477026E-05 1.8462187723E-01 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06

(Continued on next page)
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Variaableranges 1%R;R0;Q%16;
1e � 6%m%16e � 6;

As shown in Table 17, in the BSP, IRIME can achieve excellent results with 1.979675.

The experiments for feature selection

In this section, a variant form of IRIME, called bIRIME, was introduced. bIRIME was tested for feature selection using a K-nearest neighbor

classifier. The results indicate that bIRIME outperforms IRIME in both low-dimensional and high-dimensional datasets. This superiority is pri-

marily observed in having fewer feature subsets while maintaining higher accuracy levels. To reduce bias in the experiment, this paper follows

the same experiment steps and validation methods as those researchers.125,126

Simulation experiments

In this study, we conducted experiments using both UCI datasets127 and the SBCB machine learning library microarray datasets.128 Ta-

bles 18, 19, and 20 demonstrate our selection of 12 high-dimensional datasets and 12 low-dimensional datasets from the UCI dataset

collection. Among the low-dimensional datasets, the categories range from 2-class to 7-class classifications. The features vary from 11

to 326, and the sample sizes range from 73 to 6598. The high-dimensional datasets primarily consist of medical gene expression data

such as Colon, Leukemia, and Lung_Cancer. These datasets typically exhibit numerous features with relatively fewer samples. Due to

the high feature count, noise and filtration often lead to insufficient classification accuracy, making feature selection critical. To further

demonstrate bIRIME’s performance in high-dimensional datasets, we utilized SBCB microarray data and selected 12 high-dimensional

data. These datasets possess a substantial number of features, ranging from 22,277 to 54,675. To comprehensively display bIRIME’s per-

formance, it was compared against bMFO,129 bGWO,130 bSMA,131 bALO,132 BBA,133 BSSA,134 bWOA,135 and bHHO.136 The dimension

size depends on the dataset’s dimensionality, and the population size is set to 20. The parameters involved in these algorithms are

detailed in Table 21.

Figure 15 vividly illustrates the feature selection process. Data preprocessing is conducted, and necessary preparations aremade for cross-

validation. Subsequently, bIRIME is employed to update the population and select pertinent features. Finally, the chosen features are utilized

Table 10. Continued

F19 F20 F21 F22 F23 F24

SSA 1.7343976283E-06 8.4660816904E-06 2.1266360107E-06 6.3391355731E-06 1.7343976283E-06 1.7343976283E-06

PSO 1.7343976283E-06 1.9209211049E-06 4.9915540124E-03 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

MFO 8.4660816904E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

GWO 1.7343976283E-06 2.5967125848E-05 1.7343976283E-06 6.8922902968E-05 1.7343976283E-06 1.3183388898E-04

BA 1.7343976283E-06 1.7343976283E-06 4.9915540124E-03 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

CS 4.4918903765E-02 1.9209211049E-06 8.5895825870E-02 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

FA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

CPA 5.3069919381E-05 2.3704477026E-05 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.0000000000E+00

HHO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.0000000000E+00

RIME 3.4052567233E-05 2.9574621307E-03 6.9837831475E-06 1.1499217544E-04 1.7343976283E-06 1.7343976283E-06

F25 F26 F27 F28 F29 F30

SCA 1.7343976283E-06 2.5630832507E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

WOA 5.3710937500E-02 1.2500000000E-01 1.7343976283E-06 4.1652148500E-01 1.7343976283E-06 2.3534209951E-06

DE 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.1266360107E-06 1.7343976283E-06

SSA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

PSO 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

MFO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7300371293E-06 1.7343976283E-06 1.7343976283E-06

GWO 2.5630832507E-06 8.2980993064E-06 1.7343976283E-06 1.7343976283E-06 5.2164934470E-06 1.7343976283E-06

BA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.3534209951E-06 1.7343976283E-06 1.7343976283E-06

CS 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 3.8821823861E-06 1.7343976283E-06 9.6265892907E-04

FA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

CPA 1.9531250000E-03 1.0000000000E+00 1.7343976283E-06 1.7191759139E-06 1.7343976283E-06 1.7343976283E-06

HHO 1.9531250000E-03 1.0000000000E+00 1.7343976283E-06 1.7191759139E-06 1.7343976283E-06 1.7343976283E-06

RIME 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.1266360107E-06
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Table 11. Comparison of IRIME with advanced algorithms

F1 F2 F3

AVG STD AVG STD AVG STD

IRIME 1.000000E+02 6.154959E-07 1.010703E+04 1.303957E+04 3.000649E+02 5.911368E-02

EBOwithCMAR 1.000000E+02 7.463907E-15 2.456040E+21 1.345229E+22 2.400802E+04 3.386547E+04

LSHADE_cnEpSi 1.000000E+02 1.355622E-09 2.409411E+21 9.065340E+21 3.000060E+02 1.496863E-02

ALCPSO 1.090225E+03 1.626553E+03 1.080386E+19 4.265054E+19 2.652894E+04 4.688938E+03

CLPSO 1.064836E+02 1.516141E+01 6.521139E+13 1.787106E+14 8.761694E+03 2.317848E+03

LSHADE 1.000000E+02 3.369109E-14 3.545959E+12 1.851603E+13 5.041967E+03 1.485133E+04

SADE 1.000000E+02 4.856153E-06 2.000000E+02 0.000000E+00 3.224915E+02 1.121460E+02

JADE 1.000000E+02 2.447205E-14 4.353151E+11 2.250183E+12 2.152864E+03 4.413241E+03

RCBA 1.865639E+04 6.844783E+03 2.203667E+02 2.627767E+01 3.005611E+02 1.705823E-01

EPSO 6.291322E+02 8.551875E+02 1.672571E+13 6.510333E+13 5.967043E+03 1.583147E+03

CBA 1.418221E+05 7.288431E+05 1.079177E+04 1.420128E+04 3.142839E+02 5.455682E+00

LWOA 5.842765E+05 1.266102E+05 5.940121E+05 8.651440E+05 3.226856E+02 7.158850E+00

F4 F5 F6

AVG STD AVG STD AVG STD

IRIME 4.073550E+02 2.050446E+01 5.660927E+02 1.848911E+01 6.000037E+02 1.694265E-03

EBOwithCMAR 4.002521E+02 8.386622E-01 5.236547E+02 6.702270E+00 6.001585E+02 2.583089E-01

LSHADE_cnEpSi 4.055120E+02 1.717506E+01 5.380104E+02 1.063740E+01 6.017437E+02 1.478015E+00

ALCPSO 5.308335E+02 5.904290E+01 6.161281E+02 2.700655E+01 6.053601E+02 5.947913E+00

CLPSO 4.711778E+02 2.235273E+01 5.533829E+02 9.235232E+00 6.000000E+02 7.313105E-14

LSHADE 4.045201E+02 1.653684E+01 5.353546E+02 9.099230E+00 6.002333E+02 2.393252E-01

SADE 4.329790E+02 3.720693E+01 5.492836E+02 1.048001E+01 6.000063E+02 3.290097E-02

JADE 4.042788E+02 1.628497E+01 5.336508E+02 8.884047E+00 6.000000E+02 0.000000E+00

RCBA 4.743177E+02 3.834853E+01 7.518372E+02 5.131458E+01 6.655776E+02 1.003048E+01

EPSO 4.548814E+02 5.265618E+01 6.600886E+02 2.641726E+01 6.000003E+02 5.045327E-04

CBA 5.134138E+02 3.745535E+01 7.559000E+02 5.956804E+01 6.661605E+02 1.013116E+01

LWOA 5.100688E+02 4.313991E+01 7.240533E+02 4.400702E+01 6.517513E+02 9.359289E+00

F7 F8 F9

AVG STD AVG STD AVG STD

IRIME 7.870448E+02 1.584953E+01 8.597845E+02 1.429043E+01 9.000000E+02 1.461630E-11

EBOwithCMAR 7.617788E+02 1.086112E+01 8.241612E+02 6.468610E+00 1.010946E+03 1.865535E+02

LSHADE_cnEpSi 7.834569E+02 1.377100E+01 8.383194E+02 9.682021E+00 1.216868E+03 3.280355E+02

ALCPSO 8.599645E+02 3.415210E+01 8.992732E+02 3.062454E+01 1.812602E+03 6.849134E+02

CLPSO 7.839056E+02 6.953906E+00 8.472955E+02 7.448280E+00 9.157469E+02 7.964412E+00

LSHADE 7.815275E+02 1.571445E+01 8.335645E+02 9.503744E+00 9.902918E+02 7.764578E+01

SADE 7.749352E+02 1.226535E+01 8.473600E+02 9.523944E+00 9.273077E+02 3.178418E+01

JADE 7.650131E+02 8.822871E+00 8.336426E+02 7.420753E+00 9.052861E+02 1.104424E+01

RCBA 2.010604E+03 2.965324E+02 1.136632E+03 6.332926E+01 9.032123E+03 2.911425E+03

EPSO 9.549782E+02 1.501968E+01 9.418434E+02 4.081173E+01 9.061145E+02 7.897042E+00

CBA 2.101250E+03 3.264006E+02 1.133645E+03 4.797118E+01 9.231007E+03 2.672835E+03

LWOA 1.120801E+03 8.984370E+01 1.063691E+03 5.696527E+01 8.045517E+03 2.647910E+03

(Continued on next page)
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Table 11. Continued

F10 F11 F12

AVG STD AVG STD AVG STD

F10 F11 F12

AVG STD AVG STD AVG STD

IRIME 3.605941E+03 4.881660E+02 1.139898E+03 1.331120E+01 3.089471E+03 8.489044E+02

EBOwithCMAR 2.525258E+03 3.088550E+02 1.286875E+03 9.828048E+01 2.880533E+03 4.158699E+02

LSHADE_cnEpSi 2.624054E+03 2.002851E+02 1.318372E+03 8.695477E+01 2.866196E+03 4.327095E+02

ALCPSO 3.954499E+03 6.489345E+02 1.229450E+03 7.662722E+01 1.033384E+04 1.464053E+04

CLPSO 2.880675E+03 2.651593E+02 1.142415E+03 1.084536E+01 9.469498E+05 1.654078E+06

LSHADE 2.752554E+03 4.173304E+02 1.270254E+03 6.932573E+01 2.949696E+03 4.558499E+02

SADE 2.879776E+03 3.917646E+02 1.200905E+03 4.515427E+01 4.726730E+03 2.647403E+03

JADE 2.623302E+03 2.383964E+02 1.212654E+03 7.928624E+01 2.766356E+03 3.864192E+02

RCBA 5.680930E+03 9.100438E+02 1.398023E+03 1.096345E+02 3.280932E+06 1.606840E+06

EPSO 6.247404E+03 5.886293E+02 1.167354E+03 3.521652E+01 7.818073E+03 1.446235E+04

CBA 5.949017E+03 7.647499E+02 1.484663E+03 1.029935E+02 4.628344E+07 2.003444E+07

LWOA 4.946551E+03 7.285654E+02 1.335759E+03 6.241386E+01 2.401700E+07 1.462717E+07

F13 F14 F15

AVG STD AVG STD AVG STD

IRIME 1.337193E+03 1.082334E+01 1.446440E+03 1.111946E+01 1.573745E+03 6.698064E+01

EBOwithCMAR 2.309903E+03 6.775576E+02 1.700054E+03 1.581119E+02 1.608253E+03 5.932891E+01

LSHADE_cnEpSi 3.344365E+03 7.163644E+02 1.759389E+03 1.762675E+02 1.636242E+03 6.554775E+01

ALCPSO 2.184079E+03 1.462129E+03 1.544889E+03 7.325523E+01 1.647693E+03 1.043166E+02

CLPSO 1.395122E+03 6.029177E+01 2.709409E+03 1.346364E+03 1.591891E+03 4.846005E+01

LSHADE 1.638179E+03 4.617010E+02 1.632836E+03 1.126944E+02 1.603103E+03 6.605244E+01

SADE 1.407279E+03 6.616253E+01 1.557814E+03 7.421909E+01 1.676438E+03 2.594247E+02

JADE 1.348047E+03 3.333131E+01 1.582810E+03 1.344301E+02 1.609297E+03 7.385639E+01

RCBA 7.265341E+04 6.402215E+04 4.696516E+03 2.785539E+03 5.711193E+04 4.796568E+04

EPSO 3.093509E+03 1.468986E+03 2.316170E+03 7.585056E+02 4.753825E+03 2.553358E+03

CBA 9.975372E+04 8.820378E+04 3.683850E+04 2.700027E+04 1.212623E+05 9.118596E+04

LWOA 1.022851E+05 8.880648E+04 6.616154E+03 4.192332E+03 5.954205E+04 5.615821E+04

F16 F17 F18

AVG STD AVG STD AVG STD

IRIME 2.188709E+03 2.197289E+02 1.961515E+03 8.368609E+01 1.701529E+04 1.205528E+04

EBOwithCMAR 1.993310E+03 1.574016E+02 1.868368E+03 5.873619E+01 1.060575E+04 3.319645E+04

LSHADE_cnEpSi 2.006091E+03 1.640479E+02 1.900019E+03 1.040879E+02 2.028030E+03 7.770539E+01

ALCPSO 2.375960E+03 2.883184E+02 2.135919E+03 1.673665E+02 3.233300E+05 3.245044E+05

CLPSO 2.064265E+03 1.272278E+02 1.909224E+03 3.344437E+01 1.218734E+05 8.742301E+04

LSHADE 2.053002E+03 2.111169E+02 1.876846E+03 6.557391E+01 1.997827E+03 7.261495E+01

SADE 2.026547E+03 1.726456E+02 1.808450E+03 3.439651E+01 1.079344E+04 6.893049E+03

JADE 1.948349E+03 1.473068E+02 1.853893E+03 8.751333E+01 1.589941E+04 5.056289E+04

RCBA 3.142629E+03 4.326378E+02 2.802676E+03 3.220768E+02 7.429505E+04 5.466366E+04

EPSO 2.041652E+03 2.649307E+02 1.931363E+03 7.198191E+01 1.677313E+05 7.516923E+04

CBA 3.304683E+03 5.172750E+02 3.035659E+03 3.673759E+02 1.371818E+05 1.114421E+05

LWOA 2.845689E+03 3.162336E+02 2.368900E+03 1.988964E+02 3.029696E+05 2.802489E+05

(Continued on next page)
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Table 11. Continued

F19 F20 F21

AVG STD AVG STD AVG STD

F19 F20 F21

AVG STD AVG STD AVG STD

IRIME 1.959884E+03 6.476027E+01 2.155432E+03 5.634312E+01 2.135293E+03 3.274789E+01

EBOwithCMAR 2.027494E+03 5.613013E+01 2.191757E+03 7.615655E+01 2.100907E+03 1.563620E+00

LSHADE_cnEpSi 2.099848E+03 7.203404E+01 2.181353E+03 7.953380E+01 2.126027E+03 3.902697E+01

ALCPSO 7.603640E+03 6.793607E+03 2.447291E+03 1.420227E+02 2.202135E+03 3.840544E+01

CLPSO 1.955767E+03 2.567386E+01 2.196185E+03 6.826542E+01 2.175023E+03 1.811541E+01

LSHADE 2.040357E+03 7.342819E+01 2.205063E+03 8.215525E+01 2.112883E+03 2.853235E+01

SADE 2.255521E+03 4.320845E+02 2.107392E+03 5.241777E+01 2.173371E+03 2.708825E+01

JADE 2.136178E+03 4.362812E+02 2.150406E+03 5.833396E+01 2.120825E+03 3.842830E+01

RCBA 7.723117E+03 4.296416E+03 2.964025E+03 2.131662E+02 2.188202E+03 2.425089E+01

EPSO 4.506391E+03 3.811221E+03 2.311569E+03 1.462999E+02 2.181575E+03 2.455679E+01

CBA 4.467737E+05 3.324954E+05 2.944890E+03 2.356614E+02 2.227517E+03 3.350044E+01

LWOA 9.466100E+04 6.146595E+04 2.609928E+03 2.214594E+02 2.215128E+03 3.341065E+01

F22 F23 F24

AVG STD AVG STD AVG STD

IRIME 2.259506E+03 1.682965E+01 2.500000E+03 1.948270E-05 2.600000E+03 2.234190E-13

EBOwithCMAR 2.227091E+03 7.221436E+00 2.832506E+03 1.693732E+01 2.601079E+03 5.909505E+00

LSHADE_cnEpSi 2.246370E+03 1.094491E+01 2.906475E+03 5.638362E+01 2.826014E+03 3.289360E+02

ALCPSO 2.302378E+03 2.860447E+01 3.068606E+03 2.059907E+02 3.123298E+03 4.347163E+02

CLPSO 2.253704E+03 7.132959E+00 2.841313E+03 8.614610E+00 2.636610E+03 1.413640E+02

LSHADE 2.239367E+03 1.035199E+01 2.837869E+03 1.690434E+01 3.322111E+03 2.046145E+02

SADE 2.252534E+03 1.170676E+01 2.839123E+03 2.000302E+01 2.600000E+03 0.000000E+00

JADE 2.236709E+03 6.770296E+00 2.826564E+03 1.041841E+01 2.889271E+03 3.212827E+02

RCBA 2.497327E+03 6.821186E+01 3.666152E+03 3.324807E+02 2.963443E+03 6.156478E+02

EPSO 2.326335E+03 4.395933E+01 2.842157E+03 1.645687E+01 2.600237E+03 1.299120E+00

CBA 2.508071E+03 7.161797E+01 3.530369E+03 2.816484E+02 2.823170E+03 5.107849E+02

LWOA 2.437273E+03 5.166642E+01 3.091381E+03 9.601964E+01 2.740857E+03 3.580514E+02

F25 F26 F27

AVG STD AVG STD AVG STD

IRIME 2.707107E+03 3.892667E+01 2.800000E+03 8.775726E-13 2.918588E+03 1.018113E+02

EBOwithCMAR 2.964937E+03 4.444758E+01 2.867373E+03 1.035210E+02 3.630655E+03 9.660895E+01

LSHADE_cnEpSi 2.988170E+03 5.291435E+01 4.396978E+03 1.077869E+03 3.733814E+03 1.371558E+02

ALCPSO 2.979627E+03 4.998191E+01 5.062450E+03 1.458940E+03 3.817345E+03 2.051964E+02

CLPSO 2.906255E+03 8.572836E+00 3.874735E+03 8.128199E+02 3.509834E+03 2.967095E+01

LSHADE 2.927482E+03 3.570898E+01 4.835357E+03 3.439051E+02 3.534700E+03 6.625671E+01

SADE 3.022715E+03 4.584665E+01 2.800000E+03 3.377779E-13 3.474498E+03 3.861081E+01

JADE 2.934809E+03 3.928321E+01 4.005817E+03 9.835249E+02 3.535885E+03 7.435108E+01

RCBA 2.998403E+03 1.137192E+02 6.186807E+03 3.541301E+03 3.886796E+03 1.714723E+02

EPSO 2.971111E+03 5.719272E+01 3.387140E+03 9.647026E+02 3.544143E+03 9.782839E+01

CBA 3.019975E+03 1.188225E+02 5.897695E+03 3.939380E+03 3.908455E+03 1.994220E+02

LWOA 2.754015E+03 1.012658E+02 4.201834E+03 2.352678E+03 3.835631E+03 1.280903E+02

(Continued on next page)
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for classification, and the average of the best results from the 10-fold cross-validation is taken as the evaluation metric (average fitness value,

average error rate, and average number of selected features).

The average of fitness is specifically shown in Table 22, the average number of selected feature subsets is in Table 23, and the average error

rate is in Table 24. It’s evident from the data in the tables that bIRIME outperforms all other algorithms across all 36 datasets. When observed

closely, the average number of selected feature subsets is the smallest on each dataset, accompanied by the lowest average classification

error rate—achieving first place in all rankings. On the low-dimensional datasets, bIRIME exhibits outstanding performance. Based on the

fitness values, bIRIME yields exceptional results, especially on medical datasets like wdbc and Dermatology. bIRIME can select an average

of 4.2 and 6.7 features, with the fewest selected features and remarkably low error rates—outperforming all other algorithms. Some datasets

even achieve 100% accuracy, such as Dermatology, IonosphereEW, JPNdata, and penglungEW. Additionally, the STD of bIRIME is extremely

low, indicating its stability. To visualize the performance of bIRIME, convergence curves are plotted in Figure 16. These curves indicate that

bIRIME converges to better results across the 12 low-dimensional datasets. Furthermore, several high-dimensional microarray medical data-

sets, such as Leukemia, Brain_Tumor1, and Brain_Tumor2 were considered for an in-depth analysis of high-dimensional data. Even with thou-

sands of features, bIRIME can reduce these datasets to two-digit figures, while other algorithms stay around 4,000 to 5,000 features. The best-

performing bGWO still has significantly more features than bIRIME, and bIRIME maintains low classification error rates. For instance, in

Table 11. Continued

F28 F29 F30

AVG STD AVG STD AVG STD

F28 F29 F30

AVG STD AVG STD AVG STD

IRIME 3.005807E+03 3.180635E+01 3.264609E+03 7.599340E+01 5.323413E+03 2.519083E+03

EBOwithCMAR 3.220699E+03 5.279574E+01 3.314116E+03 8.246615E+01 6.601682E+03 4.179781E+03

LSHADE_cnEpSi 3.278647E+03 5.287670E+01 3.400352E+03 1.112338E+02 4.480632E+03 4.524749E+02

ALCPSO 3.419074E+03 4.964794E+02 3.767528E+03 2.488379E+02 9.323689E+04 1.782215E+05

CLPSO 3.280910E+03 1.712080E+01 3.358882E+03 6.498981E+01 1.531679E+04 6.821514E+03

LSHADE 3.273343E+03 6.553523E+01 3.396029E+03 1.152126E+02 4.770491E+03 2.514803E+03

SADE 3.273393E+03 3.954162E+01 3.269617E+03 4.273034E+01 8.067340E+03 2.739648E+03

JADE 3.273310E+03 3.944772E+01 3.368281E+03 9.272310E+01 5.674743E+03 7.892053E+03

RCBA 3.405828E+03 4.996942E+02 4.703163E+03 3.687816E+02 3.265553E+05 2.072308E+05

EPSO 3.282789E+03 3.920240E+01 3.322935E+03 8.698164E+01 5.535669E+03 2.114442E+03

CBA 3.609872E+03 8.361012E+02 4.929752E+03 4.003558E+02 1.991735E+06 1.063884E+06

LWOA 3.362448E+03 6.242544E+02 3.872058E+03 3.305692E+02 1.342063E+06 6.054879E+05

Table 12. Comparison results between IRIME and advanced algorithms

Overall Rank

Algorithm Rank +/ = /- Avg

IRIME 1 � 3.533333

EBOwithCMAR 3 15/4/11 4.066667

LSHADE_cnEpSi 6 15/5/10 5.6

ALCPSO 9 29/1/0 8.8

CLPSO 7 20/4/6 5.666667

LSHADE 5 16/3/11 4.766667

SADE 4 15/6/9 4.5

JADE 2 14/3/13 3.6

RCBA 11 29/0/1 9.933333

EPSO 8 26/2/2 7

CBA 12 29/1/0 10.9

LWOA 10 30/0/0 9.5
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Tumors_9 and Tumors_11, which are multi-classification problems, bIRIME reduces the dataset features to around 611.8 and 1310, respec-

tively, while maintaining error rates at approximately 0.05 and 0.02. Corresponding convergence curve graphs are presented in Figure 17,

highlighting bIRIME’s superior fitness values compared to other algorithms, demonstrating its competitive edge. To further demonstrate

the algorithm’s performance on high-dimensional medical microarray gene expression datasets, 12 datasets from SBCB were selected,

ranging from dimensions 22277 to 54675. bIRIME drastically reduces the dataset features, decreasing from over ten thousand features, while

other algorithms struggle, to just a few dozen features. Particularly in low-sample, binary classification problems such as Liver_

GSE14520_U133_2 and Lung_GSE7670, Lung_GSE63459, bIRIME achieves an outstanding error rate of 0. Moreover, the convergence curve

graph in Figure 18 vividly illustrates bIRIME’s significantly superior performance compared to other algorithms. IRIME’s relatively balanced

exploration and exploitation capabilities enhance its performance, making it more suitable for complex feature selection problems and

particularly prominent in high-dimensional feature selection. Additionally, combining the binary version of IRIME in wrapper-based feature

selection, the wrapper-based feature selection method can select a feature set that maximizes model performance by comprehensively

considering the interrelationships between features and optimizing the final predictive model. This ultimately leads to improved model per-

formance.137,138 In conclusion, bIRIME demonstrates excellent results across 12 low-dimensional datasets and 24 high-dimensional medical

Figure 9. Convergence curves of IRIME and advanced algorithms at IEEE CEC 2017
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gene expression datasets, ranking first among the compared algorithms. It significantly reduces the number of features while maintaining

algorithm accuracy. Overall, bIRIME exhibits excellent performance in feature selection.

Time cost

Figure 19 shows the time each algorithm takes with low-dimensional data, from which it can be seen that bIRIME takes slightly more time,

primarily due to the additional computation of fitness values, increasing the algorithm’s time, but from the figure, it can be observed that

the time increase is not very noticeable. Figure 20 displays the time each algorithm takes with high-dimensional data, from which it is discern-

ible that bIRIME has a higher time cost, with a significant difference. It is worth mentioning that Figures 17 and 18 show that bIRIME can

converge at the 2/5 mark of the convergence curve in almost all high-dimensional datasets, such as Colon, Leukemia2, Lung_Cancer, Tu-

mors_9, Tumors_11, and Leukemia1. This indicates that when bIRIME achieves peak performance, the time difference with other algorithms

is not as extensive as indicated in Figure 20. To sum it up, while bIRIME does come with a time cost, it indeed manages to enhance

performance.

Conclusions and future directions

RIME is an emerging metaheuristic algorithm that suffers from issues like imbalanced exploration and exploitation, making it prone to local

optima. To address these limitations, this paper introduces a variant of RIME, incorporating SB to facilitate inter-population information

exchange, enhancing population diversity and subsequently bolstering exploration capabilities. The addition of composite mutation strat-

egy and restart strategy further amplifies RIME’s exploitation ability and equips it with the capability to escape local optima. To evaluate

IRIME’s performance, the study utilizes the IEEE CEC 2017 benchmark functions. In the initial analysis of historical trajectories, the search

process of IRIME can be preliminarily obtained. The average fitness value shows that the function of CMS-RS allows RIME to reach a better

fitness value quickly, and in the late stage of the population, IRIME can jump out of the local optimal situation. The convergence curve can

initially show that IRIME is superior to RIME, and it can also be seen from the one-dimensional trajectory analysis that IRIME will have a

broader search in the early and late stages compared to RIME. From the balance analysis, it can be seen that IRIME has an advantage

over RIME in terms of balance. IRIME has solved the problem of the weak exploration ability of RIME. From the diversity analysis, it

can be seen that the population diversity of IRIME is more abundant, allowing IRIME to explore a broader space and providing the ability

to jump out locally. This is also the role that SB plays in it. The stability analysis shows that IRIME expands to more dimensions, and its

stability is better than that of RIME. When compared with conventional algorithms, IRIME has significant advantages. In addition, when

compared with advanced algorithms, which include EBOwithCMAR, LSHADE_cnEpSi, LSHADE, SADE, and JADE, which performed

outstandingly in IEEE CEC 2017, IRIME also has an advantage. For functions like F1, IRIME can converge around the optimal theoretical

value, and IRIME also has an advantage in composite functions. However, compared to excellent algorithms such as JADE and

EBOwithCMAR, IRIME shows some disadvantages in multimodal and hybrid functions, which is a direction for future improvement. Never-

theless, the overall performance of IRIME is still the first to be compared to these advanced algorithms. To verify the performance of IRIME

in practical applications, IRIME was applied to four engineering problems: TCSP, IBP, BSP, and CBP. This demonstrated that IRIME also

has good application potential and performance in practical engineering directions. Additionally, the paper introduces bIRIME, a binary

version validated across 12 UCI low-dimensional datasets and 24 high-dimensional medical datasets. The validation underscores bIRIME’s

substantial potential in addressing feature selection problems, notably in high-dimensional datasets, where it significantly reduces feature

numbers and improves KNN classification accuracy.

Moving forward, the focus remains on refining the algorithm IRIME and exploring its application in various domains, including engineering

optimization, multi-objective optimization, and image segmentation. There are many engineering design problems with complex conditions

that need to be optimized, includingmulti-objective engineering design problems. Moreover, the multi-objective problem is also a problem

studied by many researchers, which includes some workshop scheduling and other economic problems. In addition, medical image segmen-

tation is also a focal point of research. While solving the existing problems of IRIME, such as poor performance on multimodal functions, the

potential application of IRIME to these problems will be explored. In addition, we urgently need to verify the potential of IRIME in real-time

applications.

Figure 10. The Friedman ranking of IRIME and advanced algorithms
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Table 13. p�value of Wilcoxon signed�rank test between IRIME and advanced algorithms

F1 F2 F3 F4 F5 F6

EBOwithCMAR 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.4772761749E-04 1.7343976283E-06 6.8922902968E-05

LSHADE_cnEpSi 1.7343976283E-06 1.9209211049E-06 1.0246327833E-05 5.7096495243E-02 8.4660816904E-06 1.7343976283E-06

ALCPSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 3.5152372790E-06 1.7343976283E-06

CLPSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.4147041360E-03 1.7343976283E-06

LSHADE 1.7343976283E-06 2.3534209951E-06 2.7652741970E-03 1.9645813713E-03 1.0246327833E-05 2.3534209951E-06

SADE 3.1123151154E-05 5.6061165275E-06 1.0201069525E-01 3.8811142877E-04 8.1877534396E-05 5.3069919381E-05

JADE 1.7343976283E-06 5.3069919381E-05 5.7096495243E-02 2.5967125848E-05 2.1266360107E-06 1.7343976283E-06

RCBA 1.7343976283E-06 3.1816794110E-06 1.7343976283E-06 3.8821823861E-06 1.7343976283E-06 1.7343976283E-06

EPSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.8909720230E-04 1.7343976283E-06 1.9209211049E-06

CBA 1.7343976283E-06 9.5899017214E-01 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

LWOA 1.7343976283E-06 9.3156585911E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

F7 F8 F9 F10 F11 F12

EBOwithCMAR 1.2380795615E-05 1.7343976283E-06 1.7343976283E-06 2.1266360107E-06 1.7343976283E-06 3.1849060258E-01

LSHADE_cnEpSi 3.7093530785E-01 1.6394463017E-05 1.7343976283E-06 3.5152372790E-06 1.7343976283E-06 5.7164578367E-01

ALCPSO 1.7343976283E-06 3.4052567233E-05 1.7343976283E-06 5.4462503972E-02 2.6033283895E-06 4.2856858692E-06

CLPSO 3.7093530785E-01 3.3172583108E-04 1.7343976283E-06 7.6908593028E-06 3.8203416302E-01 1.7343976283E-06

LSHADE 1.9861020995E-01 4.7292023374E-06 1.7343976283E-06 3.8821823861E-06 1.7343976283E-06 7.8126371015E-01

SADE 2.7652741970E-03 4.5335631776E-04 1.7343976283E-06 1.6394463017E-05 2.6033283895E-06 6.1564062070E-04

JADE 1.9729484516E-05 1.7343976283E-06 1.3601107968E-05 2.3534209951E-06 4.8602606067E-05 2.7029156618E-02

RCBA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

EPSO 1.7343976283E-06 3.1816794110E-06 1.7343976283E-06 1.7343976283E-06 8.9443006475E-04 5.7924461898E-05

CBA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

LWOA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 3.8821823861E-06 1.7343976283E-06 1.7343976283E-06

F13 F14 F15 F16 F17 F18

EBOwithCMAR 1.7343976283E-06 1.7343976283E-06 3.1617649367E-03 8.9443006475E-04 2.6134309227E-04 3.5888445045E-04

LSHADE_cnEpSi 1.7343976283E-06 1.7343976283E-06 3.3172583108E-04 2.2551238908E-03 1.1748106348E-02 1.7343976283E-06

ALCPSO 1.7343976283E-06 1.7343976283E-06 4.4493372835E-05 6.4242118722E-03 4.0715116266E-05 1.7343976283E-06

CLPSO 1.7343976283E-06 1.7343976283E-06 2.0671113567E-02 1.6565526979E-02 6.8358564253E-03 1.9209211049E-06

LSHADE 1.7343976283E-06 1.7343976283E-06 3.1617649367E-03 2.8485956185E-02 4.5335631776E-04 1.7343976283E-06

SADE 3.4052567233E-05 1.7343976283E-06 2.4519030932E-01 1.8325799472E-03 1.7343976283E-06 1.1748106348E-02

JADE 1.6502656562E-01 6.8922902968E-05 2.7029156618E-02 7.5136622549E-05 4.8969007053E-04 6.1564062070E-04

RCBA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 2.1266360107E-06

EPSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.1826721596E-02 1.7790738330E-01 1.7343976283E-06

CBA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

LWOA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 4.2856858692E-06 3.1816794110E-06 1.7343976283E-06

F19 F20 F21 F22 F23 F24

EBOwithCMAR 2.2248266458E-04 6.2682812500E-02 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.0000000000E+00

LSHADE_cnEpSi 1.3601107968E-05 1.3059163494E-01 2.8021440811E-01 2.9574621307E-03 1.7343976283E-06 1.8712393203E-06

ALCPSO 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 3.1816794110E-06 1.7343976283E-06 5.4553418355E-06

CLPSO 3.8203416302E-01 3.1617649367E-03 6.3197567644E-05 2.4519030932E-01 1.7343976283E-06 1.7343976283E-06

LSHADE 2.6134309227E-04 6.5641143410E-02 1.5927015021E-03 4.8602606067E-05 1.7343976283E-06 1.7333066442E-06

SADE 7.6908593028E-06 6.4242118722E-03 1.2505680433E-04 8.5895825870E-02 1.7343976283E-06 1.0000000000E+00

JADE 1.0569503498E-04 7.8126371015E-01 3.8723026479E-02 1.9729484516E-05 1.7343976283E-06 1.2062023719E-04

RCBA 1.7343976283E-06 1.7343976283E-06 3.5152372790E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

EPSO 1.0246327833E-05 8.1877534396E-05 9.3156585911E-06 1.0246327833E-05 1.7343976283E-06 5.3372636003E-07

(Continued on next page)
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Limitations of the study

Of course, the current IRME still has some limitations. First, on the IEEE CEC 2017 test functions, despite reaching first place compared

to many algorithms, both convergence accuracy and the capability of multimodal functions need to be improved. Second, for engineer-

ing design problems, there exist some unstable situations where it does not always converge to the best value. Third, in feature selec-

tion issues, the binary conversion method only tested one, and other conversion functions need to be tested. Moreover, only one type

of classifier was used on the classifier, and no tests were conducted on other classifiers. Fourth, in feature selection, its running time

would be longer than that of other algorithms because the added mechanism would increase the complexity of RIME. In summary,

when applying IRIME to practical problems in situations with different classifiers, IRIME may encounter worse situations than KNN,

and there might be an occurrence of overfitting. In addition, the selection of significance level is also an important factor affecting

the experiment in this article.
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Table 13. Continued

F19 F20 F21 F22 F23 F24

CBA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

LWOA 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

F25 F26 F27 F28 F29 F30

EBOwithCMAR 1.9209211049E-06 2.4414062500E-04 1.7343976283E-06 1.7333066442E-06 3.0009891313E-02 1.5885549929E-01

LSHADE_cnEpSi 1.7343976283E-06 3.6947913156E-06 1.7343976283E-06 1.7343976283E-06 6.3391355731E-06 4.9498046028E-02

ALCPSO 1.7343976283E-06 1.6741785257E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.9209211049E-06

CLPSO 1.9209211049E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.8434237746E-05 1.7343976283E-06

LSHADE 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 2.8434237746E-05 2.1826721596E-02

SADE 1.7343976283E-06 1.2500000000E-01 1.7343976283E-06 1.7343976283E-06 6.8835929823E-01 1.8909720230E-04

JADE 1.7343976283E-06 3.9632291146E-05 1.7343976283E-06 1.7300371293E-06 3.3172583108E-04 6.8358564253E-03

RCBA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

EPSO 1.7343976283E-06 2.1320754352E-04 1.7343976283E-06 1.7343976283E-06 2.0671113567E-02 4.2843002855E-01

CBA 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

LWOA 2.1630223984E-05 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06 1.7343976283E-06

Figure 11. Schematic diagram of TCSP
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Table 15. Comparison of IRIME optimization results with literature for the CBP

Methods

Optimal values for variables

Optimum resultz1 z2 z3 z4 z5

IRIME 6.01674 5.310676 4.49418 3.499961 2.152106 1.339957

CMHHO117 6.012090792 5.308024726 4.492675534 3.50272647 2.158177954 1.33996575

CS91 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

GCA_I118 6.01000 5.3000 4.49000 3.49000 2.15000 1.34

MFO119 5.984871773 5.316726924 4.497332586 3.513616468 2.161620293 1.339988086

Figure 13. Schematic diagram of IBP

Table 16. Comparison of IRIME optimization results with literature for the IBP

Methods

Optimal values for variables

Optimum resultx1 x2 x3 x4

IRIME 50 80 0.9 2.321792 0.013074

RIME21 50 80 0.9 2.321676 0.01308

SOS121 50 80 0.9 2.3218 0.131

ARSM120 37.05 80 1.71 2.31 0.0157

CS119 50 80 0.9 2.3217 0.131
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Table 22. Average fitness value of IRIME and other algorithms

Datasets Metric bRLRUN bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

BreastEW STD 7.9815E-03 2.5737E-02 1.3499E-02 1.2733E-02 8.1784E-03 1.8250E-02 8.9557E-03 1.7751E-02 1.2013E-02

AVG 1.4000E-02 4.6885E-02 1.7667E-02 3.5473E-02 2.5089E-02 6.3953E-02 4.0835E-02 3.3167E-02 3.3696E-02

clean1 STD 8.0113E-03 3.0677E-02 1.3548E-02 2.7793E-02 1.4896E-02 4.3625E-02 4.2877E-02 2.6929E-02 2.3570E-02

AVG 9.1950E-03 8.7581E-02 1.1962E-02 6.8613E-02 3.8623E-02 1.0669E-01 6.9863E-02 6.7017E-02 5.6441E-02

clean2 STD 2.0256E-03 6.5742E-03 5.8958E-03 5.9095E-03 7.1673E-03 8.0765E-03 5.6477E-03 5.4483E-03 2.1300E-02

AVG 9.6195E-03 5.9140E-02 1.4324E-02 5.1541E-02 3.4053E-02 5.4659E-02 4.5573E-02 4.8422E-02 4.3298E-02

Dermatology STD 1.5579E-03 3.2107E-03 7.8873E-03 3.9944E-03 3.0847E-03 2.3074E-02 2.7730E-03 5.4674E-03 9.6025E-03

AVG 9.8529E-03 2.5147E-02 1.2492E-02 1.9706E-02 1.2059E-02 3.6433E-02 2.3529E-02 2.1471E-02 2.0874E-02

IonosphereEW STD 1.6695E-03 2.5263E-02 8.3861E-03 1.8966E-02 2.5900E-02 2.1877E-02 2.2691E-02 1.0195E-02 1.7295E-02

AVG 7.6471E-03 6.7648E-02 1.1244E-02 3.5408E-02 2.4673E-02 7.9065E-02 5.1711E-02 4.0904E-02 2.7185E-02

JPNdata STD 4.1973E-02 3.9584E-02 4.1074E-02 3.2128E-02 3.2662E-02 3.3562E-02 4.4824E-02 4.7941E-02 3.5860E-02

AVG 2.7208E-02 6.1307E-02 5.4042E-02 3.4104E-02 4.6771E-02 1.0361E-01 4.6979E-02 4.8625E-02 4.1342E-02

penglungEW STD 3.6117E-04 9.0751E-02 4.9428E-04 6.6442E-02 6.6761E-02 8.5537E-02 6.0959E-02 5.6188E-02 5.8670E-02

AVG 9.5385E-04 7.2404E-02 1.7077E-03 7.1400E-02 6.6839E-02 7.9025E-02 3.8278E-02 4.2958E-02 4.3981E-02

WineEW STD 2.5960E-03 3.7157E-03 2.5641E-03 4.0744E-03 3.1404E-03 1.6826E-02 4.9488E-03 4.2327E-03 3.3677E-03

AVG 1.0385E-02 1.6923E-02 1.1538E-02 1.4231E-02 1.1538E-02 2.6432E-02 1.5000E-02 1.5769E-02 1.1923E-02

segment STD 4.0264E-03 7.6491E-03 6.8076E-03 5.9976E-03 5.5373E-03 6.3285E-03 5.6081E-03 6.4091E-03 7.8559E-03

AVG 2.3472E-02 3.7996E-02 2.3999E-02 3.2470E-02 2.6318E-02 4.5317E-02 3.7174E-02 3.2552E-02 3.2667E-02

semeion STD 1.1349E-03 9.1866E-03 2.7014E-03 5.0273E-03 3.2573E-03 8.9377E-03 6.9273E-03 3.7990E-03 6.0018E-03

AVG 7.5849E-03 3.6688E-02 8.8553E-03 2.9001E-02 2.4024E-02 3.4877E-02 3.2268E-02 2.8356E-02 2.5773E-02

SpectEW STD 2.5801E-02 5.0296E-02 2.3642E-02 3.7956E-02 3.1472E-02 5.7054E-02 3.8109E-02 4.2316E-02 3.4303E-02

AVG 6.4373E-02 9.8474E-02 6.8878E-02 9.3054E-02 7.0309E-02 1.3453E-01 9.1260E-02 9.0159E-02 9.0684E-02

wdbc STD 8.4911E-03 1.1968E-02 7.7347E-03 1.3064E-02 1.1282E-02 1.7392E-02 1.2655E-02 1.0739E-02 1.0621E-02

AVG 8.6667E-03 3.1167E-02 1.2971E-02 2.3393E-02 1.4000E-02 3.7089E-02 2.6863E-02 2.4530E-02 2.1060E-02

Brain_

GSE15824

STD 7.5101E-02 2.2845E-01 1.6307E-01 2.2375E-01 2.2070E-01 2.3333E-01 2.2150E-01 2.3873E-01 1.7940E-01

AVG 2.3760E-02 2.7655E-01 2.5446E-01 3.0016E-01 2.2860E-01 3.0551E-01 2.6169E-01 2.3637E-01 2.3515E-01

Brain_

GSE50161

STD 7.9444E-04 1.0133E-01 1.3569E-01 1.3112E-01 1.2586E-01 1.5356E-01 1.3274E-01 1.3839E-01 1.4238E-01

AVG 6.0062E-04 2.9848E-01 2.2520E-01 2.8648E-01 2.9762E-01 2.9273E-01 2.7187E-01 2.6971E-01 2.0587E-01

Brain_

Tumor1

STD 5.1502E-04 5.2538E-02 4.7623E-02 8.0800E-02 5.4370E-02 6.8528E-02 6.6492E-02 6.6683E-02 6.6470E-02

AVG 7.5000E-04 8.7679E-02 3.4915E-02 8.2239E-02 7.4680E-02 9.1747E-02 6.8237E-02 7.5196E-02 6.0576E-02

Brain_

Tumor2

STD 6.7161E-04 9.9264E-02 9.0702E-02 9.7213E-02 1.2296E-01 1.2498E-01 6.9413E-02 1.0473E-01 9.0844E-02

AVG 4.5722E-04 1.3717E-01 4.8412E-02 1.1624E-01 1.1373E-01 1.1387E-01 4.1818E-02 7.6558E-02 6.4574E-02

Breast_

GSE10797

STD 6.2274E-02 1.4917E-01 1.2966E-01 8.6308E-02 1.4945E-01 1.4455E-01 1.7530E-01 2.0822E-01 1.6484E-01

AVG 2.9855E-02 2.7758E-01 1.7319E-01 2.7517E-01 2.9292E-01 2.9566E-01 2.5801E-01 2.6357E-01 2.1799E-01

(Continued on next page)
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Table 22. Continued

Datasets Metric bRLRUN bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

Breast_

GSE22820

STD 4.2233E-06 9.6618E-05 2.1338E-04 8.5628E-05 6.9469E-05 2.8593E-03 9.0516E-03 2.5629E-03 8.0285E-04

AVG 6.8495E-06 2.4786E-02 5.7423E-03 2.4585E-02 2.4083E-02 1.8268E-02 8.8250E-03 1.1224E-02 5.5063E-03

CNS STD 3.0828E-04 1.1663E-01 2.5095E-04 1.1950E-01 7.6410E-02 1.0827E-01 1.1331E-01 5.1080E-02 1.0908E-01

AVG 4.4887E-04 2.0079E-01 5.9616E-03 1.4978E-01 7.1066E-02 2.0477E-01 1.1291E-01 1.6154E-01 8.6624E-02

Colon STD 1.3375E-04 2.3220E-01 7.9046E-02 1.6408E-01 1.2419E-01 1.6361E-01 1.1769E-01 1.5715E-01 1.0511E-01

AVG 2.2000E-04 2.1891E-01 6.4971E-02 2.1131E-01 1.7304E-01 2.0421E-01 1.4447E-01 1.5245E-01 1.1528E-01

Colorectal_

GSE44861

STD 4.7573E-02 1.3523E-01 8.4068E-02 1.0603E-01 8.8658E-02 1.1494E-01 8.8834E-02 1.1544E-01 1.4981E-01

AVG 5.5397E-02 2.1172E-01 1.6615E-01 2.0507E-01 2.0234E-01 2.2692E-01 1.9172E-01 1.9228E-01 1.8551E-01

Colorectal_

GSE77953

STD 9.8112E-05 1.4855E-01 6.9790E-02 1.7012E-01 1.1539E-01 1.3445E-01 1.1875E-01 1.1285E-01 1.3783E-01

AVG 8.8857E-05 1.6819E-01 3.8405E-02 1.1959E-01 1.2529E-01 1.8073E-01 9.1832E-02 1.3292E-01 1.0747E-01

DLBCL STD 6.7466E-05 4.2949E-02 3.7536E-02 3.7527E-02 3.7584E-02 5.5531E-02 4.8047E-03 5.4671E-02 3.6925E-02

AVG 1.0697E-04 3.8334E-02 1.7209E-02 3.5939E-02 3.4550E-02 4.4220E-02 5.0622E-03 3.8731E-02 1.9087E-02

Leukemia_

GSE9476

STD 1.7988E-05 7.1088E-02 6.2127E-02 9.4898E-02 7.3056E-02 7.3603E-02 8.0684E-02 7.1131E-02 5.7598E-02

AVG 3.7248E-05 6.8578E-02 3.5054E-02 7.8771E-02 6.9155E-02 7.4000E-02 6.7760E-02 5.5499E-02 3.3527E-02

Leukemia_

GSE28497

STD 4.0929E-02 7.0408E-02 4.7071E-02 3.3890E-02 6.7803E-02 4.6150E-02 7.7667E-02 5.0513E-02 6.8309E-02

AVG 5.4689E-02 1.8486E-01 9.5053E-02 1.7731E-01 1.6724E-01 1.8078E-01 1.5189E-01 1.5928E-01 1.3127E-01

Leukemia1 STD 8.7998E-04 3.6799E-03 3.4717E-04 4.2325E-04 2.0229E-04 5.2337E-02 5.2211E-03 3.7791E-03 2.9042E-03

AVG 5.6786E-04 2.6291E-02 5.2431E-03 2.4129E-02 2.2738E-02 4.2726E-02 5.6796E-03 1.5124E-02 7.3925E-03

Leukemia2 STD 1.2603E-04 5.7290E-02 2.1923E-04 4.2902E-02 2.5406E-04 6.8639E-02 4.8773E-02 4.3369E-02 4.4738E-03

AVG 1.4477E-04 5.1794E-02 5.4552E-03 3.7868E-02 2.3536E-02 6.1354E-02 2.2450E-02 2.5908E-02 7.7639E-03

Liver_

GSE14520_

U133_2

STD 1.5149E-06 7.5132E-02 7.5081E-02 7.5093E-02 7.5094E-02 1.2344E-01 1.0897E-01 7.4785E-02 9.0972E-02

AVG 3.8156E-06 4.8469E-02 2.9365E-02 4.8297E-02 4.7669E-02 9.0935E-02 5.5549E-02 3.5035E-02 4.7669E-02

Liver_

GSE14520_

U133A

STD 1.9078E-02 2.1906E-02 1.5255E-02 4.3383E-02 2.1969E-02 3.9167E-02 2.5007E-02 3.3678E-02 3.3828E-02

AVG 1.1138E-02 6.2681E-02 3.5134E-02 6.1369E-02 6.0968E-02 5.6843E-02 5.3275E-02 5.1179E-02 4.0948E-02

Lung_Cancer STD 1.4101E-03 3.0019E-02 2.4070E-02 3.3055E-02 3.2334E-02 3.6533E-02 3.0129E-02 2.7963E-02 3.2113E-02

AVG 1.6659E-03 5.8019E-02 2.4535E-02 5.2618E-02 4.2477E-02 5.4925E-02 4.2002E-02 3.6842E-02 2.2758E-02

Lung_

GSE7670

STD 6.3289E-06 1.2490E-01 1.0692E-01 8.7083E-02 8.5529E-02 8.1515E-02 9.2001E-02 8.7004E-02 1.3341E-01

AVG 8.5267E-06 7.8513E-02 5.3048E-02 7.8280E-02 6.3476E-02 6.9025E-02 6.9140E-02 6.4658E-02 8.1411E-02

Lung_

GSE63459

STD 4.2794E-02 1.4580E-01 1.5776E-01 1.2649E-01 1.9248E-01 1.2000E-01 1.4982E-01 1.9898E-01 1.2405E-01

AVG 1.3940E-02 3.4092E-01 1.8239E-01 3.0298E-01 2.7123E-01 3.5521E-01 2.3901E-01 2.4614E-01 2.5828E-01

Prostate_

Tumor

STD 5.1841E-04 7.2804E-02 3.0095E-02 6.5441E-02 8.4864E-02 6.9476E-02 4.0830E-02 6.8358E-02 4.9091E-02

AVG 5.9663E-04 1.0209E-01 1.5606E-02 7.9993E-02 6.8506E-02 1.2328E-01 3.6777E-02 6.5066E-02 4.8100E-02

(Continued on next page)
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Table 22. Continued

Datasets Metric bRLRUN bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

Tumors_9 STD 5.4431E-02 8.4402E-02 8.8788E-02 1.2171E-01 1.3037E-01 1.5507E-01 1.4641E-01 9.0359E-02 1.2999E-01

AVG 3.0789E-02 6.6583E-02 5.9178E-02 1.8182E-01 1.5710E-01 2.4602E-01 1.6895E-01 1.6403E-01 1.3934E-01

Tumors_11 STD 2.2165E-02 5.4079E-02 2.3720E-02 5.8568E-02 4.5486E-02 5.2819E-02 6.3385E-02 4.9406E-02 5.8841E-02

AVG 1.5782E-02 9.2876E-02 1.7671E-02 8.4907E-02 7.0923E-02 1.1335E-01 8.6000E-02 7.7339E-02 6.4372E-02

Leukemia STD 2.0834E-04 2.7844E-03 3.3545E-04 1.7732E-04 2.7192E-04 4.1094E-03 2.8667E-03 3.1979E-03 1.7701E-03

AVG 1.3324E-04 2.5518E-02 5.4369E-03 2.4106E-02 2.2933E-02 1.7079E-02 3.6950E-03 1.3627E-02 6.6115E-03

AVG 1 7.97 2.46 6.51 4.86 8.31 4.94 5.09 3.83

Rank 1 8 2 7 4 9 5 6 3
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Table 23. Average number of features obtained by IRIME and other algorithms

Datasets Metric bIRIMR bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

BreastEW STD 1.5776 2.5734 2.0656 2.4967 3.1972 2.8983 2.6352 2.9981 3.4254

AVG 6.4 17.2 6.6 13.3 9 13.2 16.5 14.9 13.2

clean1 STD 5.1088 6.8508 3.5277 6.9769 8.4781 5.4985 23.3771 14.1221 21.9396

AVG 17.1 111.4 20 81.7 62.1 69.7 93.4 90.1 61.7

clean2 STD 2.8597 15.8328 4.2426 6.6072 6.168 5.9861 26.1621 20.0544 17.9679

AVG 26.2 90.7 27 77.9 68.6 63.5 44.7 64.2 44.8

Dermatology STD 1.0593 2.1833 1.8288 2.7162 2.0976 2.9814 1.8856 3.7178 2.8363

AVG 6.7 17.1 6.7 13.4 8.2 14 16 14.6 12.4

IonosphereEW STD 1.1353 1.8288 1.3166 2.9059 1.3499 2.9515 5.2239 3.9285 4.383

AVG 5.2 18.3 5.8 13 7.6 13.6 16.8 13.1 11.1

JPNdata STD 0.78881 1.1595 0.73786 0.73786 0.73786 1.2293 1.1595 1.075 1.1972

AVG 1.8 3.7 2.1 3.1 3.1 3.2 3.3 2.6 3.1

penglungEW STD 2.3476 5.9479 3.2128 7.3907 6.0452 20.0832 51.8739 32.2897 21.5726

AVG 6.2 148.4 11.1 138.2 106.1 123 68.7 102.8 52.6

WineEW STD 0.67495 0.96609 0.66667 1.0593 0.8165 1.9692 1.2867 1.1005 0.8756

AVG 2.7 4.4 3 3.7 3 5.9 3.9 4.1 3.1

segment STD 0.67495 1.5811 1.1005 1.1738 0.94281 2.8363 1.2693 1.5239 1.792

AVG 4.7 8.5 4.9 6.4 5 7.4 8.5 6.9 7.1

semeion STD 6.0148 22.1883 3.7476 7.2793 9.7502 6.4842 40.8799 19.3509 15.3148

AVG 40.2 143.9 40.6 122.1 105.2 110.4 123.5 118.7 82.9

SpectEW STD 1.1353 1.8856 2.1187 1.5811 1.5492 2.1731 3.8586 2.0656 3.5917

AVG 4.8 12 5.4 9.5 5.8 7.5 9 9.6 8.7

wdbc STD 2.2998 1.6364 1.9322 1.8257 1.7764 2.3664 4.4083 3.199 3.0623

AVG 4.2 13.7 4.8 11 6.4 12.4 13.1 9.7 9.6

Brain_GSE15824 STD 11.6065 65.3031 153.118 117.1173 112.1333 1007.2227 10851.9124 3637.7805 3019.6378

AVG 10.4 27118.6 6424.7 26962.3 26629.1 21879.3 12600.6 12613.1 6085.6

Brain_GSE50161 STD 353.9549 70.7041 85.5706 78.8799 52.6081 484.9491 3973.6415 1191.9019 858.0189

AVG 267.6 11042.8 2581.1 10937.4 10661.5 9041.4 6445.4 5282.2 3038.7

Brain_Tumor1 STD 60.9787 448.2748 57.8624 39.2458 53.3912 158.3239 742.5944 579.1508 936.8074

AVG 88.8 3132.5 634.5 2863.3 2718.2 2343.3 955.5 1779.5 1298.2

Brain_Tumor2 STD 139.251 85.9613 53.1882 55.7838 59.9941 205.6697 1105.0287 766.008 626.9682

AVG 94.8 5131.7 1173.9 5060.5 4868.8 4238.6 2104.8 2742 1570.4

Breast_GSE10797 STD 121.6189 932.2376 117.3364 105.8715 38.6586 319.2611 2425.964 936.5835 569.7187

AVG 147.5 8388.1 1903.5 8043.9 7783.6 6852.1 2274.7 4538.3 2057.1

Breast_GSE22820 STD 2.8363 64.8867 143.2994 57.506 46.6543 1912.4869 6078.8883 1721.1711 539.1781

AVG 4.6 16645.5 3856.4 16510.5 16173.8 13633.8 5926.7 7538.1 3697.9

CNS STD 43.9545 536.9503 35.7802 46.8686 38.8829 208.6891 1449.3973 523.8594 579.0644

AVG 64 3795.5 850 3489 3360.1 2945.4 2424.8 2586.4 1385.7

Colon STD 5.35 33.8633 9.6609 17.9938 18.2589 45.6172 301.1333 213.3695 84.6493

AVG 8.8 975.5 156 943 859.5 802.6 259.8 579.1 268.2

Colorectal_

GSE44861

STD 100.6106 1663.5714 103.2098 88.8525 70.9926 586.2611 1695.3644 1609.8696 1227.7201

AVG 55.4 11795.4 2585.4 10947.9 10692.2 9420.6 3714.3 5634.7 3001.1

Colorectal_

GSE77953

STD 43.7244 76.2848 82.6169 93.6872 67.4105 600.6082 3477.4347 2159.3564 1118.6136

AVG 39.6 11045.4 2600 10957.8 10677.2 8947 3830 5913.6 2734
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Table 23. Continued

Datasets Metric bIRIMR bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

DLBCL STD 7.3794 43.2904 32.3495 27.2334 15.943 361.8856 525.5336 358.0402 274.3796

AVG 11.7 2708.5 583.4 2632.1 2480.2 2195.1 553.7 1453.1 788.8

Leukemia_

GSE9476

STD 8.0166 1230.3573 76.3036 65.7115 68.4297 346.9749 4050.7056 1775.9559 1037.8521

AVG 16.6 11409.7 2517.7 10912 10658.8 9040.7 3988.7 5580.7 2845

Leukemia_

GSE28497

STD 453.0615 2093.6994 100.9667 152.4565 86.8179 412.9731 4868.3445 2632.1426 1536.9839

AVG 1385.7 12364.7 2884.6 11031.1 10761.7 9353.9 7078.2 7723.1 4167.8

Leukemia1 STD 93.7529 392.0516 36.9871 45.0926 21.5523 302.6517 556.252 402.6275 309.4131

AVG 60.5 2801 558.6 2570.7 2422.5 2072.6 605.1 1611.3 787.6

Leukemia2 STD 28.2931 32.7102 49.2162 41.1183 57.0369 206.3349 1892.2037 583.1634 1004.3603

AVG 32.5 5534.2 1224.7 5454.6 5283.9 4651.1 1993.3 2769.6 1743

Liver_GSE14520_

U133_2

STD 0.67495 35.2844 78.3579 58.6402 23.9372 534.9238 4079.327 1012.2107 302.7592

AVG 1.7 11013.1 2501.8 10936.7 10656.9 8792.2 3586.1 5027.9 2191.7

Liver_GSE14520_

U133A

STD 84.0806 1238.4951 198.1242 55.69 56.9928 1228.6671 3153.1031 1583.0377 1396.8465

AVG 125 11396 2617.9 10945.6 10666.2 8725.3 3614.3 6274.7 2892.4

Lung_Cancer STD 355.3536 727.6364 94.772 74.8031 47.5904 213.324 3748.5934 1691.9311 484.3701

AVG 419.8 6463.9 1508.8 6185.8 5967.2 5040 3497.6 4478.9 2126.8

Lung_GSE7670 STD 2.8206 51.8112 57.2539 20.6669 33.1678 578.7427 4161.6603 1142.9429 628.1154

AVG 3.8 10998.8 2472.7 10894.7 10648.1 9097.7 4704.6 4824.2 2411.3

Lung_GSE63459 STD 225.7063 1871.412 105.4702 283.9564 62.5372 527.5762 4625.5503 1503.2684 1285.2096

AVG 180.7 13004.6 2923.2 12149.1 11831.7 10319 4344.3 6457.6 3537.9

Prostate_Tumor STD 108.9589 1067.7715 48.8653 91.198 61.3753 173.2097 2300.4042 1161.1786 585.1257

AVG 125.4 6029.1 1283.4 5195.8 4959.6 4401.4 1921.1 3873.5 2122.9

Tumors_9 STD 288.3897 516.3061 83.0793 81.4777 48.7785 335.6235 1163.4018 724.2532 406.3999

AVG 611.8 3092 689.8 2818.8 2669.7 2230.5 2174.7 2492 1399.7

Tumors_11 STD 512.3098 1115.9752 89.4884 81.3853 77.025 317.9088 2373.6164 821.3965 1469.4393

AVG 1310 7279.1 1618.2 6214.7 5987.2 5091 5200.9 5493.2 3587.2

Leukemia STD 29.7097 397.0611 47.8355 25.2861 38.7751 222.0476 408.7861 456.0148 252.4211

AVG 19 3638.8 775.3 3437.5 3270.2 2832.7 526.9 1943.2 942.8

AVG 1 8.94 2.14 7.31 5.92 5.94 4.81 5.36 3.39

Rank 1 9 2 8 6 7 4 5 3

ll
OPEN ACCESS

iScience 27, 110561, August 16, 2024 41

iScience
Article

https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.compbiomed.2023.107389
https://doi.org/10.1016/j.compbiomed.2023.107389
https://doi.org/10.1016/j.compbiomed.2024.108064
https://doi.org/10.1016/j.compbiomed.2024.108064
https://doi.org/10.1007/s42235-021-0050-y
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/TITS.2022.3183215
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1016/j.knosys.2017.12.027
https://doi.org/10.1016/j.knosys.2017.12.027
https://doi.org/10.3837/tiis.2019.06.004
https://doi.org/10.3837/tiis.2019.06.004
https://doi.org/10.1016/j.knosys.2020.105679
https://doi.org/10.1016/j.knosys.2020.105679
https://doi.org/10.2196/27098


Table 24. Classification error rate of IRIME and other algorithms

Datasets Metric bRLRUN bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

BreastEW STD 7.3971E-03 2.7868E-02 1.2267E-02 1.3837E-02 9.1414E-03 3.7780E-02 7.4011E-03 1.7050E-02 1.4456E-02

AVG 3.5088E-03 1.9177E-02 7.0175E-03 1.4007E-02 1.0620E-02 7.0243E-02 1.4037E-02 8.7719E-03 1.2312E-02

clean1 STD 8.9776E-03 3.3100E-02 1.4061E-02 2.9450E-02 1.3891E-02 4.4568E-02 4.5523E-02 2.7819E-02 2.4970E-02

AVG 4.2572E-03 5.6871E-02 6.2500E-03 4.6321E-02 2.0966E-02 1.4685E-01 4.3927E-02 4.1977E-02 3.9849E-02

clean2 STD 1.9951E-03 8.2843E-03 5.6298E-03 6.6392E-03 5.6738E-03 9.0642E-03 1.0893E-02 5.4336E-03 6.6965E-03

AVG 1.8189E-03 3.3495E-02 6.5172E-03 2.9555E-02 1.4095E-02 4.5766E-02 3.3800E-02 3.0616E-02 3.1372E-02

Dermatology STD 0.0000E+00 0.0000E+00 8.7841E-03 0.0000E+00 0.0000E+00 6.9606E-02 0.0000E+00 0.0000E+00 8.7841E-03

AVG 0.0000E+00 0.0000E+00 2.7778E-03 0.0000E+00 0.0000E+00 7.2036E-02 0.0000E+00 0.0000E+00 2.7778E-03

IonosphereEW STD 0.0000E+00 2.7619E-02 9.0351E-03 1.9984E-02 2.7722E-02 3.7861E-02 2.6593E-02 1.2007E-02 1.4765E-02

AVG 0.0000E+00 4.2880E-02 2.8571E-03 1.7148E-02 1.4206E-02 8.5420E-02 2.8427E-02 2.2778E-02 1.1433E-02

JPNdata STD 4.2682E-02 4.2930E-02 4.4618E-02 3.1553E-02 3.4719E-02 1.1073E-01 4.4879E-02 5.2705E-02 3.5206E-02

AVG 1.9167E-02 4.5060E-02 4.5833E-02 1.9583E-02 3.2917E-02 2.2673E-01 3.2083E-02 3.7500E-02 2.7202E-02

penglungEW STD 0.0000E+00 9.2854E-02 0.0000E+00 6.9537E-02 7.0397E-02 1.0462E-01 6.2268E-02 7.0722E-02 6.3115E-02

AVG 0.0000E+00 9.1468E-02 0.0000E+00 5.2778E-02 5.3175E-02 9.1071E-02 2.9167E-02 6.6468E-02 3.7778E-02

WineEW STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 5.7457E-02 0.0000E+00 0.0000E+00 0.0000E+00

AVG 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.4771E-02 0.0000E+00 0.0000E+00 0.0000E+00

segment STD 4.1069E-03 7.8508E-03 8.1756E-03 5.6994E-03 5.6994E-03 5.8501E-02 3.0269E-03 5.8615E-03 5.8437E-03

AVG 1.1688E-02 1.6450E-02 1.1688E-02 1.6450E-02 1.3853E-02 6.5801E-02 1.5584E-02 1.5152E-02 1.4719E-02

semeion STD 0.0000E+00 7.3437E-03 2.6518E-03 5.9204E-03 3.0327E-03 1.1005E-02 9.5200E-03 5.1139E-03 5.9432E-03

AVG 0.0000E+00 1.0039E-02 1.2579E-03 6.2775E-03 4.3947E-03 2.5095E-02 9.4381E-03 6.2736E-03 1.0664E-02

SpectEW STD 2.6996E-02 5.3540E-02 9.1270E-02 4.0268E-02 3.2490E-02 6.1361E-02 3.8675E-02 4.2238E-02 3.8752E-02

AVG 5.6278E-02 7.4949E-02 5.9585E-02 7.5224E-02 6.0134E-02 2.2498E-01 7.4532E-02 7.1937E-02 7.4644E-02

wdbc STD 5.5479E-03 1.2405E-02 8.4262E-03 1.2017E-02 1.1096E-02 3.6333E-02 1.1878E-02 1.2430E-02 8.5758E-03

AVG 1.7544E-03 8.7719E-03 5.2329E-03 5.3258E-03 3.5088E-03 4.9373E-02 5.2945E-03 8.8033E-03 5.3258E-03

Brain_GSE15824 STD 7.9057E-02 2.3100E-01 1.7160E-01 2.3560E-01 2.3233E-01 2.4417E-01 2.3528E-01 2.4930E-01 1.9023E-01

AVG 2.5000E-02 3.1500E-01 2.6167E-01 2.9000E-01 2.1500E-01 3.0333E-01 2.6333E-01 3.3667E-01 2.4167E-01

Brain_GSE50161 STD 0.0000E+00 1.0675E-01 1.4288E-01 1.3798E-01 1.3254E-01 1.8059E-01 1.3659E-01 1.4686E-01 1.5008E-01

AVG 0.0000E+00 2.8810E-01 2.3095E-01 2.7571E-01 2.8810E-01 3.3524E-01 2.7095E-01 2.7143E-01 2.0952E-01

Brain_Tumor1 STD 0.0000E+00 5.2326E-02 5.0185E-02 8.4984E-02 5.7485E-02 1.2373E-01 7.2208E-02 6.6882E-02 7.2587E-02

AVG 0.0000E+00 7.5556E-02 3.1111E-02 6.1111E-02 5.4444E-02 1.4111E-01 6.3333E-02 8.8333E-02 5.2222E-02

Brain_Tumor2 STD 0.0000E+00 1.0436E-01 9.5598E-02 1.0238E-01 1.2959E-01 1.9487E-01 7.0273E-02 1.1434E-01 9.6609E-02

AVG 0.0000E+00 1.1833E-01 4.5000E-02 9.6667E-02 9.5000E-02 2.9333E-01 3.3333E-02 8.6667E-02 6.0000E-02

Breast_GSE10797 STD 6.5494E-02 1.5685E-01 1.3664E-01 9.0690E-02 1.5732E-01 1.8436E-01 1.8492E-01 2.1991E-01 1.7343E-01

AVG 3.0952E-02 2.6524E-01 1.7619E-01 2.6381E-01 2.8333E-01 3.5238E-01 2.6429E-01 2.6286E-01 2.2286E-01

(Continued on next page)
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Table 24. Continued

Datasets Metric bRLRUN bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

Breast_GSE22820 STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.2588E-02 0.0000E+00 0.0000E+00 0.0000E+00

AVG 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 7.1429E-03 0.0000E+00 0.0000E+00 0.0000E+00

CNS STD 0.0000E+00 1.2298E-01 0.0000E+00 1.2565E-01 8.0508E-02 1.8829E-01 1.1793E-01 5.4758E-02 1.1621E-01

AVG 0.0000E+00 1.8333E-01 0.0000E+00 1.3190E-01 5.0000E-02 3.3286E-01 1.0095E-01 1.5095E-01 8.0952E-02

Colon STD 0.0000E+00 2.4467E-01 8.3277E-02 1.7281E-01 1.3043E-01 1.7368E-01 1.2267E-01 1.6551E-01 1.1156E-01

AVG 0.0000E+00 2.0476E-01 6.4286E-02 1.9762E-01 1.5952E-01 2.1190E-01 1.4524E-01 1.4524E-01 1.1429E-01

Colorectal_GSE44861 STD 5.0197E-02 1.4438E-01 8.8567E-02 1.1162E-01 9.3352E-02 1.3306E-01 9.5036E-02 1.2315E-01 1.5787E-01

AVG 5.8182E-02 1.9500E-01 1.6879E-01 1.9000E-01 1.8773E-01 2.3909E-01 1.9303E-01 1.8909E-01 1.8818E-01

Colorectal_GSE77953 STD 0.0000E+00 1.5646E-01 7.3525E-02 1.7916E-01 1.2151E-01 1.3572E-01 1.2236E-01 1.2062E-01 1.4470E-01

AVG 0.0000E+00 1.5095E-01 3.4286E-02 1.0000E-01 1.0667E-01 2.1357E-01 8.7619E-02 1.2595E-01 1.0667E-01

DLBCL STD 0.0000E+00 4.5175E-02 3.9528E-02 3.9528E-02 3.9528E-02 9.6806E-02 0.0000E+00 5.6626E-02 3.9528E-02

AVG 0.0000E+00 1.4286E-02 1.2500E-02 1.2500E-02 1.2500E-02 8.0357E-02 0.0000E+00 2.6786E-02 1.2500E-02

Leukemia_GSE9476 STD 0.0000E+00 7.3128E-02 6.5494E-02 9.9887E-02 7.6947E-02 8.0781E-02 8.0312E-02 7.3128E-02 6.0234E-02

AVG 0.0000E+00 4.5238E-02 3.0952E-02 5.7143E-02 4.7619E-02 7.6190E-02 6.1905E-02 4.5238E-02 2.8571E-02

Leukemia_GSE28497 STD 4.3607E-02 7.3975E-02 4.9652E-02 3.5586E-02 7.1267E-02 7.5138E-02 7.8860E-02 5.2083E-02 7.1357E-02

AVG 5.4295E-02 1.6539E-01 9.3242E-02 1.6058E-01 1.5062E-01 2.0426E-01 1.4316E-01 1.4942E-01 1.2834E-01

Leukemia1 STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0623E-01 0.0000E+00 0.0000E+00 0.0000E+00

AVG 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 6.2500E-02 0.0000E+00 0.0000E+00 0.0000E+00

Leukemia2 STD 0.0000E+00 6.0234E-02 0.0000E+00 4.5175E-02 0.0000E+00 1.0773E-01 4.5175E-02 4.5175E-02 0.0000E+00

AVG 0.0000E+00 2.8571E-02 0.0000E+00 1.4286E-02 0.0000E+00 1.1131E-01 1.4286E-02 1.4286E-02 0.0000E+00

Liver_GSE14520_U133_2 STD 0.0000E+00 7.9057E-02 7.9057E-02 7.9057E-02 7.9057E-02 1.3006E-01 1.0541E-01 7.9057E-02 9.5598E-02

AVG 0.0000E+00 2.5000E-02 2.5000E-02 2.5000E-02 2.5000E-02 7.8333E-02 5.0000E-02 2.5000E-02 4.5000E-02

Liver_GSE14520_U133A STD 1.9977E-02 2.3361E-02 1.6042E-02 4.5679E-02 2.3189E-02 4.3890E-02 2.3007E-02 3.5082E-02 3.4871E-02

AVG 1.1429E-02 3.9056E-02 3.0798E-02 3.8739E-02 3.8977E-02 4.4700E-02 4.7540E-02 3.9048E-02 3.6270E-02

Lung_Cancer STD 0.0000E+00 3.2547E-02 2.5218E-02 3.4707E-02 3.4035E-02 4.5504E-02 2.5589E-02 2.5986E-02 3.4761E-02

AVG 0.0000E+00 3.4073E-02 1.9524E-02 2.9549E-02 1.9787E-02 8.3358E-02 2.9603E-02 2.0072E-02 1.5072E-02

Lung_GSE7670 STD 0.0000E+00 1.3152E-01 1.1249E-01 9.1692E-02 9.0010E-02 8.6353E-02 1.0124E-01 9.1692E-02 1.3984E-01

AVG 0.0000E+00 5.6667E-02 5.0000E-02 5.6667E-02 4.1667E-02 5.3333E-02 6.1667E-02 5.6667E-02 8.0000E-02

Lung_GSE63459 STD 4.5175E-02 1.5520E-01 1.6602E-01 1.3330E-01 2.0265E-01 1.0966E-01 1.5199E-01 2.0970E-01 1.3159E-01

AVG 1.4286E-02 3.3095E-01 1.8571E-01 2.9286E-01 2.6012E-01 4.0238E-01 2.4226E-01 2.4524E-01 2.6429E-01

Prostate_Tumor STD 0.0000E+00 7.5727E-02 3.1623E-02 6.8862E-02 8.9463E-02 1.3870E-01 4.6906E-02 7.0052E-02 5.1640E-02

AVG 0.0000E+00 7.7273E-02 1.0000E-02 5.8182E-02 4.7273E-02 2.0818E-01 2.9091E-02 4.9091E-02 4.0000E-02

Tumors_9 STD 5.6626E-02 2.7035E-01 9.3914E-02 1.2790E-01 1.3735E-01 2.0722E-01 1.5429E-01 9.2272E-02 1.3791E-01

AVG 2.6786E-02 3.2750E-01 5.5952E-02 1.6548E-01 1.4083E-01 5.0810E-01 1.5786E-01 1.4976E-01 1.3381E-01

(Continued on next page)
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Table 24. Continued

Datasets Metric bRLRUN bMFO bGWO bSMA bALO BBA BSSA bWOA bHHO

Tumors_11 STD 2.3424E-02 8.7234E-02 2.4942E-02 6.1668E-02 4.7832E-02 4.7091E-02 6.2645E-02 5.3297E-02 6.3592E-02

AVG 1.1111E-02 9.3989E-02 1.1806E-02 6.3278E-02 4.9513E-02 1.3793E-01 6.8685E-02 5.8342E-02 5.2696E-02

Leukemia STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 7.5190E-02 0.0000E+00 0.0000E+00 0.0000E+00

AVG 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 5.7738E-02 0.0000E+00 0.0000E+00 0.0000E+00

AVG 1 6.39 2.33 4.92 3.64 8.75 4.78 4.78 3.81

Rank 1 8 2 7 3 9 5 5 4
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Figure 16. Convergence curves of bIRIME and other algorithms for UCI low dimensional datasets
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Figure 17. Convergence curves of bIRIME and other algorithms for UCI high dimensional datasets
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Figure 18. Convergence curves of bIRIME and other algorithms for SBCB high dimensional datasets
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RESOURCE AVAILABILITY

Lead contact

For further inquiries for information, please direct them to the lead contact, Huiling Chen, who will handle them accordingly. You can reach

him via email at chenhuiling.jlu@gmail.com.

Materials availability

This study did not generate new materials.

Data and code availability

� The dataset for this study is publicly accessible online and can be shared by the primary contact upon request. Links to the code and

DOIs are included in the resources table.
� The data presented in this paper will be made available through the primary contact upon request.
� The paper does not include the original code directly, but it can be accessed from the designated contact upon request for reanalysis

purposes.

METHOD DETAILS

The proposed method primarily comprises RIME, SB, and CMS-RS, along with the relevant theories and content regarding feature selection.

RIME

RIME is a new physics-based metaheuristic algorithm whose main idea is to simulate the growth process of rice-ice. Its modeling process is

divided into three parts: soft-time, hard-rime, and greedy selection.

Soft-rime

Due to relatively low wind forces, rime-ice primarily grows outward from the center of the frost during the initial stages of rime-ice formation.

This growth process does not continue indefinitely but gradually reaches a stable state. Expressed mathematically, it can be represented as

follows:

Xnew
i;j = Xb

j + 2 3 ðh1 � 0:5Þ 3 cos q 3 b3
�
h2 3

�
ubj � lbj

�
+ lbj

�
; r1 < E (Equation 1)

q = tp=10T (Equation 2)

b = 1 � ½tw =T �=w (Equation 3)

E =
ffiffiffiffiffiffiffiffi
t=T

p
(Equation 4)

where, Xnew
i;j represents the generated new candidate solution, i and j denote the i-th particle and the j-th dimension, respectively. Xb

j signifies

the value of the optimal solution’s j-th dimension discovered thus far. h1, h2 and r1 are uniformly distributed random numbers between [0, 1].

ubj and lbj represent the upper and lower bounds in j-th dimension. ½ $� denotes rounding, while t and T depict the present iteration number

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

RIME Ali Asgher Heidari https://aliasgharheidari.com/RIME.html

IRIME This paper https://github.com/TingJin0/IRIME.git

Deposited data

UCI dataset UCI Repository https://archive.ics.uci.edu/

SBCB dataset SBCB Lab https://sbcb.inf.ufrgs.br/
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and the total iteration count, respectively. In the original paper,w is set to 5, and this paper follows the original setting. A visual representation

of soft-rime is depicted in Figure S1.

Hard-rime

In high wind conditions, rime-ice tends to grow in the same direction and exhibits crossing phenomena. According to the inspiration, the

authors proposed the rime puncture mechanism, represented mathematically as follows:

Xnew
i;j = Xb

j ; r2 <NðFiÞ (Equation 5)

where Xnew
i;j represents the generated new candidate solution, r2 is a random number uniformly distributed from 0 to 1. Fi represents the

fitness value of the i-th individual, and NðFiÞ is the Z-score standardized value of Fi. A schematic diagram of hard-rime puncture is shown

in Figure S2.

Greedy selection

After generating a new candidate solution, its fitness value is computed to ensure its reliability. If the fitness value is less than (all problems

considered in this paper areminimization problems) the fitness value of the current solution, the algorithm replaces the original individual with

the generated candidate solution. The pseudocode of RIME is shown in Algorithm 1.

After reviewing the entire algorithm during the soft-rime process, although it can move towards the newly generated rime particles,

increasing the population’s diversity as described in Equation 1, it only searches around the optimal point. Its influence on population diversity

is limited, and RIME lacks effective communication among individuals, affecting its ability to discover potential optimal solutions among them.

Additionally, in the hard-rime phase, higher fitness values tend to assign better values to certain dimensions after Z-score normalization.

Coupled with greedy selection, although it somewhat enhances RIME’s exploitation capability, it severely diminishes its exploration ability.

This tendency makes RIME prone to falling into local optima when dealing with complex problems. Therefore, suitable methods are needed

to solve the problems that exist in RIME.

The proposed IRIME

RIME lacks interaction among individuals, quickly falling into local optima and experiencing low convergence accuracy, mainly when dealing

with complex problems like feature selection. The main reason for choosing SB is its potential to enhance RIME’s global capabilities. SB is

inspired by HHO, which has strong global search abilities. Integrating SB aims to enhance RIME’s global capabilities and exploration abilities.

The main reason for selecting CMS-RS is because it strengthens population communication abilities and can also break out of local optima.

CMS-RS is inspired by CoDE, and enhancing population information exchange through individual differential operations enables new spaces

to be explored through restart mechanisms. Including SB and CMS-RS enables effective individual communication, expands RIME’s search

space, and enhances its convergence accuracy. When RIME gets trapped in local optima, a restart strategy can be initiated to explore the

problem further. Let us delve into detailed explanations of SB and CMS-RS.

SB

The concept of SB is primarily derived from HHO.28 Hawks, while hunting, hover in the air to observe the positions of other individuals and

prey, aiming to find the optimal attack position. The specific mathematical expression for this concept is given in Equation 6:

Xnew
i;j =

8<
:

XA � k1jXB � 2k2Xij;pR0:5

Xb � Xm � k3
�
k4
�
ubj � lbj

�
+ lbj

�
;p<0:5

jE0j>1 (Equation 6)

where Xnew
i represents the newly generated candidate solution, XA and XB denote two distinct individuals within the population. k1, k2, k3, k4,

and p are uniformly distributed random numbers within the interval [0, 1]. Xm signifies the mean of all individuals, and Xi denotes the i-th in-

dividual. ubj and lbj represent the upper and lower bounds in j-th dimension, respectively. j$j indicates the absolute value. It can be observed

that SB updates the newly generated candidate solution with equal probability. This method involves multiple individuals, making full use of

information within the population, and its randomness contributes to increasing population diversity. E0 as Equation 7:

E0 = ða � 1Þ3 2ð1 � t =TÞ (Equation 7)

where t represents the current iteration number, T denotes the total iteration count, and a stands for a uniformly distributed random number

within the interval [0, 2].

CMS-RS

The inclusion of CMS-RS is primarily derived from the CoDE,139 which has been further explored by other researchers as well.140 CMS-RS can

significantly enhance the precision of RIME. When RIME gets stuck in a local optimum, CMS-RS can assist in restarting RIME to explore other
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dimensions within the solution space. Firstly, CMS enhances information exchangebetween individuals through three different differentiation

methods. The specific mathematical model is as follows:

X1j =

	 Xr1;j + F1

�
Xr2;j � Xr3;j

�
if rand <Cr1orj = jrand

Xi;j else
(Equation 8)

where X1j represents the newly generated solution’s value in dimension j, where r1, r2, and r3 are three different integers ranging from 1 toN,

withNbeing the population size.Xr1;j, Xr2;j, andXr3;j denote the values in the j-th dimension for three distinct individuals within the population.

Xi;j signifies the value of the i-th individual in the j-th dimension. In this section, the subsequentXi;j represents the same concept. rand refers to

a uniformly distributed random number between 0 and 1. The value for Cr1 is 0.1, and F1 is 1. j represents the j-th dimension, while jrand is an

integer ranging from 1 to D. D signifies the problem’s dimension.

X2j =

	 Xr4;j + F2

�
Xr5;j � Xr6;j

�
+ F2

�
Xr7;j � Xr8;j

�
if rand <Cr2orj = jrand

Xi;j else
(Equation 9)

where X2j represents the newly generated solution’s value in dimension j. r4-r8 are four distinct integers ranging between 1 and N, with N

being the population size. Xr4;j-Xr8;j respectively denote the values in the j-th dimension for four distinct individuals within the population.

rand refers to a uniformly distributed random number within the range of 0 to 1. Here, the value forCr2 is 0.2, which is an increased probability

compared toCr1, providing a greater chance for differentiation. Similarly, the number of individuals selected for differentiation has increased

from three to four, fully utilizing the information within the population. Here, F2 is valued at 0.8. j represents the j-th dimension, while jrand is an

integer ranging from 1 to D. D signifies the problem’s dimension.

X3j =

	 Xi;j + rand
�
Xr9;j � Xi;j

�
+ F3

�
Xr10;j � Xr11;j

�
if rand <Cr3orj = jrand

Xi;j else
(Equation 10)

where, X3j represents the newly generated solution’s value in dimension j. r9-r11 are three distinct integers ranging between 1 andN, withN

being the population size. Xr9;j, Xr10;j, and Xr11;j respectively denote the values in the j-th dimension for three distinct individuals within the

population. rand refers to a uniformly distributed random number within the range of 0 to 1. Here, the value for Cr3 is 0.9, indicating an

increased probability for differentiation compared to the previous two differential mechanisms, aiming to enhance population diversity. F3
is valued at 1. j represents the j-th dimension, while jrand is a random integer ranging from 1 to D. D signifies the problem’s dimension. After

the completion of CMS, the optimal individual selected is denoted as Xnew
i . The subsequent section pertains to the restart strategy, outlined

as follows.

During the entire operation of RIME, we employed a variable count(i) to track how long each individual had gone without further updating

its fitness value and the duration since the CMS result had not outperformed the current fitness value. Here, i represents an integer within the

range of [1,N], denoting the i-th individual. Upon exceeding a certain threshold, set at 50 in this study, we initiate RS. There are two specific RS

strategies, with the first one being random restart, as depicted in Equation 11:

Y1j = rand
�
ubj � lbj

�
+ lbj (Equation 11)

where Y1j represents the newly generated solution’s value in dimension j, rand is a uniformly distributed random number within [0, 1], and ubj

and lbj represent the upper and lower bounds in j-th dimension. The second strategy involves opposition restart, as illustrated in Equation 12:

Y2j = rand
�
ubj + lbj

� � Xi;j (Equation 12)

where Y2j represents the newly generated solution’s value in dimension j, rand is a uniformly distributed random number within [0,1], and ubj

and lbj represent the upper and lower bounds in j-th dimension. Upon the completion of the restart strategy, the best-performing individual is

selected as Xnew
i .

Framework of proposed IRIME

During the execution of IRIME, the population’s update is determined by E0. E0 determines whether the population is updated through SB or

according to the original RIMEmethod. Based on the nature of E0, the algorithm is more likely to update the population using the SBmethod

in the initial stages. Indeed, this form is not found in algorithms like PSO and DE. DE works on a simple concept of differential and mutation,

and PSO operates on the singular idea of swarm intelligence. Both of these methods have a straightforward optimization process. As itera-

tions progress, the probability of executing SB decreases gradually until it reaches zero. This approach facilitates extensive information ex-

change within the population, allowing RIME’s convergence capability to prevail in the later stages. Following each population update, CMS

is employed to leverage the information within the population further and explore potential solutions among individuals. The best-perform-

ing individual is greedily selected based on fitness; if it surpasses the current individual, a replacement strategy is performed. When the al-

gorithm becomes trapped in local optima, an RS restarts and replaces individuals within the population. RS is not present in simple DE and

PSO, which is why they are particularly prone to falling into local optima in the later stages. However, the RS in this paper can constantly
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monitor the running state of IRIME. When an individual falls into a local optimum, it performs a restart. In summary, the combination of these

mechanisms is not straightforward and does indeeddiffer from classical algorithms such as DE and PSO. The specific pseudocode is provided

in Algorithm 2, and the process flow is depicted in Figure S3.

Computational complexity analysis

Computational complexity is a critical metric for assessing the efficiency of an algorithm.141,142 If the dimension of the problem is D, the pop-

ulation size isN, and themaximum number of iterations is T, the main processes of IRIME include population initialization, fitness value calcu-

lation, and position updating. The complexity of initialization is O(D3N), and the complexity of fitness value calculation is O(T3N3F) +

O(log(T)3N33F+T3N/5032F) where F is the complexity of calculating fitness values. The complexity of position updating is O(T3N3D).

Therefore, the overall complexity of the algorithm is O(T3N3D + T3N3F + log(T)3N33F+T3N/5032F + D3N). It is worth noting that

compared to RIME, IRIME primarily increases the complexity of the CMS-RS calculation, which is O(log(T)3N33F+T3N/5032F).

K-nearest neighbor classifier

The K-nearest neighbor classifier (KNN)143 is a commonly used classification method. Its main concept involves finding the K nearest individ-

uals in proximity to a given point, which then defines its class as the one most frequently present among these neighbors. For proximity mea-

surement, this study adopts the Euclidean distance, expressed by the specific formula:

DisðX ;Y Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k = 1

ðXk � YkÞ2
s

(Equation 13)

where X represents the training samples, Y represents the test samples, and n denotes the number of samples.

Binary IRIME

The feature selection problem can be regarded as a discrete combinatorial optimization problem, where we use ‘‘0’’ or ‘‘1’’ to represent not

selecting or selecting a particular feature. In this manner, algorithms need to be adjusted to handle binary problems. The following equation

provides the specific transformation function:

TðxÞ =
1

1+e� 10ðx� 0:5Þ (Equation 14)

where x represents the value of an individual on a certain dimension. It is noteworthy that Equation 14 was proposed in bGWO.130 For the sake

of experimental rigor, a 10-fold cross-validation was employed during the experimentation process. The specific transformation process is

detailed in Equation 15:

Xi;jðt + 1Þ =

	 1

0

rand <TðxÞ

rand >TðxÞ
(Equation 15)

where t represents the current iteration count, i and j denote the i-th individual within the population, and the j-th dimension of an individual

respectively. rand stands for a uniformly distributed randomnumber within the interval [0,1]. This paper treats the feature selection problemas

a single-objective problem,144 where the objective function is defined as follows:

Fitness = a � err + ð1 � aÞ � N

M
(Equation 16)

where, a takes a value of 0.95, err represents the error rate,M stands for the dimensionality of the dataset, andN denotes the dimensionality

after feature selection. It is evident from the formula that the error rate of Fitness is related to the size of the selected feature subset. Addi-

tionally, the smaller the Fitness, the better the algorithm performs in feature selection applications.
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