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Genomic imprinting is a term used for an intergenerational epigenetic inheritance and
involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted
genes are expressed preferentially from either the paternally or maternally inherited allele.
Long non-coding RNAs play essential roles in regulating this allele-specific expression.
In several well-studied imprinting clusters, long non-coding RNAs have been found to
be essential in regulating temporal- and spatial-specific establishment and maintenance
of imprinting patterns. Furthermore, recent insights into the epigenetic pathological
mechanisms underlying human genomic imprinting disorders suggest that allele-specific
expressed imprinted long non-coding RNAs serve as an upstream regulator of the
expression of other protein-coding or non-coding imprinted genes in the same cluster.
Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing
of neighboring imprinted genes. Here, we review the emerging roles of long non-coding
RNAs in regulating the expression of imprinted genes, especially in human imprinting
disorders, and discuss three strategies targeting the central long non-coding RNA
UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader–
Willi syndrome and Angelman syndrome. In summary, a better understanding of long
non-coding RNA-related mechanisms is key to the development of potential therapeutic
targets for human imprinting disorders.

Keywords: genomic imprinting, lncRNA, epigenetic regulation, imprinting disorders, UBE3A-ATS, ASO, CRISPR-
Cas9

Abbreviations: ASE, allele-specific gene expression; MAE, monoallelic expression; PWS, Prader–Willi syndrome; AS,
Angelman syndrome; BWS, Beckwith–Wiedemann syndrome; SRS, Silver–Russell syndrome; KOS14, Kagami–Ogata
syndrome; TS14, Temple syndrome; ICRs, imprinting control centers or imprinting control regions; gDMRs, germline
differentially methylated regions; lncRNAs, long non-coding RNAs; ASOs, antisense oligonucleotides; SNPs, single nucleotide
polymorphisms; H4R3me2s, histone H4 arginine-3 symmetrical demethylation; H3K9me3, H3 lysine-9 trimethylation;
Igf2, the insulin-like growth factor 2; Kcnq1/Kcnq1ot1, potassium voltage-gated channel subfamily Q member 1/Kcnq1
antisense transcript 1; KvDMR1, KvLQT1 differentially methylated region 1; PRC, polycomb repressive complex; EHMT2,
histone methyltransferase euchromatic histone lysine N-methyltransferase-2; Airn, the antisense of Igf2r non-protein coding
RNA; H2AK119ub1, lysine 119-monoubiquititinated histone H2A; Ube3a-ATS, Ube3a-antisense lncRNA; UPD, uniparental
disomy; MLID, multi-locus imprinting disturbance; SNORD116, SnoRNA C/D box cluster 116; RBFOX2, RNA binding
protein fox-1 homolog 2; DLK1/DIO3, delta-like homolog 1 gene/type III iodothyronine deiodinase gene; Rtl1as, the
Rtl1-antisense; PI3K/Akt, phosphoinositide 3-kinase/protein kinase B; CRISPRi, CRISPR interference; CRISPRa, CRISPR
activation; topoisomerase I (Top I) inhibitors.
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INTRODUCTION

In diploid organisms, most genes are transcribed in an unbiased
fashion from both alleles. However, in a small subset of genes,
genetically identical alleles can be expressed differentially, a
process referred to as ASE. In the mammalian genome, common
epigenetic examples of ASE include random X-chromosome
inactivation in females (Lee, 2011; Deng et al., 2014), genomic
imprinting (Peters, 2014), random MAE (Reinius and Sandberg,
2015), allelic expression of antigen receptor (Bergman and Cedar,
2004; Vettermann and Schlissel, 2010), clustered protocadherin
(Chen and Maniatis, 2013), and olfactory receptors (Monahan
and Lomvardas, 2015). Imprinted genes are expressed strictly
or preferentially from either paternally or maternally inherited
alleles (referred to as parent-of-origin) (Barlow and Bartolomei,
2014; Huang et al., 2018; Chen and Zhang, 2020). The ASE
of imprinted genes depends on differential epigenetic markings
during gametogenesis in germline cells, as opposed to gene
sequences. After imprinting patterns become established in
mature germlines, genomic imprinting in an individual is
maintained until genome-wide erasure of epigenetic modification
occurs in gamete precursors.

Genomic imprinting has been described in diverse organisms,
including marsupials, flowering plants, and insects (Macdonald,
2012). In the human and mouse genome, genomic imprinting
has been extensively observed, indicating the conservation
and evolutionary significance of this epigenetic regulatory
mechanism. While the expression of 1% of human protein-
coding genes is estimated to be regulated via genomic imprinting
(Im et al., 2005; Patten et al., 2016; Elbracht et al., 2020),
many of these imprinted genes are essential for metabolism,
development, and the nervous system (Monk et al., 2019; Tucci
et al., 2019). Not surprisingly, dysregulated imprinting is closely
associated with a broad spectrum of human developmental
defects and genetic disorders, including PWS, AS, BWS, SRS,
KOS14, and TS14 (Bian and Sun, 2011; Wan et al., 2017). The
association between imprinted genes and the clinical features
of these human diseases has also been documented in mouse
models through the identification of homologous imprinted gene
regions corresponding to the imprinted gene regions implicated
in human imprinting disorders (Peters, 2014; Tucci et al., 2019).

Long non-coding RNAs are a subgroup of non-coding
RNAs defined as having a length longer than 200 nucleotides,
and are extensively expressed among the genome (Derrien
et al., 2012; Harrow et al., 2012; Knauss and Sun, 2013).
The number of lncRNA genes in the human genome has
been estimated at 20,000 to 100,000 (Zhao et al., 2016; Fang
et al., 2018; Uszczynska-Ratajczak et al., 2018). This number
is greater than the canonical protein-coding genes in the
human genome (Southan, 2017). lncRNAs are primarily retained
in the nucleus, having short half-lives and a rapid turn-
over rate compared to mRNAs (Clark et al., 2012; Derrien
et al., 2012; Yoon et al., 2015). lncRNAs can regulate gene
expression in at least three ways: at the transcription level
by modulating gene transcription and chromatin structure, at
the post-transcription level by affecting splicing and stability
of RNA, and at the translation level by modulating protein

translation (referred to review Statello et al., 2021). In the human
and mouse genome, imprinted genes often reside together within
clusters (2–20 genes), called imprinted clusters or imprinted
domains (Ferguson-Smith, 2011). In mammals, lncRNAs are
generally located in imprinted clusters that contribute to
the establishment and maintenance of monoallelic expression
at a genome-scale and long time-range (Andergassen et al.,
2019). Here, we summarize the roles of lncRNAs in the
regulation of genomic imprinting using several well-established
imprinted clusters as examples. We also discuss how the
expression pattern of lncRNAs and their epigenetic regulatory
functions are affected in imprinting disorders and some cancers.
Three potential strategies have been developed to target the
central long non-coding RNA Ube3a-ATS for the purpose
of therapeutically correcting the PWS/AS locus imprinting
disorders. We also discuss the functional mechanisms of
imprinted lncRNAs in the regulation of mono-allelic imprinted
gene expression and how it could help us understand ASE
mechanisms and underlying pathological mechanisms of human
imprinting disorders, hopefully inspiring additional efficient
therapeutic strategies.

GENOMIC BASIS OF IMPRINTING

Along with more profound analysis of patient samples and
well-established mouse reciprocal crossing models using high-
throughput sequencing, the monoallelic expression of imprinted
genes has been observed extensively in mice and humans
(Tucci et al., 2019). Methylomes and transcriptomes derived
from human peripheral blood and various adult tissue samples
have been combined to identify imprinted methylation and the
distribution of imprinted genes across the genome (Baran et al.,
2015; Zink et al., 2018). In order to identify mouse imprinted
genes, parents from strains with different genetic backgrounds
were crossed to obtain heterozygotic individuals, permitting
the discrimination of parent-of-origin-dependent transcriptional
effects from sequence-dependent allelic expression (Babak et al.,
2008; Wang et al., 2008). Imprinted genes in mice are
identified based on SNPs specific to paternal or maternal genetic
backgrounds, thus permitting the quantitation and comparison
of expression levels from both alleles. To date, around 160
imprinted genes have been identified in the human genome, and
200 in the mouse genome (Tucci et al., 2019; Chen and Zhang,
2020). Sixty three of these imprinted genes are shared, suggesting
that mouse models could be helpful for understanding imprinting
regulation in humans.

In the human and mouse genome, imprinted genes often
reside together within imprinted clusters (Ferguson-Smith,
2011). More than 80% of the known imprinted genes in
the mouse genome are clustered together in multi-gene
ranging in size from less than 100 kb to several megabases
(Barlow, 2011). Imprinted lncRNAs located in one imprinted
cluster are coordinately controlled by shared regulatory factors,
including parent-of-origin-dependent differentially methylated
regions (DMRs) and lncRNAs (Peters, 2014). In well-studied
imprinted clusters, allele-specific DNA methylation occurs in
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an independent ICR in the germline, referred to as germline-
derived DMRs (gDMRs) or primary DMRs, and persists after
fertilization. ICRs in imprinted clusters exhibit parent-of-origin-
specific epigenetic modifications, including DNA methylation,
governing different expression patterns of parentally inherited
alleles (da Rocha and Gendrel, 2019). Around 35 imprinted
gDMRs have been identified in the human genome (Monk
et al., 2018) and 24 in the mouse genome to date (White et al.,
2016). The establishment of gDMRs on paternal or maternal
alleles (Figure 1A) is essential for regulating imprinted gene
expression in embryonic development (Barlow, 2011; Kelsey
and Feil, 2013; Elbracht et al., 2020). In early primordial
germ cells, epigenetic marks are extensively erased genome-
wide, including DNA methylation and histone modifications. In
germline cells, DNA methylation of ICRs is re-established in
gametes depending on the parent-of-origin. After fertilization,
gDMRs escape secondary global epigenetic reprogramming.
DNA methylation information at ICRs of the imprinted regions
is retained. In this way, gDMRs of imprinted loci are established
robustly during germline development and are resistant to
genomic reprogramming after fertilization. Correspondingly,
imprinting marks are inherited in a parent-specific manner
(Chotalia et al., 2009; Henckel et al., 2012; da Rocha and
Gendrel, 2019). gDMRs on the different parent-of-origin alleles
are characterized by distinct chromatin configurations, marked
with different histone modifications which are corresponding to
‘open chromatin’ and ‘close chromatin’ (Singh et al., 2011; Court
et al., 2014; Sanli and Feil, 2015). The allele-specific methylation
states of gDMRs are recognized by transcription factors with
roles in maintaining parent-of-origin specific expression of
the imprinted genes, such as ZFP57 protein (Riso et al.,
2016). In total, differential methylation states of gDMRs on
parental alleles are essential for the establishment of monoallelic
gene expression.

Imprinting control regions govern DNA methylation and
chromatin organization in early embryonic and adult lineages,
resulting in the persistence of imprinting patterns across
generations and their maintenance in adult tissues (Monk
et al., 2019). After becoming established at early developmental
stages in the germline, gDMRs are maintained in most somatic
cells throughout life, resulting in the regulation of allelic
expression of imprinted gene clusters. gDMRs also direct the
rise of ‘secondary’ DMRs, normally corresponding to repressive
chromatin modifications, condensed chromatin structure, and
the gene-silencing function of imprinted lncRNAs (Sasaki et al.,
1995; Nowak et al., 2011, p. 2; Rao et al., 2014; Tan et al.,
2018; Zink et al., 2018). It has been shown that the imprinted
expression of some genes is restricted to specific tissues or
stages in developmental processes, along with additional allele-
specific epigenetic marks further established in somatic cells.
The expression patterns of these developmentally expressed
imprinted genes are characterized by temporal- and spatial-
specific biases (Perez et al., 2015; Andergassen et al., 2017). For
example, UBE3A and IGF2 show imprinted expression patterns
in specific human brain cell types (Rougeulle et al., 1997; Vu
and Hoffman, 1997; Pham et al., 1998; Yamasaki et al., 2003;
Li J. et al., 2020). In a study of ASE in diverse tissues from

178 adult post-mortem donors, paternally silenced IGF2 was
reported in the human brain, different from the canonical
paternal expression observed in other tissues (Baran et al., 2015).
In the mouse E6.5 gastrulating epiblast, it has also been observed
that Igf2r is expressed from both alleles and further becomes
imprinted in the embryonic lineage at the gastrulation stage
(Marcho et al., 2015). Besides, the placenta-specific imprinting
has been observed, and the underlying mechanism has been well-
understood, especially in the potassium voltage-gated channel
subfamily Q member 1 (Kcnq1)/Kcnq1 antisense transcript 1
(Kcnq1ot1) cluster and the antisense of Igf2r non-protein coding
RNA (Airn)/Igf2r cluster (Figure 1B; Sleutels et al., 2002;
Andergassen et al., 2019; Hanna, 2020). The establishment of the
placenta-specific imprinting initiates by allelic DNA methylation
in pre-implantation embryos. In the placenta, the genomic profile
of DNA methylation in imprinted DMRs is different, likely
the result of an overall different pattern of placenta compared
to other tissues (Schroeder et al., 2013). After implantation,
the silencing of imprinted genes on the paternal allele in the
post-implantation placental trophoblast expands and tends to
be larger than the post-implantation epiblast. This expansion
of gene silencing is mediated by the spreading of H3K27me3
marks along the paternal chromosome (Calabrese et al., 2015;
Andergassen et al., 2017).

LONG NON-CODING RNAs AND THEIR
ROLES IN REGULATING THE
EXPRESSION OF IMPRINTED GENES

Two major mechanisms have been described to explain the
regulation of the gene expression within an imprinted cluster (Lee
and Bartolomei, 2013; Barlow and Bartolomei, 2014; Chen and
Zhang, 2020). The first model is the lncRNA model, which may
be more common. In this model, imprinted lncRNAs regulate
imprinted gene expression. In the lncRNA model, imprinted
lncRNAs intimately associate with ICRs. Imprinted lncRNAs are
characterized by their capacity to silence imprinted genes in
the same cluster (Rao et al., 2014; Kanduri, 2016; Tan et al.,
2018; Zink et al., 2018; Tucci et al., 2019). As illustrated by
the Kcnq1/Kcnq1ot1 imprinted cluster (Figure 2A), actively
expressed imprinted lncRNA Kcnq1ot1 on the paternal allele
can silence multiple imprinted genes bidirectionally along their
located gene region (Pauler et al., 2012). In contrast, a maternally
methylated ICR on the paternal directly inhibits Kcnq1ot1 and its
silencing effects, leading to the released expression of imprinted
genes from the silencing by Kcnq1ot1. Another model, the
insulator model is identified in other imprinted regions, in which
parental allele-specific epigenetic differences at ICRs contribute
to topological alternations of imprinted gene regions, inducing
gene silencing or activation of specific alleles. This model is
mainly applied to explain how imprinted genes in the insulin-like
growth factor 2 (Igf2)/H19 locus are mechanistically regulated
(Figure 2B; Kaffer et al., 2000). H19 is a maternally expressed
lncRNA (Bartolomei et al., 1991; DeChiara et al., 1991; Ferguson-
Smith et al., 1991). The zinc-finger protein CTCF binds to the
unmethylated maternal ICR and creates topologically associating
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FIGURE 1 | Genomic basis of the regulation of imprinting clusters. (A) The inheritance of allele-specific imprinting epigenetic marks across generations. In the early
primordial germ cells, epigenetic modifications are erased at a genomic scale before the formation of germline cells. In the germline, parent-of-origin DNA
methylation is established, shown as gDMRs. After fertilization and the formation of the zygote, the gDMRs are further maintained. Established imprinting patterns
are maintained in blastocyte and somatic cells in adult tissues. (B) Imprinting in epiblast and placenta in imprinting loci, such as the Kcnq1ot1/Kcnq1 or Airn/Igf2r
loci, is shown. In pre-implantation embryos, DNA methylation is inherited in the gDMR on the maternal allele, such as KvDMR1 of the Kcnq1ot1/Kcnq1 imprinting
cluster. After implantation, the expression of lncRNA on the maternal allele is repressed by DNA methylation in gDMR, allowing the expression of neighbor genes. On
the contrary, lncRNA is expressed from the paternal allele, inducing the spreading of H3K27me3 modifications in adjacent regions in the embryonic lineage (epiblast).
In extra-embryonic lineage (placental trophoblast), the extended scale of H3K27me3 marks is longer than that seen in embryonic cells. Adjacent genes further away
are also silenced on the paternal allele, indicating placenta-specific imprinting, such as Slc22a18 and Tssc4 genes in the Kcnq1ot1/Kcnq1 imprinting cluster. For
simplicity, specific gene names are not shown.

domain boundaries, blocking Igf2 access to the enhancer like an
‘insulator’ (Schoenherr et al., 2003; Gómez-Marín et al., 2015).
On the paternal allele, methylated ICR prevents CTCF binding
and leads to secondary methylation of the H19 promoter and
therefore silencing of lncRNA expression. The enhancers are then
accessible to Igf2, permitting paternal-allele expression of Igf2
(Thorvaldsen et al., 1998; Chen and Zhang, 2020). Different from
the lncRNA model, imprinted lncRNAs H19 in the insulator

model are not the key regulation elements or whether imprinted
lncRNAs affect other genes are not clear.

Here, we discuss on the role of imprinted lncRNAs in
epigenetic regulation in the more common model, lncRNA
model (Kopp and Mendell, 2018). lncRNA functions can be
characterized based on their specific subcellular locations
and interactions with DNA, RNA, and proteins, regulation
of chromatin structure, expression of nearby and distal
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FIGURE 2 | Mechanisms by which imprinted lncRNA regulate allelic expression in imprinted clusters. (A) The lncRNA model of imprinted gene expression regulation.
In Kcnq1ot1 imprinted cluster, the ICR is unmethylated on the paternal allele, permitting lncRNA Kcnq1ot1 expression. The expression of this lncRNA recruits the
PRC1/2 complex and histone methyltransferase G9a, leading to condensed chromatin and silencing of flanking protein-coding genes. The ICR is methylated on the
maternal allele, inhibiting lncRNA expression. The expression of Kcnq1 and several paternal silenced genes are activated. (B) The insulator model of imprinted gene
expression regulation. The ICR on the maternal allele is unmethylated. CTCF binds to the maternal ICR and functions as an insulator to block Igf2 access to its distal
enhancers. In contrast, the ICR on the paternal allele is methylated, preventing binding of CTCF. The expression of Igf2 is activated via enhancer regulation.
(C) lncRNA Airn in Airn/Igf2r locus function in two distinctive mechanisms. On the one hand, methylated DMR on the maternal allele inhibits Airn expression, allowing
access of transcription factors to the Igf2r promoter. The paternal DMR is unmethylated, permitting Airn transcription. Airn overlaps with the promoter of Igf2r and
inhibits Igf2r expression. On the other hand, Airn transcripts recruit PRC2 complex to distal genes, such as Slc22a3 and Slc22a2, where they silence expression.
Slc22a1 is a biallelic expressed protein-coding gene between distal regulated imprinted genes and Igf2r gene loci. (D) In Snurf-Snrpn/Ube3a imprinted cluster, the
transcription of Ube3a-ATS starts from the exon upstream of the Snurf-Snrpn gene on the paternal allele. A group of non-coding RNAs are expressed, including
Snord116 and Snord115 sno-lncRNAs and SnoRNAs. The elongation of this lncRNA overlaps with the Ube3a protein-coding region. A collision occurs between the
converging elongation complexes of Ube3a-ATS and Ube3a resulting in the failure of Ube3a transcription elongation. By contrast, on the maternal allele, the ICR of
Snurf-Snrpn/Ube3a cluster is methylated in the brain. G9a is recruited to the methylated DMR. This G9a accumulation leads to condensed chromatin and the
silencing of flanking imprinted genes near the Snurf/Snrpn gene region. Consequently, the maternal Ube3a allele is expressed.

genes, RNA post-transcription modification, or mRNA
translation (St Laurent et al., 2015; Kopp and Mendell, 2018;
Statello et al., 2021). Imprinted lncRNAs range from 1.9 to
1,000 kb in length (Guenzl and Barlow, 2012) and regulate
the expression of adjacent imprinted genes in cis through
interacting with promoters and transcription factor binding sites,
modifying chromatin status, or affecting higher-order structures
(Barlow, 2011). Two major functional mechanisms of imprinted
lncRNAs in the regulation of imprinted gene expression are
hypothesized: interacting with promoters or enhancers of nearby
target genes to affect transcription initiation, or overlapping
imprinted gene regions, covering the gene body, and regulating

the chromatin state of adjacent gene regions. We will also discuss
the mechanisms underlying the regulation of imprinted gene
expression by imprinted lncRNAs using well-characterized
imprinted clusters as examples.

Transcriptional Interference
Inhibition of Transcriptional Initiation
Transcription of imprinted lncRNAs often overlaps with the
promoters or enhancers of imprinted genes and influences their
transcription (Lee and Bartolomei, 2013). These imprinted
lncRNA transcripts often interfere with the transcription
machinery of nearby imprinted genes, influencing the
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recruitment of transcription factors at their promoters (Latos
et al., 2012). Based on an analysis of lncRNA and DNA binding
in imprinting clusters from multiple mammalian species,
it was suggested that the binding of lncRNAs to promoters
of imprinted genes may be common (Liu et al., 2017). The
Airn/Igf2r imprinted cluster in the mouse genome is a well-
studied example (Figure 2C; Latos et al., 2012). On the paternal
allele, the transcription profile of Airn initiates from its promoter
embedded within the ICR in a direction antisense to the
transcription of the Igf2r gene (Latos and Barlow, 2009). It was
noted that intragenic truncations of the endogenous lncRNA
Airn in embryonic stem (ES) cells that do not include the
overlapping region are unable to silence the Igf2r paternal
allele, thus demonstrating that inhibition of RNA polymerase
II recruitment to Igf2r promoter region does not depend on
the overlap between Airn transcription and the promoter
(Sleutels et al., 2002; Latos et al., 2012; Santoro and Pauler, 2013).
Furthermore, during ES cells differentiation, Airn expression was
also necessary and sufficient to silence Igf2r (Santoro et al., 2013).
The overlapping regions between Airn transcription and Igf2r
promoter and its gene body instead of Airn lncRNA products
themselves lead to silencing of Igf2r expression.

The Disturbance of the Transcriptional Elongation
Another mechanism involves a collision between the converging
elongation complexes of imprinted lncRNA and imprinted genes,
leading to transcription stalling, premature termination, and
subsequent degradation of the imprinted gene transcript (Hao
et al., 2017). An example is the UBE3A/UBE3A-ATS imprinted
domain on human chromosome 15q11-13, in which imprinted
genes, including MAGEL2, NDN, SNRPN, SNORD115, and
SNORD116, are silenced on the maternal allele (Horsthemke
and Wagstaff, 2008). In contrast, UBE3A, which encodes an E3
ubiquitin ligase, is expressed from the maternal allele, especially
in neurons in the brain. The homologous imprinted locus
in mice has also been identified and studied, locating at a
syntenic loci chromosome 7qC (Yang et al., 1998; Figure 2D).
In this imprinted cluster, the ICR embedded within the Snurf-
Snrpn gene is unmethylated on the paternal allele. In mouse
neurons, Ube3a-ATS lncRNA is expressed specifically from
its promoter embedded in the unmethylated ICR (Yin et al.,
2012; Meng et al., 2013). Notably, the Ube3a promoter region
is not methylated differently like Ube3a-ATS. This, combined
with the observation that Ube3a-ATS transcription initiates
from an exon region upstream of the Snurf-Snrpn gene and
elongates approximately 1,000 kb as far as the intronic region
of Ube3a between exons 4 and 5 (Landers et al., 2004; Lewis
et al., 2019), it was hypothesized that the two opposing
polymerases of Ube3a and Ube3a-ATS collide (Figure 2D). This
transcriptional collision may lead to premature termination
of Ube3a transcription inside its exon region on the paternal
chromosome. In neurons from the monoallelic genetically
engineered mouse model with the transcription of paternal
Ube3a-ATS allele being terminated, Ube3a allele expression was
activated on the paternal allele (Meng et al., 2013), resulting
in increased expression comparable to maternal Ube3a (Meng
et al., 2012). In cultured AS mouse neurons with biallelic silenced
Ube3a expression, Antisense oligonucleotides (ASOs) targeting

Ube3a-ATS rescued the expression of Ube3a efficiently (Meng
et al., 2015). Consistently, in human induced pluripotent stem
cells (iPSC)-derived neuron cells with biallelic silenced UBE3A
expression, ASOs targeting UBE3A-ATS lncRNA transcripts
lead to transcriptional termination by displacement of RNA
Polymerase II, releasing the transcription of UBE3A (Germain
et al., 2021). Recently, in human iPSCs, both sufficient expression
of UBE3A-ATS lncRNA and two newly identified boundary
elements were located inside the IPW gene and the PWAR1
gene (Martins-Taylor et al., 2014; Hsiao et al., 2019). These two
genes are located between SNORD115 and SNORD116. In human
iPSCs with the boundary elements deleted using gene editing
technology, the expression of UBE3A was not silenced by up-
regulated UBE3A-ATS expression (Hsiao et al., 2019). Mapping
RNAPII density showed that reduced active RNAPII across the 3′

half of UBE3A corresponding to silenced UBE3A. These results
together further support the hypothesized collision between
UBE3A-ATS and UBE3A transcription complexes, leading to
premature termination of the latter. In summary, the overlap
between Airn and Igf2r promoter region disrupts the initiation
of Igf2r transcription, while Ube3a-ATS silences the expression
of Ube3a by disturbing its transcriptional elongation.

Chromatin Modification
Another lncRNA-related imprinting mechanism involves
coating the bidirectionally flanking chromosomal region and
recruiting repressive chromatin modification factors (Lee
and Bartolomei, 2013; Sanli and Feil, 2015; Statello et al.,
2021). The interactions between lncRNAs and these chromatin
factors facilitate transcriptional silencing of target genes. The
repressive chromatin-modification factors methylate DNA and
produce histone modifications resulting in condensed chromatin
structure and repressed gene expression. Among well-known
repressive chromatin-modification factors, PRCs bind and spread
across targeted chromatin facilitated by lncRNAs (Kotzin et al.,
2016; Marín-Béjar et al., 2017). lncRNAs, genome structures, and
CpG islands are essential factors in recruiting these PRCs, which
have the capacity to catalyze lysine 119-mono-ubiquitinated
histone H2A (H2AK119ub1) and H3K27me3 to repress gene
expression through chromatin compaction and antagonization
of transcriptional activators (Schwartz and Pirrotta, 2013; Simon
and Kingston, 2013; Calabrese et al., 2015; Pintacuda et al., 2017;
Colognori et al., 2019; Schertzer et al., 2019; Gil and Ulitsky,
2020; MacDonald and Mann, 2020). In genomic imprinting,
some imprinted lncRNAs can bidirectionally direct repression of
flanking neighbor imprinted gene region, such as KCNQ1OT1
lncRNA. Some lncRNAs can target distal gene regions in the
same imprinted clusters they locate, such as Airn.

Locally Recruiting Condensed Chromatin Structure to
Neighbor Gene Region
The Kcnq1/Kcnq1ot1 ICR, also known as KvDMR1 (KvLQT1
differentially methylated region 1), with the embedded lncRNA
Kcnq1ot1 promoter, is unmethylated on the paternal allele
(Figure 2A; Lee et al., 1999, p. 1; Smilinich et al., 1999; Beatty
et al., 2006; Ager et al., 2008). lncRNA Kcnq1ot1 transcripts
from the promoter region recruit several epigenetic factors such
as the Polycomb group proteins RING1B (Polycomb Repressive
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Complex 1, PRC1), EZH2 (PRC2), and histone methyltransferase
euchromatic histone lysine N-methyltransferase-2 (EHMT2 or
G9a) to neighboring gene regions, forming repressive histone
modifications such as H3K27me3 and H3K9me2 (Figure 2A II;
Umlauf et al., 2004; Pandey et al., 2008). The chromatin state
around the flanking regions of this lncRNA becomes condensed
and results in silencing of flanking multi-protein coding genes
such as Cdkn1c, Slc22a18, and Tssc4. On the maternal allele,
DNA methylation of KvDMR1 silences the activation of the
Kcnq1ot1 promoter and represses the transcription, releasing the
transcription of neighboring genes.

Recruiting Chromatin Modification Factors to Distal
Imprinted Genes
A typical example of imprinted lncRNA regulating distal
imprinted genes through epigenetic silencing is Airn and
recruitment of PRCs in the placenta (Figure 2C; Latos et al.,
2012; Lee and Bartolomei, 2013). As mentioned before, the
transcription of Airn represses the expression of flanking
imprinted gene Igf2r by transcriptional interference of the
overlapping Igf2r promoter without repressive chromatin
modification involved. In contrast, distal imprinted genes, such
as Slc22a2 (about 100 kb to Airn locus) and Slc22a3 (about 300 kb
to Airn locus), are also silenced by Airn in the extra-embryonic
lineage, where Airn mediates the recruitment of PRC1 and PRC2
to distal targets on the paternal alleles (Terranova et al., 2008;
Zhao et al., 2010; Schertzer et al., 2019). Recently, Airn was found
to silence Slc22a3 in mouse trophoblast stem cells (Andergassen
et al., 2019). Allele-specific chromosome conformation capture
studies have suggested that Airn transcription throughout the
enhancer of Slc22a3 may silence Slc22a3 expression by disrupting
its promoter-enhancer interactions. However, with monoallelic
deletion of the entire Airn gene, no essential enhancers for
the distal silenced genes were found in the Airn gene region.
Nonetheless, it has also been shown that Airn lncRNA is enriched
on the Slc22a3 promoter together with an H3K9 dimethylase,
G9a (Nagano et al., 2008). These results illustrate that Airn may
target the promoters of distal imprinted genes by recruiting PRCs
and G9a. The enrichment of these histone modification factors
may lead to condensed chromatin in distal imprinted regions and
silence imprinted genes.

THE ROLE OF IMPRINTED LONG
NON-CODING RNAs IN HUMAN
IMPRINTING DISORDERS AND CANCER

Long non-coding RNAs play essential roles in many biological
processes and are related to various human diseases. Altered
expression of imprinted loci has been linked to various
neurodevelopmental disorders and cancers (Schaller et al., 2010;
Huang et al., 2011; Riordan et al., 2013; Peters, 2014). Since
imprinted regions are inherited in a parent-of-origin way, defects
in one allele may be sufficient to lead to imprinting disorders
(Kopp and Mendell, 2018). More specifically, silencing of
parentally expressed imprinted genes can lead to the ultimate loss
of its expression. Under abnormal conditions, DNA methylation

status, allelic expression, and the biological functions of
imprinted lncRNAs may be affected. These alterations may relate
to human imprinting disorder-related disease phenotypes (Lee
and Bartolomei, 2013). Here, we examine several well-studied
imprinting disorders and emphasize the roles of imprinted
lncRNAs in pathophysiological processes of imprinting-related
diseases and cancers.

Common Molecular Mechanisms of
Imprinting Disorders
Appropriate expression patterns of imprinted genes are
important to growth and development. Correspondingly,
imprinting disorder-related human diseases can be caused by
genetic or epigenetic abnormalities on paternally or maternally
inherited alleles (Lee and Bartolomei, 2013). Several common
molecular mechanisms behind imprinting disorders have been
defined, including molecular changes or genetic abnormalities,
UPD, and epigenetic alterations (Figures 3A–D; Soellner et al.,
2017; Carli et al., 2020). Firstly, genetic alterations, including
SNPs and copy number variants on one imprinting allele, can
affect imprinting (Figure 3B). Another mechanism is UPD,
in which the inheritance of two copies of chromosomes or
chromosomal regions are both from either the paternal or
maternal allele, resulting in synchronous expression or silencing
(Figure 3C; Robinson, 2000). Different from genetic alterations,
epigenetic changes known as epimutations in DNA or histone
modification without obvious genetic mutations have also been
documented in imprinting disorders (Figure 3D; Horsthemke,
2010). Hypermethylation at imprinted DMRs can silence the
active allele of the original monoallelic expressed imprinted
genes. In contrast, hypomethylation can result in overexpression
of the original silenced allele. Epimutations can arise randomly
or be driven by their environment during the inheritance of
germline epigenetic imprinting marks. DNA methylation in
DMRs can thus be abnormally inherited in the absence of
genetic sequence alterations (Robertson, 2005). Moreover, as
with molecular or genetic alterations, epimutations can be
permanently maintained in somatic tissues for life and cause
developmental phenotypes (Ioannides et al., 2014; Gillessen-
Kaesbach et al., 2018; Monk et al., 2019). Besides the imprinted
disorder caused by variations in a single imprinted gene,
imprinting disorders with epigenetic alterations at loci across the
genome have also been observed in many imprinting diseases,
referred to as MLID (Horsthemke, 2010; Fontana et al., 2018).
Instead of changes at specific genetic loci, MLID may be caused
by a globally disturbed imprinting inheritance process across the
genome. However, since current research is mostly limited to
a subset of imprinted genes and the mosaic character of MILD
(Azzi et al., 2014; Eggermann et al., 2021), the role of MLID in
imprinting disorders is still poorly understood.

Congenital Imprinting Disorders and
Related Imprinted Long Non-coding
RNAs
Molecular disturbances, like loss or gain of methylation at
ICRs, and subsequent loss or gain of imprinted gene expression

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 October 2021 | Volume 9 | Article 730014

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-730014 October 19, 2021 Time: 18:38 # 8

Wang et al. Long Non-coding RNA and Imprinting Disorders

FIGURE 3 | Four common molecular mechanisms of imprinting disorders. (A) The normal state of the established DMR methylation pattern on the maternal and
paternal alleles. (B) Imprinting disorder can be caused by copy number variations with imprinted cluster located such as duplication or deletion. Point mutations
(single nucleotide polymorphisms) occurring in imprinted genes could also influence normal functions. (C) Both alleles are inherited from same parent-of-origin. In the
case shown here, for example, maternally inherited alleles are duplicated without paternal allele participation. (D) Epimutations of DNA modification condition can
disturb normal imprinting pattern without alterations in DNA sequences of the imprinted region. For example, DNA methylation of the imprinted gene on paternal
allele are hypermethylated and silenced on both alleles.

have been described in various congenital human disorders.
The frequencies of different molecular abnormalities vary
among imprinting disorder-related diseases (Eggermann et al.,
2015). More details about typical clinical syndromes and the
pathological mechanisms are summarized in Table 1. However,
details underlying imprinting disorder mechanisms and how they
might impact adult neurobiology and developmental processes
remain to be clarified. Fortunately, multiple mouse models
of human imprinting disorders have been generated based
on genomic conservation in most imprinted clusters. Strong
correlates have been shown between these two genomes in
imprinting loci, imprinting disorder phenotypes, and underlying
molecular mechanisms (Perez et al., 2016). Spatial- and temporal-
specific expression of allele-specific genes have been observed in
several imprinting clusters in humans and mice. Here, imprinting
disorders in three well-studied imprinting clusters are introduced
as examples to demonstrate the roles of imprinted lncRNAs in
imprinting-related congenital human disorders.

UBE3A-ATS in Prader–Willi Syndrome and Angelman
Syndrome
Recent RNA-Seq data revealed strong allele-biased expression in
the adult mouse brain, especially in imprinted regions (Perez
et al., 2015, 2016), where many of these genes are expressed in
cell type-specific manners. Importantly, mutations or disruptions
in imprinted genes are linked with extensive neurobehavioral
phenotypes, demonstrating that brain-specific imprinted genes
may play important roles in neurodevelopmental disorders
(Tucci et al., 2019). PWS and AS are two neurodevelopmental
disorders caused by oppositely inherited deficiencies occurred

in the same imprinted cluster (Peters, 2014; Kalsner and
Chamberlain, 2015; Buiting et al., 2016). These two syndromes
perform common phenotype characters, including hypotonia
at the newborn stage, abnormal sleep patterns, and the
deficiency in intellectual development (Buiting, 2010; Kalsner
and Chamberlain, 2015). Children affected by PWS exhibit poor
suck phenotypes with reduced muscle tone and mental abilities
(Buiting et al., 1995; Buiting, 2010; Fontana et al., 2017), while
AS is characterized by deficient motor function, intellectual
development, and speech abilities (Buiting, 2010; Eggermann
et al., 2015). These two disorders are caused by imprinting
disorder in the imprinted PWS/AS locus (UBE3A/UBE3A-
ATS imprinted cluster) on human chromosome 15q11-13
(Figure 4A). Similar to the mouse homologous locus mentioned
previously in Section 3, the E3 ubiquitin ligase-encoding UBE3A
gene is specifically imprinted in the brain (Vu and Hoffman,
1997). On the maternal allele, the methylated DMR encompasses
the promoter of the SNRPN gene, silencing the SNURF/SNRPN
gene and a series of downstream non-coding RNA genes
(Rougeulle et al., 1997). In contrast, actively expressed UBE3A-
ATS and the non-coding SNORD gene clusters are expressed from
the paternal allele.

On the paternal allele of imprinted human PWS/AS locus,
the unmethylated PWS-ICR is the region upstream to a protein-
coding gene SNRPN and a lncRNA SNHG14 (small nucleolar
RNA host gene 14) (Sutcliffe et al., 1994; Buiting et al., 1995;
Rougeulle et al., 1997; Runte et al., 2001; Vitali et al., 2010;
Chamberlain, 2013; Stanurova et al., 2018; Figure 4A). The
neuron-specific non-coding transcript SNHG14 is processed to
give rise to a series of non-coding RNA products, such as
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TABLE 1 | Human imprinting disorder-related diseases.

Genomic
location

Imprinted
cluster/lncRNA

Imprinting
disorder diseases

Clinical syndromes Molecular mechanisms Prevalence
in

population

References

Chromosome
15q11-13

SNUPF-
SNRPN/UBE3A

(imprinted lncRNA:
UBE3A-ATS)

Prader–Willi
syndrome (PWS)
(OMIM #176270)

Obesity, reduced muscle tone,
diminished swallowing and

suckling, infantile hypotonia and
hypogonadism, intellectual disability

Deletion the imprinted loci on the
paternal allele (70–75%);

Maternal UPD of chromosome 15
(20–25%);

Epimutations of the DNA
methylation at ICR 2%);

Small deletions within the ICR
(<0.5%)

1/25.000–
1/10.000

Buiting et al. (1995),
Buiting (2010),
Fontana et al.

(2017), Elbracht
et al. (2020)

Angelman
syndrome (AS)

(OMIM #105830)

Developmental delay, intellectual
disability, absence of speech,

microcephaly, seizures, specific
excitable demeanor

Deletion of 15q.11–13 region on the
maternal chromosome (70–75%);

Point mutation in UBE3A gene
(10%);

Paternal UPD (3–7%);
SNURF ICR loss of methylation

(2–3%)

1/20.000–
1/12.000

Buiting (2010),
Eggermann et al.
(2015), Elbracht

et al. (2020)

Chromosome
11p-15.5

H19/IGF2;
KCNQ1OT1

(Imprinted lncRNA:
H19) H19/IGF2

Beckwith–
Wiedeman

syndrome (BWS)
(OMIM #130650)

Neonatal macrosomia, postnatal
overgrowth, placental

mesenchymal dysplasia,
Tendency to embryonal tumors,

cancer predisposition

Paternal UPD of chromosome
11p15.5 (20% to 25%);
KCNQ1OT1-ICR loss of

methylation (50%);
H19/IGF2-ICR gain of methylation

(5%);
CDKN1C point mutations (5%);
Cluster copy number variation

(2–4%)

1/15.000 Eggermann et al.
(2016), Mussa et al.

(2016), Õunap
(2016), Kalish et al.

(2017)

Silver–Russel
syndrome (SRS)
(OMIM #180860)

Severe intrauterine growth
restriction (IUGR), postnatal growth

failure with no catch-up, body
hemihypoplasia, relative

macrocephaly with triangular face,
fifth finger clinodactyly and

characteristic triangular face, lower
birth weight

Loss of methylation at ICR on the
paternal allele (40–60%);

Maternal UPD of chromosome 7
(5–10%)

1/100.000–
1/75.000

Cytrynbaum et al.
(2016), Eggermann
et al. (2016), Õunap

(2016), Wakeling
et al. (2017)

Chromo-
some
14q32.2

MEG3/DLK1
(Imprinted lncRNA:

MEG3)

Kagami–Ogata
syndrome (KOS14)
(OMIM #608149)

Polyhydramnios, placentomegaly,
poor sucking and hypoventilation in
the neonatal period, abdominal wall

defects, a distinctive facial
appearance, small bell-shaped

thorax, coat-hanger ribs

Paternal UPD (65%);
Microdeletion affecting the maternal

14q32.2 imprinted region (20%);
Hypermethylation of the ICR (15%)

<1 in
1,000,000

Beygo et al. (2015),
Kagami et al.

(2015), Ogata and
Kagami (2016),
Prasasya et al.

(2020)

Temple syndrome
(TS14) (OMIM

#616222)

IUGR, PNGR (postnatal growth
restriction), hypotonia and motor

delay, feeding difficulties in infancy,
truncal obesity, scoliosis,

precocious puberty, small feet and
hands

MEG/DLK1 ICR loss of methylation
(61%);

Maternal UPD (29%);
Deletion in imprinted region (10%)

<1 in
1,000,000

Ioannides et al.
(2014),

Gillessen-Kaesbach
et al. (2018),

Prasasya et al.
(2020)

repeated C/D box small nucleolar RNAs (snoRNAs) and lncRNAs
including 116HG, 115HG, and the antisense transcript to UBE3A
(Mendiola and LaSalle, 2021; Figure 4A). The most studied
RNA product from the host transcript SNHG14 is SNORD116
snoRNA, embedded within intronic regions of SNORD116
gene locus (Cavaillé et al., 2000; de los Santos et al., 2000;
Stanurova et al., 2018; Mendiola and LaSalle, 2021). SNORD116
snoRNA present in ribonucleoprotein complexes (snoRNPs) and
may participate in splicing, ribosomal RNA maturation, RNA
modifications, and regulation of prohormone processing-related
gene expression (Bazeley et al., 2008; Burnett et al., 2017).
Meanwhile, SNORD116 locus encoded 116HG lncRNA was
discovered recently (Vitali et al., 2010). 116HG is stably retained

in the nucleus ‘RNA cloud’ at its transcription site (Powell et al.,
2013a). 116HG potentially regulates transcript levels of circadian-
related genes in the cortex and energy-related metabolism
through in a time-of-day-dependent manner (Coulson et al.,
2018b). Similarly, SNORD115 locus encodes lncRNA 115HG
and SNORD115 snoRNAs. While on the maternal allele, the
methylated PWS-ICR occurs the upstream of the SNRPN gene.
It silences the expression of the paternally expressed transcripts
while allows the expression of UBE3A (Vu and Hoffman, 1997).

Prader–Willi syndrome is the first human disease identified
to be caused by the abnormal expression of non-coding RNAs
(Sahoo et al., 2008; de Smith et al., 2009; Duker et al., 2010). All
cases of PWS in humans involve a deletion in the SNORD116
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FIGURE 4 | SNUPF-SNRPN/UBE3A imprinted cluster on human chromosome 15 and related imprinting disorders. (A) Allelic expression pattern in
SNUPF-SNRPN/UBE3A locus. On the maternal allele, the methylation of ICR silences the expression of UBE3A-ATS, permitting UBE3A expression. On the paternal
allele, UBE3A-ATS is expressed from the SNURF gene region, overlapping the exon region of UBE3A gene. On the paternal allele, lncRNA host transcript are
processed to give rise to snoRNAs (SNORD115 and SNORD116), lncRNAs (116HG, 115HG, and UBE3A-ATS). Three different spliced non-coding transcripts are
produced from SNORD116 gene locus, including 116HG lncRNA, snoRNAs, and sno-lncRNAs. SNORD116 sno-lncRNAs with snoRNAs on two ends are produced
after splicing. (B) Imprinting disorders occur in PWS. PWS-related molecular alterations in UBE3A imprinted gene cluster. Line I indicates deletion in the imprinted
region; Line II shows double maternal alleles are inherited, losing the paternal copy; Line III shows that the epigenetically mutated DNA methylation in DMR of the ICR
leads to the silencing of lncRNA expression. Line IV: small deletion within the ICR. (C) Sno-lncRNAs transcribed from paternal allele can recruit Fox proteins and
other related proteins, regulating Fox protein distribution and related alternative splicing functions. However, in PWS patients, loss of the UBE3A-ATS and other
noncoding gene expression lead to the accumulation of Fox proteins in the nucleus and global abnormal splicing patterns. (D) Imprinting disorders occur in AS. Line
I: deletions of the maternal imprinted regions containing the UBE3A and surrounding genes; Line II: both alleles are inherited from paternal chromosome; Line III:
UBE3A mutations lead to transcript loss of function; Line IV: epimutations in the maternal allele lead to lncRNA expression from the maternal allele, preventing normal
UBE3A expression.

non-coding gene locus, which regulates the maturation of the
central nervous system. The overlap between the phenotype
caused by SNORD116 microdeletion and MAGEL2 mutation
suggests that transcripts from SNORD116 locus may modify
MAGEL2 expression via long-range chromatin interactions
(Meziane et al., 2015; Fountain and Schaaf, 2016; Langouët
et al., 2018). The loss of the paternal expressed SNORD116 in
PWS can be caused by several factors, including large paternal
deletions in the imprinted PWS/AS locus (60%), maternal
UPD (36%), small microdeletion in SNORD116 locus (<1%),
and epigenetic alternations in DNA methylation of the PWS-
ICR region (4%) (Sahoo et al., 2008; Duker et al., 2010;

Bieth et al., 2015; Rozhdestvensky et al., 2016; Mendiola and
LaSalle, 2021; Figure 4B). Rare microdeletions that encompass
SNORD116 and its adjacent genes, SNRPN or SNORD115,
have been found in PWS patients (Sahoo et al., 2008; de
Smith et al., 2009; Duker et al., 2010). Moreover, a small
deletion that only covers SNORD116 and its adjacent genes
(SNORD109A, and IPW) was identified in a patient with typical
PWS syndrome (Bieth et al., 2015; Figure 4A). Since there
is no obvious involvement of SNORD109A and IPW genes
in PWS, the observations in this PWS case further support
that the SNORD116 gene region play key roles in the PWS,
independent with SNORD115 or SNRPN deletion. Consistently,
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SNORD116 is completely silenced in neuron cells derived from
PWS patients (Cavaillé et al., 2000; Hsiao et al., 2019). Besides,
Snord116 deleted mouse model recapitulates major phenotypes
of human PWS patients, including altered metabolism, growth
deficiency, memory impairment, hyperphagia and increased
anxiety (Skryabin et al., 2007; Ding et al., 2008; Zieba et al., 2015;
Qi et al., 2016; Polex-Wolf et al., 2018; Adhikari et al., 2019).

Furthermore, an alternative RNA species (sno-lnRNAs)
processed from SNORD116 host non-coding transcript has
been described in human (Yin et al., 2012; Powell et al.,
2013a; Figure 4A III). The role of SNORD116 sno-lncRNAs
in RNA processing and decay of their target mRNAs is
not well-understood but may facilitates our understanding of
the connection between imprinting disorder and pathological
mechanism of PWS (Figure 4C). SNORD116 exon transcript
is retained between two snoRNAs, forming sno-lncRNAs with
two small nucleolar ribonucleoprotein ends (Yin et al., 2012).
These sno-lncRNAs accumulate near the synthesis site together
with a type of lncRNAs that are 5′ capped by snoRNAs and
3′ polyadenylated (SPAs) (Wu et al., 2016). These lncRNAs
may interact with RNA binding proteins including TDP43
(TAR DNA-binding protein 43), RBFOX2 (RNA Binding
Fox-1 Homolog 2), and hnRNP M (Heterogeneous nuclear
ribonucleoprotein M). Especially, splicing regulator RBFOX2 are
required for the neuron-specific splicing of Snord116 transcript
to produce 116HG lncRNA and Snord116 snoRNA (Yeo
et al., 2009; Coulson et al., 2018a). Since immunoprecipitation
coupled with high-throughput sequencing (CLIP-seq) and RT-
PCR assays confirmed that RBFOX2 directly binds to Snord116
snoRNA, it is hypothesized that Snord116 snoRNA may reduce
the availability of these splicing-related proteins and regulate
alternative splicing in the nucleus (Yin et al., 2012; Wu et al.,
2016). Therefore, the disruption of SNORD116 in PWS may lead
to more uniform distribution of RBFOX2 protein and global
changes in normal alternative splicing patterns, contributing
to PWS phenotypes.

In contrast to the paternal-allelic imprinting disorder in PWS,
AS, is mainly caused by the lack of maternal UBE3A gene
expression (Figure 4D; Buiting et al., 2016). The brain-specific
and maternally biased expression of UBE3A has been shown to
function in regulating dendritic growth and influencing behavior
and neurotransmitters (Avagliano Trezza et al., 2019). In AS
patients, the expression of UBE3A or functional UBE3A protein
is lost. These alternations can be caused by various imprinting
disorder mechanisms including deletions of the maternally
imprinted regions containing the UBE3A and surrounding genes.
Besides pathological variants in the UBE3A gene, loss of SNURF
DMR methylation has also been observed in AS cases (2–3%),
in which the expression of UBE3A is silenced by UBE3A-ATS as
discussed previously (Dagli et al., 1993).

KCNQ1OT1 and H19/IGF in Beckwith–Wiedemann
Syndrome and Silver–Russell Syndrome
Beckwith–Wiedemann syndrome and SRS are clinically
opposite growth-affecting disorders (Õunap, 2016). The
underlying pathological mechanisms involve genetic and
epigenetic perturbations of two imprinting clusters on human

chromosome 11p15, the KCNQ1/KCNQ1OT1 and H19/IGF loci
(Carli et al., 2020; Chang and Bartolomei, 2020; Figures 5A–
C). BWS is one of the most common congenital overgrowth
conditions (Mussa et al., 2013), with common phenotypes
including postnatal overgrowth, placenta mesenchymal
dysplasia, and congenital and childhood cancer predisposition.
In contrast, SRS patients exhibit postnatal growth failure with
body hemihypoplasia, lower birth weight, fetal undergrowth and
poor feeding predisposition (Wakeling et al., 2017).

Approximately 50% of BWS patients lose DNA methylation
accompanied by loss of H3K9me2 on maternal KvDMR1
(Figure 5A; Robertson, 2005). This epigenetic disturbance
results in biallelic expression of the KCNQ1OT1 lncRNA. As
a consequence, expression of this lncRNA silences adjacent
imprinted genes on both alleles (Soejima and Higashimoto,
2013). Among these silenced genes, CDKN1C is linked to the
development of BWS phenotypes (Yan et al., 1997; Zhang
et al., 1997; Tunster et al., 2011). These epigenetic mutations in
maternal KvDMR1 and biallelic expressed KCNQ1OT1 lncRNAs
lead to loss of CDKN1C expression and fetal overgrowth,
thus contributing to BWS syndrome (Eggermann et al., 2016;
Wakeling et al., 2017). Therefore, after the establishment
of DMRs on imprinted alleles, monoallelic expression of
KCNQ1OT1 lncRNA is a crucial regulator of adjacent protein-
coding genes, which have essential roles in maintaining normal
growth processes during early development. Another major
abnormal imprinted cluster identified in BWS patients is
H19/IGF2 (Figure 5B). Under normal conditions, H19/IGF2
ICR is methylated on the paternal chromosome, controlling
the expression of H19. In BWS patients, mutations or
hypermethylation of the H19/IGF2 ICR can lead to H19 silencing
and subsequent overexpression of IGF2, a circulating hormone
and tissue growth factor. The upregulated expression of IGF2
is linked to BWS overgrowth-related phenotypes (Pollak et al.,
2004; Brioude et al., 2018a,b; Duffy et al., 2019). As for SRS,
loss of H19/IGF2 ICR methylation on the paternal chromosome
11p15 accounts for 40–60% of patients (Wakeling et al., 2017).
ICR hypomethylation is bound by the insulator CTCF. The
interaction of the IGF2 promoter with its enhancer on both
alleles is disrupted, resulting in decreased IGF2 expression
and subsequent growth and development delays (Figure 5C;
Abi Habib et al., 2017).

Although some BWS and SRS patients can be identified
based on clinical features alone, diagnosing imprinting disorders
can be complicated by complex molecular alternations (Ibrahim
et al., 2014; Wakeling et al., 2017). In addition to the two
imprinted loci primarily relevant to BWS and SR phenotypes,
MLID has also been observed in an increasingly growing fraction
of patients with methylation abnormalities at other imprinted
loci (Rossignol et al., 2006; Azzi et al., 2009; Eggermann et al.,
2011; Fontana et al., 2018). In addition, symptoms vary widely in
patients with imprinting disorders (Wakeling et al., 2017; Brioude
et al., 2018b; Mantovani et al., 2018). Therefore, additional
insights into the relationship between the epigenetic mechanisms
of imprinting disorders and neurological diseases can help
clarify more accurate diagnostic guidelines and appropriate
clinical therapies.
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FIGURE 5 | Well-studied imprinting clusters and their conditions in disorder conditions involved in human imprinting disturbance-related diseases. (A,B) BWS and
two related imprinted clusters, H19/IGF2 and KCNQ1OT1. (A) The first situation is the hypomethylation of the maternal allele in Kcnq1ot1 ICR leads to lncRNA
KCNQ1OT1 overexpression. The expression of neighboring imprinted genes, such as SLC22A18, CDKN1C, and TSSC4, is bi-allelically silenced. (B) The second
major imprinting disorder responsible for BWS is hypermethylation of the maternal ICR, resulting in loss of H19 expression and IGF2 overexpression. (C) SRS and
alterations in imprinting of H19/IGF2 locus. Hypomethylation of the paternal H19/IGF2 ICR resulting in H19 overexpression and inhibited Igf2 expression. (D) The
regulation of mouse Meg3 imprinted cluster. On the paternal allele, the gDMR of Meg3 cluster ICR is methylated, repressing Meg3 lncRNA expression. On the
maternal allele, lncRNAs are transcribed from the promoter within the unmethylated ICR. (E) Four cases of MEG3-related imprinting disorders in KOS14 patients are
shown. Line I, epimutations in normally activated maternal ICR of MEG3 cluster result in loss of lncRNA transcription, releasing normally silenced adjacent imprinted
genes; Line II: maternal deletion in ICR of MEG3 regions; Line III: maternal deletion in the MEG3 gene body; Line IV: both alleles are inherited by silenced paternal
allele.

DLK1/DIO3 in Kagami–Ogata Syndrome and Temple
Syndrome
Genetic and epigenetic alterations in delta-like homolog 1
gene/type III iodothyronine deiodinase gene (DLK1/DIO3)
imprinted cluster on human chromosome 14q32 are
associated with two human imprinting disorder-related
diseases, KOS14 and TS14 (Temple et al., 1991; Wang
et al., 1991; Ogata and Kagami, 2016). Common KOS14
phenotypes include neonatal respiratory difficulties, a distinctive
facial appearance, variable developmental delay, and/or
intellectual disability (Ogata and Kagami, 2016; Prasasya
et al., 2020). Clinical syndromes observed in TS14 include
severe intrauterine growth restriction, postnatal growth
restriction, neonatal hypotonia, and feeding difficulties in

infancy (Ioannides et al., 2014; Gillessen-Kaesbach et al., 2018;
Prasasya et al., 2020).

The distribution of imprinted genes and regulatory
mechanisms of DLK1/DIO3 locus are highly conserved
between humans and mice. The regulation of this imprinted
locus has been revealed in mouse models established with
genetic alterations in the Dlk1/Dio3 locus on chromosome
12 (Figure 5D; Paulsen et al., 2001; da Rocha et al., 2008).
Three paternally expressed imprinted protein-coding genes
are Dlk1, Rtl1, and Dio3. lncRNA Meg3 (also called Gtl2), the
Rtl1-antisense Rtl1as, the C/D-box snoRNA cluster Rian, and
the microRNA cluster Mirg are transcribed from the maternal
allele (da Rocha et al., 2008; Kota et al., 2014). The regulation of
imprinted gene expression in this locus relies on an intergenic
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DMR (IG-DMR). On the maternal allele, AFF3 protein binds to
an upstream enhancer of Meg3, activating lncRNA expression.
In contrast, on the paternal allele, AFF3 binds instead to the
methylated IG-DMR, leading to silencing of Meg3 and other
non-coding genes (Luo et al., 2016; Wang et al., 2017). It has
also been suggested recently that maternally expressed lncRNA
Meg3 is involved in the regulation of the Dlk1/Dio3 imprinted
cluster (Sanli et al., 2018). The maternal expression of the Meg3
lncRNA may play a role in preventing maternal Dlk1 activation
through interaction with the lysine methyltransferase (KMT)
Ezh2 and PRC2 in the maternal Dlk1 gene region (Kaneko
et al., 2014; Sanli et al., 2018). Remarkably, Meg3 lncRNA’s
regulation of imprinted protein-coding gene Dlk1 is restricted to
a developmental window as follows. In embryonic stem cells, the
Dlk1 gene is expressed biallelically at a low level. Upon neuronal
differentiation, Dlk1 expression is upregulated on the paternal
allele. Conversely, the activation of the Dlk1 gene on the maternal
allele is prevented by the overlap of Meg3 lncRNA in cis and the
recruitment of Ezh2 to the Dlk1 gene region (Sanli et al., 2018).
Although the Meg3 lncRNA is necessary for the silencing of Dlk1
expression, the mechanisms underlying the connection between
the Meg3 lncRNA and repressed Dlk1 expression on the maternal
allele are unknown.

The DLK1/DIO3 locus is predominantly imprinted in the
human brain (Davis et al., 2005; Ferrón et al., 2011). Protein-
coding genes DLK1, RTL1, and DIO3 are expressed on the
paternal allele; lncRNAs (MEG3, MEG8, RTL1as, DIO3OS),
snoRNAs, and miRNAs are transcribed on the maternal
allele. Importantly, the DLK1 gene plays essential functions in
regulating development and metabolism. In KOS14 patients,
gain of DNA methylation on the maternal ICR leads to MEG3
silencing (Figure 5E I; Sato et al., 2011). However, maternal
micro-deletions of the MEG3 promoter that don’t affect ICR
methylation are also observed in some cases (Figure 5E II; Kota
et al., 2014). In another case, a maternal micro-deletion has been
detected in theMEG3 gene body instead of the IG-DMR orMEG3
promoter (Figure 5E III; van der Werf et al., 2016).

In summary, in these conditions, imprinted lncRNAs play
essential roles as upstream regulators of protein-coding genes in
the same imprinted cluster. However, the detailed mechanisms
are diverse and complicated in different imprinting disorders and
remain to be further investigated.

Imprinted Long Non-coding RNAs and
Human Cancers
Long non-coding RNAs play important roles in pathways
implicated in many cancer types, including prostate (Hua et al.,
2018, p. 19), breast (Zhang et al., 2017; Cho et al., 2018),
and hepatocellular carcinoma (He et al., 2017; Lecerf et al.,
2019; Ye et al., 2020). Long non-coding RNAs can serve
as cancer enhancers or repressors in temporal- and spatial-
specific manners (Calin et al., 2007; Kanduri, 2016; Quinn
and Chang, 2016; Peng et al., 2017). Abnormal functions of
lncRNAs have been observed in various tumors and cancer
cell lines (Kitagawa et al., 2012; Bhan et al., 2017). Notably,
abnormally regulated imprinted gene expression, altered ICR
methylation conditions, and altered expression of cancer-related

imprinted lncRNAs were observed in cancers such as breast
cancer (Kim et al., 2015; Goovaerts et al., 2018). In addition, in
imprinting disorders, abnormal silencing of imprinted lncRNAs
contributes to congenital and childhood tumors. For instance,
susceptibility to Wilm’s tumor and adrenocortical carcinoma is
increased in H19-silenced patients (Dao et al., 1999; DeBaun
et al., 2000; Weksberg et al., 2010; Brioude et al., 2018a,b).

H19 is one of the most commonly implicated tumorigenesis-
promoting lncRNAs (Zheng et al., 2020). The expression of
H19 occurs during embryonic development and decreases after
birth in most tissues. However, H19 is abnormally upregulated
in various cancers, including breast, liver, lung, esophageal,
pancreatic, ovarian, and bladder (Vennin et al., 2015; Zhang et al.,
2016). H19’s tumor-promoting effects include the inhibition of
cell death, promotion of proliferation, downregulation of growth
suppressors, and promotion of invasion and metastasis (reviewed
in Matouk et al., 2015; Lecerf et al., 2019). Moreover, high H19
expression may be a molecular marker to predict cancers and
prognoses after clinical treatment, including the rate of post-
therapeutic relapse in hematological cancer patients (Liu et al.,
2016). Increased risk of developing congenital and childhood
tumors seen in BWS is also associated with aberrant H19. H19
is also associated with growth suppression (Yoshimizu et al.,
2008; Lecerf et al., 2019; Zhou et al., 2019). H19’s contribution to
tumorigenesis varies by tissue and developmental windows and
requires clarification in future investigations.

Another well-studied cancer-related imprinted lncRNA is
MEG3, which acts as a cancer repressor. MEG3 is downregulated
in breast, neuroblastoma, meningioma, glioma, pituitary
adenoma, and hematological malignancies (Benetatos et al.,
2011; Cheunsuchon et al., 2011; Zhou et al., 2012; Lyu
et al., 2017; Zhu et al., 2019). In pituitary neuroendocrine
tumors, hypermethylation of the maternal DLK1/MEG3 locus
results in MEG3 downregulation and impaired differentiation
(Cheunsuchon et al., 2011; Chen et al., 2020). Hypermethylation
of the MEG3 promoter region has also been observed in AML
patients (Lyu et al., 2017; Yao et al., 2017; Sellers et al., 2019), while
recent studies have begun to reveal the underlying mechanisms
in endometrial and breast cancers (Sun et al., 2017; Zhang et al.,
2017; Zhu et al., 2019). One such mechanism involves MEG3’s
inhibition of the phosphoinositide 3-kinase/protein kinase B
(PI3K/Akt) signaling pathway, a well-known growth-related
pathway. Therefore, unraveling the roles of imprinted lncRNAs
in cancer may reveal novel biomarkers and therapeutic targets
for cancer treatment.

MODULATION OF THE LONG
NON-CODING RNA UBE3A-ATS TO
RESCUE ABNORMAL IMPRINTING IN
PRADER–WILLI
SYNDROME/ANGELMAN SYNDROME
IMPRINTED CLUSTER

Although our understanding of the mechanisms of imprinting
disorders has grown, efficient molecular diagnosis and effective
treatments are limited to nonexistent (Elbracht et al., 2020).
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Modulation of imprinted lncRNAs has been proposed as a
potential therapeutic strategy to target imprinted genes and
rescue imprinting disorders (Peters, 2014; Statello et al., 2021).
As the epigenetic regulatory mechanisms of the Ube3a/Ube3a-
ATS imprinted cluster are understood best, attempts have been
made to rescue Ube3a expression through modulating the
collision between the transcriptional machinery of Ube3a and
Ube3a-ATS in an allele-specific manner. Herein, three state-of-
the art therapeutic strategies by targeting Ube3a-ATS lncRNA,
editing Ube3a-ATS gene region, or modulating chromatin
transcriptional state by small molecules are discussed along
with recent preclinical studies of UBE3A/UBE3A-ATS imprinted
cluster-related diseases.

Antisense Oligonucleotides for Imprinted
Long Non-coding RNAs
Antisense oligonucleotides are single-stranded DNA oligos
designed using sequence homology with their RNA targets that
hybridize with the targeted RNA region based on complementary
base pairs, and induce subsequent RNA degradation at the ASO-
RNA heteroduplex part (Mishra et al., 2019; Li M. et al., 2020).
ASOs can be used to alter splicing or gene expression. ASOs
have been designed as potential therapies for various diseases,
including AS, spinal muscular atrophy (SMA), Duchenne
muscular dystrophy, Huntington disease, and hyperlipidemia
(Beaudet and Meng, 2016; Dhuri et al., 2020). Several ASO-based
therapies, such as Nusinersen (Spinraza) for SMA treatment,
have received approval by the United States Food and Drug
Administration (FDA) and other regional regulatory agencies
(Karaki et al., 2019). Nusinersen is quite effective in rescuing
protein deficiency by altering pre-mRNA splicing (Hoy, 2017;
Groen et al., 2018; Claborn et al., 2019). The capacities of ASOs
to access targeted RNAs through homology base pairing and
in inducing RNase H-mediated cleavage at the pairing regions
by exonucleases make them suitable to decrease lncRNA levels
post-transcriptionally (Chan et al., 2006).

As mentioned before, on the paternal allele of Ube3a/Ube3a-
ATS imprinted cluster, Ube3a-ATS represses Ube3a expression
by prematurely terminating the elongation of Ube3a transcripts.
Therefore, a potential strategy is to rescue the defective Ube3a
transcription by targeting Ube3a-ATS transcripts using ASOs
(Figure 6A I). To avoid influencing the transcription of sno-
lncRNAs essential for neuronal development and PWS, ASOs
were designed to be complementary to Ube3a-ATS transcripts
downstream of the Snord115 cluster. These ASOs were provided
to cultured AS mouse neurons with deficient Ube3a expression
(Meng et al., 2015). The treatment achieved sustained ectopic
paternal expression of Ube3a, partially rescued UBE3A brain
protein levels, and alleviated some cognitive deficits. Remarkably,
other splicing products derived from Ube3a-ATS like Snrpn and
Snord116 were unaffected. Consistently, ASOs were designed
to rescue the expression of UBE3A in AS iPSC-derived
neuron cells with a large deletion of maternal 15q11-q13.
ASOs targeting UBE3A-ATS transcripts at SNORD115 and
SNORD109B, or targeting the snoRNA located between SNORD
115 locus and UBE3A gene region, cleave UBE3A-ATS and

release the transcription of UBE3A on the paternal chromosome
(Germain et al., 2021).UBE3A-ATS transcription is terminated by
displacing RNA Polymerase II several kilobases downstream of
the ASO targeting site. Therefore, targeting the lncRNA UBE3A-
ATS by ASOs could be a potential strategy for rescuing UBE3A
expression and related imprinting disorders. Besides, ASOs have
several unique features in treating imprinted disorders, including
high in vivo efficacy, broad tissue distribution, low adverse events,
and long duration of action (Smith et al., 2006; Kordasiewicz
et al., 2012). Considering that several mRNA-targeting ASOs
have been approved (Dhuri et al., 2020), targeting lncRNAs using
ASOs to treat imprinting diseases could achieve wide application.
However, robust delivery systems devoid of associated toxicity
should be carefully developed and evaluated.

Modulation of Imprinted Long
Non-coding RNA Expression Using the
CRISPR/Cas9 System
The CRISPR/Cas9 system permits in vitro and in vivo gene
editing tool and is another novel strategy to modulate imprinted
lncRNA expression (Deltcheva et al., 2011; Jinek et al., 2012;
Konermann et al., 2015; Suzuki et al., 2016; Knott and
Doudna, 2018). A series of CRISPR/Cas-engineered systems
can be designed to manipulate lncRNAs, including deletion
of the lncRNA encoding gene region (pre-transcription level),
inhibition or activation of the expression of the lncRNA
(transcription level), or direct degradation of the lncRNA
transcripts (post-transcriptional level) (Perez-Pinera et al.,
2013; Qi et al., 2013; Ran et al., 2013; Abudayyeh et al.,
2017). For example, CRISPRi and CRISPRa can modulate
lncRNA expression by recruiting transcriptional repressors or
activators without inducing genetic mutations (Bester et al.,
2018; Kampmann, 2018). At the same time, CRISPR/Cas9 is
being studied as a strategy of in vivo genome editing therapy
in neurological diseases like schizophrenia and Alzheimer’s
disease (Zhuo et al., 2017; Kuruvilla et al., 2018; Park et al.,
2019; Sun et al., 2019). It is hoped that effective manipulation
of the non-coding regions achieved in human cell lines and
animal models could result in novel strategies to eliminate
obstacles in developing therapies for lncRNA-related imprinting
diseases (Cho et al., 2013; Cong et al., 2013; Jiang et al., 2013;
Doudna and Charpentier, 2014, p. 9). Furthermore, when taking
into account brain-specific expression of imprinted clusters,
CRISPR/Cas9 could be designed to correct abnormal imprinting
patterns (Han et al., 2014). Indeed, recently Cas9 gene therapy
has shown promise in trapping Ube3a-ATS to activate paternal
Ube3a expression (Figure 6A II; Wolter et al., 2020). In
addition, a CRISPR/Cas9 system targeting the Snord115 locus in
cultured mouse cortical neurons and human neural progenitor-
derived neurons was able to successfully increase total Ube3a
protein expression while decreasing Snord115 expression. Using
a neuron-specific saCas9 and guide RNAs packaged in an adeno-
associated virus delivering system and administered to an AS
mouse brain during the embryonic and early postnatal stages
led to silencing of paternal Snord115 expression with long-
lasting effects.
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FIGURE 6 | Three state of the art strategies for imprinted disorders via targeting imprinted lncRNAs. (A) Therapeutic strategies for AS. Molecular alterations such as
deletions in Ube3a/Ube3a-ATS imprinted cluster can cause the loss of effective Ube3a expression. Line I: ASOs are designed to target the overlapping regions of
Ube3a-ATS transcripts and Ube3a, releasing paternal Ube3a expression; Line II: the human synapsin 1 (hSYN1) gene promoter is used drive neuron-specific
expression and Cas9 packaged with adeno-associated virus delivering system is inserted into the gene region of the Snord115, leading to disrupted transcription of
Ube3a-ATS before extending to the Ube3a gene encoding region. Line III: Top I inhibitors disrupt the elongation of the Ube3a-ATS at the Snord116 region. Ube3a
paternal expression is released from transcriptional collision. (B) Therapeutic strategy for PWS. G9A inhibitors prevent G9A recruitment to flanking regions near the
ICR, releasing Ube3a-ATS lncRNA expression from its promoter in the ICR.

In summary, the CRISPR-Cas9 system offers promising
therapeutic strategies with the potential to permanently alter
imprinted gene expression with high specificity and low toxicity.
Nevertheless, since lncRNAs lack open reading frames and
functional protein products, the use of CRISPR-Cas9 system
to achieve efficient lncRNA manipulation needs to be further
improved (Statello et al., 2021). In addition, an optimal sgRNA
design and an effective delivery mechanism to penetrate the
blood-brain barrier need further investigation (Zhuo et al., 2017;
Hana et al., 2021).

Small Molecules Targeting Histone
Modifiers
Small molecules have been screened to target histone
modification proteins involved in imprinted lncRNA regulation.
As mentioned before, PWS and AS are two imprinting disorders
related to the same imprinted cluster. In AS patients, UBE3A
expression is decreased. Through high-content screening in
mouse-derived primary cortical neurons, about 10 topoisomerase
I (Top I) inhibitors have been identified with the capacity to
downregulate Ube3a-ATS expression and induce reactivation

of UBE3A expression from the paternal allele (Huang et al.,
2011; Powell et al., 2013b). The Top I inhibitor topotecan
blocks the elongation of the Ube3a-ATS transcription complex
in cultured mouse neurons (Powell et al., 2013b). It inhibits
sno-lncRNA transcription throughout the Ube3a encoding
gene region by stabilizing the formation of R loops between
RNA and DNA within paternal Snord116, leading to chromatin
decondensation (Liu and Wang, 1987; Belotserkovskii et al.,
2010; El Hage et al., 2010; Belotserkovskii and Hanawalt, 2011;
French et al., 2011; Skourti-Stathaki et al., 2011; Aguilera and
García-Muse, 2012; Ginno et al., 2012; Figure 6A III). The
Ube3a-ATS transcription complex stalled before transcription
of Sno-lncRNAs completed. Subsequent Ube3a expression was
reactivated on the paternal allele. Additional candidates of other
Top I inhibitors have also been assessed to identify inhibitors
with better pharmacological profiles of Ube3a activation (Lee
et al., 2018). Prospective therapeutic safety and central nervous
system (CNS) bioavailability studies have also been performed
recently in AS mouse neurons (Lee et al., 2018).

A therapeutic strategy for PWS based on the induction
of SNORD116 expression has been proposed. SNORD116 is
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normally silenced on the maternal allele, but its expression
can be induced by modulating ‘closed’ chromatin condition
into an ‘open’ state (Kim et al., 2017). The methylation of
histone H3K9 performs allele-specific pattern in the ICR
located upstream of SNRPN gene (PWS-ICR). On the maternal
chromosome, histone methyltransferase euchromatic histone
lysine N-methyltransferase-2 (G9a) locates at the methylated
PWS-ICR and recruits repressive histone modifications
(H3K9me2) along the PWS-ICR in a bidirectional manner.
This leads to condensed chromatin structure and silencing of
PWS-associated genes (Figure 6B). The inactivation of histone
H3K9 methyltransferase G9a in mouse embryonic stem (ES)
cells leads to reduced DNA methylation in PWS-ICR, and
the expression of Snrpn was activated on both chromosome
in vitro (Xin et al., 2003). However, in in vivo mouse model,
two inhibitors of G9a selected lead to the activation of maternal
copy of Snord116 and improve survival of the PWS mouse
without effect on the methylation state of the PWS-ICR or
Ube3a expression on the maternal allele (Kim et al., 2017).
Thus, further studies are needed to clarify the association
between DNA methylation of PWS-ICR and allele-specific
distribution of G9a. Meanwhile, the reactivation of SNRPN and
SNORD116 was recently achieved by preventing the recruitment
of H3K9me3 repressive histone modification-related protein
factor to SNORD116 locus in PWS-derived iPSCs (Langouët
et al., 2020). In summary, small molecules related epigenetic
therapy for PWS through modulating the condition of specific
chromatin regions could be a potential strategy to be translated
in clinical relevance (Crunkhorn, 2017; Chung et al., 2020).

CONCLUDING REMARKS

Several imprinting gene clusters have been discovered and
studied since the middle of the last century. These studies
have shown that lncRNAs play crucial roles in regulating
imprinted gene clusters and individual imprinted genes related
to human health and diseases. However, from a genomic
perspective, the characteristics of gene regulation among
imprinting loci remain to be fully elucidated. This is despite
the advancement in knowledge of the epigenetic regulatory
mechanisms of a subset of genes in imprinted regions. In
the three imprinted clusters (Airn/Igfr2, Kcnq1/Kcnq1ot1,
and Ube3a/Ube3a-ATS), imprinted lncRNAs which play
essential regulatory roles in silencing other imprinted genes
are all expressed on the paternal allele. It has been reported
that maternal expressed imprinted genes are prominent
with protein-coding genes, while paternal expressed genes
exhibit consistent distribution between non-coding and
protein-coding sequences (Hutter et al., 2010). However,
the difference between the establishment of maternal and
paternal imprinted genes in lncRNA mechanisms remains
unclear. Thus, comprehensive investigations are needed to
understand further the mechanisms of imprinted lncRNAs in the
epigenetic regulation of imprinted clusters. With technological
advancements, studies on lncRNA-associated human imprinting
disorders will lead to needed therapies.

Pharmacological treatments for congenital imprinting
disorders are limited to symptomatic therapies, which are
inefficient in promoting the patients’ quality of life (Chung et al.,
2020). Fortunately, the biological role of lncRNAs in the etiology
of congenital imprinting disorders has been revealed thanks to
the advancement in high-throughput genome-wide sequencing
technologies. Therapeutic approaches based on disease-related
lncRNAs have been investigated. In a recent study, lncRNA
mimics were designed to restore the tissue-specific lncRNA
HULC in mice, essential for phenylalanine metabolism (Li
et al., 2021). In addition, three strategies mentioned above
targeting Ube3a-ATS have efficiently rescued imprinting
disorders in PWS/AS imprinted cluster in mouse models and
human cell lines. Although the three strategies mentioned
here targeting Ube3a-ATS have efficiently rescued imprinting
disorders of PWS/AS imprinted cluster in mouse models and
human cell lines, therapies for other disease-related clusters
have not been investigated. Long non-coding RNA-based and
lncRNA-targeting therapies have some unique advantages. For
instance, in lncRNA-targeting methods like ASOs, synthesized
RNA can be designed with organ-targeting peptides to achieve
tissue-specific targeting of endogenous lncRNAs. Besides,
synthesized RNA products could be modified to promote in vivo
stability. Further translation of these strategies to real clinical
tools will require further investigation to overcome related
challenges. In vivo delivery of synthesized RNA molecules,
cellular permeability, immunogenicity, and potential of organ
toxicity also deserve further investigation (Perry and Ulitsky,
2021). Another challenge to extend the lessons learned in PWS
and AS into other imprinting disorders is the epigenetic and
molecular complexities in different imprinting disorders-related
imprinted loci. Considering the complexity of the regulatory
network of genomic imprinting, further efforts are needed to
reveal underlying pathological mechanisms linked to imprinting
disorder phenotypes and support continuous improvement of
clinical management and therapeutic strategies.
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