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Abstract: Metabolic syndrome (MetS) components are strongly associated with increased risk
of non-alcoholic fatty liver disease (NAFLD) development. Several studies have supported that
resveratrol is associated with anti-inflammatory and antioxidant effects on health status. The main
objective of this study was to assess the putative associations between some urinary resveratrol
phase II metabolites, cardiometabolic, and liver markers in individuals diagnosed with MetS.
In this cross-sectional study, 266 participants from PREDIMED Plus study (PREvención con DIeta
MEDiterránea) were divided into tertiles of total urinary resveratrol phase II metabolites (sum of
five resveratrol conjugation metabolites). Urinary resveratrol metabolites were analyzed by ultra-
performance liquid chromatography coupled to triple quadrupole mass spectrometry (UPLC-Q-q-Q
MS), followed by micro-solid phase extraction (µ-SPE) method. Liver function markers were
assessed using serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT),
and gamma-glutamyl transferase (GGT). Moreover, lipid profile was measured by triglycerides,
very-low-density lipoprotein cholesterol (VLDL-c), and total cholesterol/high-density lipoprotein ratio
(total cholesterol/HDL). Linear regression adjusted models showed that participants with higher total
urine resveratrol concentrations exhibited improved lipid and liver markers compared to the lowest
tertile. For lipid determinations: log triglycerides (βT3 = −0.15, 95% CI; −0.28, −0.02, p-trend = 0.030),
VLDL-c, (βT3 = −4.21, 95% CI; −7.97, −0.46, p-trend = 0.039), total cholesterol/HDL ratio Moreover,
(βT3 = −0.35, 95% CI; −0.66, −0.03, p-trend = 0.241). For liver enzymes: log AST (βT3 = −0.12, 95%
CI; −0.22, −0.02, p-trend = 0.011, and log GGT (βT3 = −0.24, 95% CI; −0.42, −0.06, p-trend = 0.002).
However, there is no difference found on glucose variables between groups. To investigate the risk
of elevated serum liver markers, flexible regression models indicated that total urine resveratrol
metabolites were associated with a lower risk of higher ALT (169.2 to 1314.3 nmol/g creatinine),
AST (599.9 to 893.8 nmol/g creatinine), and GGT levels (169.2 to 893.8 nmol/g creatinine). These results
suggested that higher urinary concentrations of some resveratrol metabolites might be associated
with better lipid profile and hepatic serum enzymes. Moreover, urinary resveratrol excreted showed
a reduced odds ratio for higher liver enzymes, which are linked to NAFLD.

Keywords: antioxidant; inflammation; liver enzymes; metabolic syndrome; non-alcoholic fatty liver
disease; resveratrol

1. Introduction

Metabolic syndrome (MetS) encompasses several clinical conditions, including central obesity,
hypertension, dyslipidemia, and insulin resistance leading to an inflammatory state [1], which is
frequently accompanied by liver dysfunction [2]. Many clinical studies suggested that non-alcoholic
fatty liver disease (NAFLD) is the liver manifestation of MetS [2–4]. NAFLD is characterized by
simple hepatic steatosis (excessive triglyceride accumulation) leading to alterations in oxidative and
inflammatory pathways. This state promotes non-alcoholic steatohepatitis (NASH), subsequently
cirrhosis and hepatic carcinoma in last stages [3,5]. The prevalence of NAFLD increases with rates of
obesity and type 2 diabetes mellitus (T2DM), mainly due to unhealthy lifestyle behaviors [2]. It has
been suggested that insulin resistance and abnormal lipid profile were strongly involved in NAFLD
pathogenesis and prognosis [3]. Hyperinsulinemia increases free fatty acid levels promoting a disrupted
flux of triglycerides into hepatocytes [5–7]. In NAFLD, commonly abnormal elevation of serum levels
of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase
(GGT) have presented [3,4]. Liver biopsy is still the gold standard for diagnosing NAFLD, but some
limitations regarding high cost and invasive nature hindered it being applicable in epidemiological
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studies [3]. In this sense, non-invasive liver markers such as transaminases, fatty liver index (FLI)
and hepatic steatosis index (HSI) are recommended in individuals with obesity and MetS as a routine
work-up to identify the risk of NAFLD and subjects with worse prognosis [4]. Metabolomics is the
technology that analyses metabolites in a biological system, and it has been considered as a potential
omics tool to investigate the impact of nutrients, foods, and dietary patterns on human health with
application in precision nutrition research [8]. Moreover, metabolite biomarkers related to dietary
intake could be useful as potential non-invasive biomarkers of effects and disease risk [8].

Lifestyle interventions focused on weight loss, exercise, and a healthy diet can improve the
histopathological and clinical features of NAFLD [3]. Scientific evidence suggests that the modulation
of dietary components can influence NAFLD pathogenesis beyond caloric restriction [9]. In this sense,
many epidemiological and clinical data support that the beneficial effects of the Mediterranean diet
(MedDiet) on metabolic disturbances linked to NAFLD mainly attributed to higher consumption of
bioactive compounds, such as resveratrol and anthocyanins that are present in whole-grain cereals,
fruits, vegetables, healthy fatty acids, and moderate intake of wine [10–15]. Resveratrol is a member
of the stilbene family that is present in several foods and plants [16,17]. The primary dietary
sources are red grapes and red wine, with smaller amounts present in peanuts, berries, and dark
chocolate [16,18]. After the intake, resveratrol enters the gastrointestinal tract and then the liver
via the hepatic portal system, and is metabolized by phase II enzymes generating sulfate (trans-/cis-
resveratrol 3-O-sulfate and 4-O-sulfate) and glucuronide (trans-/cis-resveratrol 3-O-glucuronide and
4-O-glucuronide) metabolites [19,20]. The gut microbiota can metabolize the resveratrol and conjugated
metabolites into dihydro-resveratrol and lunularin [19]. Several human studies have shown that
the most abundant resveratrol phase II conjugates are glucuronides and sulfate metabolites in urine
and plasma samples [20,21]. Limited information has been reported regarding bioavailability and
pharmacokinetics of glycosylated metabolites (piceid), derived from gut microbiota and other stilbenes
(piceatannol). Pharmacokinetics studies in human showed that resveratrol is highly metabolized,
but it has low bioavailability [20,22,23]. In a study used radiolabeled 14C-resveratrol to evaluate
the bioavailability of resveratrol intake in humans, results indicated that 70% of the resveratrol
absorption was recovered in urine. Moreover, the rapid sulfate conjugation by the intestine-liver
could be the principal influence of their bioavailability [22]. Moreover, the bioavailability and quantity
of resveratrol metabolites can be affected by several factors leading to a significant interindividual
variability [19,24,25]. Despite its low bioavailability, several studies have reported that resveratrol
metabolites exert beneficial effects modulating inflammatory and oxidative pathways related to several
chronic diseases, such as cancer, cardiovascular disease (CVD), T2DM, obesity, and NAFLD [21].
NAFLD, most of the studies on resveratrol, and the mechanism of action have been developed in vitro
and animal rodents, which used higher resveratrol concentrations, different cell lines, and animal models
that often overlap [26]. The protective effects of resveratrol on NAFLD mainly include improvements
in principal risk factors, such as blood glucose and insulin levels [27], lipid metabolism [28], and liver
damage [29], but results have remained inconclusive. In this regard, knowledge of the underlying
effects of resveratrol metabolites on liver markers and risk of NAFLD in individuals diagnosed with
MetS is still needed. Thus, our objective was to determinate the potential association between some
phase II urinary metabolites of resveratrol and cardiometabolic and liver markers in individuals
diagnosed with Mets. We hypothesized that high urinary resveratrol metabolites would be associated
with a favorable cardiometabolic profile and hepatic markers related to the risk of NAFLD development.

2. Results

2.1. Participant Characteristics

Baseline sociodemographic, clinical, and liver characteristics stratified by sex are summarized
in Table 1. This study included subjects between 55 to 75 years old (65.8 ± 5.1 years) who were
overweight or obese (32.2 ± 3.4 kg/m2). Men were more prevalent as former smokers, had higher waist
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circumference (109.9 ± 8.5 cm), and visceral fat mass (2850.3 ± 826.2 g) compared to women (all p-values
< 0.05). Moreover, men showed higher levels of physical activity (3690 ± 3101.4 Metabolic Equivalent of
Task (MET)/min/week) (p > 0.001). There were no differences in taking lipid-lowering and anti-diabetic
medications in between genders. Likewise, glucose, homeostatic model assessment for insulin
(HOMA-IR), triglycerides, and very-low-density lipoprotein cholesterol (VLDL-c) did not differ among
sexes. Nevertheless, women had higher insulin, cholesterol, high-density lipoprotein cholesterol
(HDL-c), low-density lipoprotein cholesterol (LDL-c) levels in comparison to men (all p > 0.05).
Concerning liver markers, ALT (31.2 ± 24.5 U/L), AST (25.2 ± 16.3 U/L), and FLI (80.4 ± 14.4) were
significantly higher in men than women (all p-values > 0.05). Moreover, there was significant difference
in the percentage of participants with ALT values above the upper limit normal (ULN) between
men and women. Meanwhile, women had higher HSI (44.0 ± 5.1) in comparison to men (p = 0.004).
Regarding dietary intake and urine resveratrol metabolites (Table 2), the intake of macronutrients did
not differ significantly between genders. However, men had higher energy (2689.4 ± 534.5 kcal/d,
p = 0.004) intake and polyunsaturated fatty acid (PUFA) consumption (19.1 ± 7.2 g/d, p = 0.049)
compared to women. Nevertheless, women consumed more vegetables (353.0 ± 124.0 g/d, p = 0.024)
and had a lower grape intake (5.8 ± 12.3 g/d, p = 0.012). Moreover, men had a much higher alcohol
consumption than women (19.7 ± 19.8 g/d, p < 0.001) with statistically significant differences in total
red, young red, aged red, and rose wine consumption between sexes.

Table 1. Sociodemographic, clinical and liver characteristics of study participants diagnosed with MetS
by sex at baseline.

Men Women
p ¶

All (n = 153) (n = 113)

Age (years) 65.8 (5.1) 64.6 (5.4) 67.5 (3.9) <0.001
BMI (kg/m2) 32.2 (3.4) 31.8 (3.1) 32.8 (3.7) 0.019

Waist circumference (cm) 107.3 (9.0) 109.9 (8.5) 103.9 (8.6) <0.001
VAT (g) 2403.6 (888.9) 2850.3 (826.2) 1831.5 (589.7) <0.001

SBP (mmHg) 144.8 (16.3) 144.9 (15.8) 144.6 (17.0) 0.887
DBP (mmHg) 87.5 (8.5) 87.9 (8.2) 86.9 (8.9) 0.338

Type 2 diabetes, n (%) 100 (37.6) 61 (39.9) 39(34.5) 0.373
Smoking, n (%) <0.001

Never 105 (39.5) 29 (18.9) 76 (67.3)
Former 124 (46.6) 97 (63.4) 27 (23.9)
Current 37 (13.9) 27 (17.7) 10 (8.8)

Lipid-lowering treatment 93 (56.0) 54 (57.5) 39(54.2) 0.673
Any anti-diabetic treatment 69 (25.9) 43 (28.1) 26 (23.0) 0.349

Glucose (mmol/L) 6.7 (1.9) 6.8 (2.1) 6.5 (1.6) 0.286
HbA1c (%) 6.1 (0.9) 6.1 (1.0) 6.1 (0.8) 0.721

Insulin (mU/L) 14.0 (9.0) 13.0 (7.1) 15.6 (11.0) 0.020
HOMA-IR 4.2 (3.2) 3.9 (2.4) 4.7 (4.2) 0.056

Total cholesterol (mg/dL) 200.4 (36.5) 192.2 (34.2) 211.4 (36.9) <0.001
Triglycerides (mg/dL) 148.3 (61.8) 151.1 (69.0) 144.6 (50.6) 0.402

HDL-c (mg/dL) 45.8 (10.0) 43.0 (8.9) 49.5 (10.1) <0.001
LDL-c (mg/dL) 125.8 (33.1) 119.8 (31.3) 133.6 (33.9) <0.001

VLDL-c (mg/dL) 29.7 (12.4) 30.2 (13.8) 28.9 (10.1) 0.402
ALT (U/L) 28.1 (20.6) 31.2 (24.5) 23.8 (12.3) 0.004
AST (U/L) 23.7 (13.4) 25.2 (16.3) 21.8 (7.4) 0.042
GGT (U/L) 42.1 (41.1) 44.9 (41.5) 38.5 (40.3) 0.209

ALT > ULN, n (%) * 122 (46.0) 55 (36.0) 67 (59.8) <0.001
AST> ULN, n (%) * 28 (10.5) 12 (7.8) 16 (14.2) 0.097
GGT> ULN, n (%) * 51 (19.3) 24 (15.9) 27 (23.9) 0.103

FLI 78.7 (15.1) 80.4 (14.4) 76.4 (15.9) 0.035
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Table 1. Cont.

Men Women
p ¶

All (n = 153) (n = 113)

HSI 43.0 (4.9) 42.3 (4.7) 44.0 (5.1) 0.004
Physical activity
(MET-min/week)

3099.9
(2757.8) 3690 (3101.4) 2301.0

(1954.8) <0.001

Data were calculated by chi-square or student’s t-test as appropriate. Results are expressed as mean (standard
deviation). p ¶ for differences between sexes. Abbreviations: BMI, Body mass index; VAT, visceral adipose tissue; SBP,
systolic blood pressure; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin A1c; HOMA-IR, homeostatic
model assessment for insulin; HDL-c, high-density lipoprotein cholesterol; LDL-c, Low-density lipoprotein
cholesterol; VLDL, very-low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, gamma-glutamyl transferase; FLI, fatty liver index; HSI, hepatic steatosis index; MET,
metabolic equivalent task. * Upper limit of normal (ULN) range for ALT (men ≥ 30 UI/L, women ≥ 19 UI/L), AST
(men ≥ 37 UI/L, women ≥ 31 UI/L), and GGT (men ≥ 60 UI/L, women ≥ 40 UI/L).

Table 2. Dietary intake and urine resveratrol metabolites in participants diagnosed with MetS by sex
at baseline.

Men Women
p ¶

All (n = 153) (n = 114)

Total energy intake (kcal/d) 2608.6 (539.1) 2689.4 (534.5) 2499.1 (528.0) 0.004
Carbohydrate intake (g/d) 282.9 (75.1) 287.0 (73.8) 277.5 (76.9) 0.310

Protein intake (g/d) 102.5 (22.9) 101.3 (23.8) 104.1 (21.8) 0.330
Fat intake (g/d) 108.5 (27.1) 110.9 (26.9) 105.3 (27.2) 0.097
MUFAs (g/d) 55.3 (14.3) 56.4 (14.2) 53.9 (14.5) 0.171
PUFAs (g/d) 18.3 (7.2) 19.1 (7.2) 17.3 (7.1) 0.049
Linoleic (g/d) 15.4 (6.9) 16.1 (6.8) 14.6 (7.0) 0.075

Linolenic (g/d) 1.6 (0.8) 1.6 (0.8) 1.5 (0.8) 0.317
Omega-3 (g/d) 0.9 (0.5) 0.9 (0.5) 0.9 (0.4) 0.305

Fiber (g/d) 30.0 (9.8) 29.3 (10.1) 30.9 (9.3) 0.175
Total cholesterol (g/d) 375.7 (110.8) 382.4 (124.4) 366.5 (88.9) 0.248
Total vegetables (g/d) 333.0 (124.4) 318.2 (123.0) 353.0 (124.0) 0.024

Total fruits (g/d) 423.9 (220.4) 407.3 (221.6) 446.3 (217.8) 0.154
Grapes intake (g/d) 9.7 (21.8) 12.6 (26.4) 5.8 (12.3) 0.012

Cherries and plums (g/d) 14.4 (19.4) 14.9 (19.8) 13.6 (18.9) 0.599
Nuts intake (g/d) 15.1 (18.1) 15.6 (18.1) 14.3 (18.2) 0.566

Homemade fruit juice (mL/d) 4.1 (23.6) 5.6 (29.4) 2.0 (11.5) 0.209
Fruit juice bottle (mL/d) 12.4 (54.8) 12.7 (52.9) 12.1 (57.5) 0.931

Adherence to MedDiet (0–17 points) 8.8 (2.5) 8.8 (2.4) 9.0 (2.5) 0.484
Alcohol consumption (g/d) 12.9 (17.7) 19.7 (19.8) 3.5 (7.2) <0.001

Total red wine (g/d) 61.4 (105.9) 91.3 (120.8) 20.8 (62.1) <0.001
Young red wine (g/d) 56.7 (105.3) 84.1 (121.3) 19.6 (61.8) <0.001
Aged red wine (g/d) 4.7 (25.6) 7.2 (32.5) 1.2 (9.5) 0.056

Rosé wine (g/d) 10.4 (49.8) 16.7 (64.2) 1.9 (11.9) 0.017
Moscatel wine (g/d) 0.5 (7.7) 0.8 (10.1) 0.06 (0.7) 0.429

White wine (g/d) 7.4 (33.6) 10.6 (42.4) 3.1 (14.4) 0.073
trans-resveratrol-3-O-glucuronide (nmol/g

creatinine) 0.7 (1.6) 0.7 (0.9) 0.7 (2.2) 0.973

trans-resveratrol-4′-O-glucuronide (nmol/g
creatinine) 171.9 (375.8) 143.7 (314.7) 210.1 (444.1) 0.154

trans-resveratrol-3-O-sulfate (nmol/g creatinine) 0.2 (0.5) 0.2 (0.6) 0.1 (0.2) 0.023
cis-resveratrol-3-O-glucuronide and

cis-resveratrol-4′-O-glucuronide (nmol/g
creatinine)

2.0 (5.3) 2.6 (6.0) 1.1 (4.1) 0.023

Data were calculated by student’s t-test. Results are expressed as mean (standard deviation). p ¶ for differences
between sexes. Abbreviations: MUFAs, monounsaturated fatty acids; PUFAs, Polyunsaturated fatty acids; MedDiet,
Mediterranean diet.
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Urine resveratrol metabolites (Table 2) showed that men had higher trans-resveratrol-3-O-sulfate
and cis-resveratrol-3-O-glucuronide/cis-resveratrol-4′-O-glucuronide urine levels (all p-values < 0.05)
compared to women.

2.2. Association between Total Urine Resveratrol Metabolites Concentrations, Cardiometabolic Profile,
and Liver Markers

The association between total urine resveratrol metabolites and glucose metabolism markers,
blood lipid, and liver markers are shown in Tables 3–5, respectively. After adjusting for
covariates, there were no significant associations between total urine resveratrol metabolites and
glucose metabolism markers (Table 3). Table 4 summarizes values concerning lipid metabolism.
No significant associations were observed between total urine resveratrol metabolites and LDL-c
and log triglyceride/HDL ratio among tertiles. Although in the adjusted model, participants in the
T3 had significantly lower levels of total cholesterol compared to T1 (βT3 = 11.67, 95% CI, −22.21 to
−1.13), but there was no significant tendency among tertiles (p-trend = 0.108). Interestingly, individuals
in the highest tertile (T3) of total urine resveratrol metabolites had significantly lower levels of log
triglycerides (βT3 = −0.15, 95% CI, −0.28 to −0.02), VLDL-c (βT3 = −4.21, 95% CI, −7.97 to −0.46),
and total cholesterol/HDL ratio (βT3 = −0.35, 95%CI, −0.66 to −0.03) after adjustment. Regarding to
liver markers (Table 5), compared with those in the first tertile, individuals in the third tertile had
2.4 significant unit decrease in the log GGT (95% CI, −0.42 to −0.06; p-trend = 0.002) and lower log
AST (βT3 = −0.12, 95% CI, −0.22 to −0.02; p-trend = 0.011). Nevertheless, the differences of other
liver markers (log ALT, HSI and FLI) between levels of urinary resveratrol metabolites were not
statistically significant.

Table 3. Linear regression analysis distributed in tertiles evaluating the associations between total
urine resveratrol (independent variable) and glucose metabolism markers (outcome) in participants
with MetS.

Total Urine Resveratrol Metabolites (nmol/g Creatinine)

T1 T2 T3 p-Trend
(≤4.6) (>4.6 to 58.1) (>58.1 to 2481.2)

n 89 89 88
β Coefficient (95% IC) β Coefficient (95% IC)

Glucose markers
Glucose (mmol/L)

Crude model 0 REF. 0.02 (−0.55, 0.60) 0.11 (−0.46, 0.69) 0.677
Adjusted model 0 REF. 0.04 (−0.56, 0.63) 0.04 (−0.55, 0.63) 0.933

HbA1c (%)
Crude model 0 REF. −0.07 (−0.35, 0.21) −0.01 (−0.28, 0.27) 0.842

Adjusted model 0 REF. −0.07 (−0.36, 0.22) −0.04 (−0.32, 0.25) 0.982
Insulin sensitivity/resistance markers

Insulin (mU/L)
Crude model 0 REF. −1.23 (−3.94, 1.48) −1.15 (−3.86, 1.55) 0.623

Adjusted model 0 REF. −0.22 (−2.87, 2.43) −0.58 (−3.20, 2.03) 0.672
HOMA-IR

Crude model 0 REF. −0.45 (−1.44, 0.54) −0.46 (−1.44, 0.52) 0.558
Adjusted model 0 REF. −0.11 (−1.09, 0.87) −0.31 (−1.28, 0.65) 0.534

HOMA-%B
Crude model 0 REF. −15.19 (−37.11, 6.73) −11.00 (−32.79, 10.79) 0.682

Adjusted model 0 REF. −11.07 (−32.44, 10.30) −6.32 (−27.35, 14.71) 0.904
FGIR

Crude model 0 REF. −0.12 (−0.30, 0.06) −0.07 (−0.25, 0.11) 0.859
Adjusted model 0 REF. −0.14 (−0.33, 0.05) −0.07 (−0.26, 0.11) 0.922

FIRI
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Table 3. Cont.

Total Urine Resveratrol Metabolites (nmol/g Creatinine)

T1 T2 T3 p-Trend
(≤4.6) (>4.6 to 58.1) (>58.1 to 2481.2)

n 89 89 88
β Coefficient (95% IC) β Coefficient (95% IC)

Crude model 0 REF. −0.40 (−1.29, 0.49) −0.42 (−1.30, 0.47) 0.558
Adjusted model 0 REF. −0.10 (−0.98, 0.78) −0.28 (−1.14, 0.58) 0.534

Models were adjusted for sex, age, smoking status, marital status, physical activity, energy intake, and BMI.
Abbreviations: HbA1c, glycated hemoglobin A1c; HOMA-IR, homeostatic model assessment for insulin; HOMA-%B,
HOMA of β-cell function; FGIR, fasting glucose insulin ratio, FIRI, fasting insulin resistance index; REF, reference.

Table 4. Linear regression analysis evaluating the associations between total urine resveratrol
(independent variable) and blood lipids (outcome) in participants with MetS.

Total Urine Resveratrol Metabolites (nmol/g Creatinine)

T1 T2 T3 p-Trend
(≤4.6) (>4.6 to 58.1) (>58.1 to 2481.2)

n 89 89 88
β Coefficient (95% IC) β Coefficient (95% IC)

Blood lipids
Total cholesterol (mg/dL)

Crude model 0 REF. −13.10 (−23.77, −2.43) −13.26 (−23.96, −2.56) 0.132
Adjusted model 0 REF. −8.93 (−19.54, 1.68) −11.67 (−22.21, −1.13) 0.108
LDL-c (mg/dL)
Crude model 0 REF. −11.36 (−21.15, −1.57) −8.21 (−18.02, 1.61) 0.502

Adjusted model 0 REF. −9.32 (−19.13, 0.48) −7.77 (−17.57, 2.02) 0.435
HDL-c (mg/dL)

Crude model 0 REF. 0.36 (−2.60, 3.32) −0.38 (−3.36, 2.59) 0.674
Adjusted model 0 REF. 1.41 (−1.51, 4.32) 0.27 (−2.63, 3.18) 0.761

Log triglyceride (mg/dL)
Crude model 0 REF. −0.05 (−0.18, 0.07) −0.14 (−0.26, −0.02) 0.032

Adjusted model 0 REF. −0.06 (−0.19, 0.07) −0.15 (−0.28, −0.02) 0.030
VLDL-c (mg/dL)

Crude model 0 REF. −1.48 (−5.11, 2.15) −3.95 (−7.60, −0.30) 0.043
Adjusted model 0 REF. −1.70 (−5.47, 2.08) −4.21 (−7.97, −0.46) 0.039

Log triglyceride/HDL ratio
Crude model 0 REF. −0.07 (−0.23, 0.09) −0.14 (−0.30, 0.02) 0.122

Adjusted model 0 REF. −0.10 (−0.26, 0.07) −0.16 (−0.33, 0.002) 0.106
Total cholesterol/HDL ratio

Crude model 0 REF. −0.38 (−0.69, −0.08) −0.32 (−0.62, −0.01) 0.304
Adjusted model 0 REF. −0.39 (−0.70, −0.07) −0.35 (−0.66, −0.03) 0.241

Models were adjusted for sex, age, smoking status, marital status, physical activity, energy intake, and BMI.
Abbreviations: LDL-c, Low density lipoprotein cholesterol; HDL-c, high density lipoprotein cholesterol; VLDL, very
low-density lipoprotein cholesterol; Triglyceride/HDL ratio, triglyceride/high density lipoprotein cholesterol ratio;
Low density lipoprotein cholesterol/high density lipoprotein cholesterol; total cholesterol/HDL, total cholesterol/high
density lipoprotein cholesterol; REF, reference.
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Table 5. Linear regression analysis evaluating the associations between total urine resveratrol
(independent factor) and liver status markers (dependent factor) in participants with MetS.

Total Urine Resveratrol Metabolites (nmol/g Creatinine)

T1 T2 T3 p-Trend
(≤4.6) (>4.6 to 58.1) (>58.1 to 2481.2)

n 89 89 88
β Coefficient (95% IC) β Coefficient (95% IC)

Liver markers
Log ALT (U/L)
Crude model 0 REF. 0.03 (−0.12, 0.18) −0.10 (−0.25, 0.05) 0.074

Adjusted model 0 REF. 0.03 (−0.11, 0.18) −0.12 (−0.27, 0.02) 0.028
Log AST (U/L)
Crude model 0 REF. 0.003 (−0.10, 0.10) −0.09 (−0.19, 0.01) 0.040

Adjusted model 0 REF. −0.01 (−0.11, 0.09) −0.12 (−0.22, −0.02) 0.011
Log GGT (U/L)
Crude model 0 REF. 0.02 (−0.15, 0.20) −0.23 (−0.41, −0.06) 0.002

Adjusted model 0 REF. 0.01 (−0.17, 0.19) −0.24 (−0.42, −0.06) 0.002
HSI *

Crude model 0 REF. −0.28 (−1.74, 1.18) −0.59 (−2.45, 1.27) 0.893
Adjusted model 0 REF. 0.14 (−1.35, 1.63) 0.11 (−1.37, 1.59) 0.948

FLI ¶

Crude model 0 REF. −0.97 (−5.46, 3.52) −2.55 (−7.07, 1.98) 0.294
Adjusted model 0 REF. −1.39 (−5.97, 3.18) −2.54 (−7.10, 2.02) 0.346

Models were adjusted for sex, age, smoking status, marital status, physical activity, energy intake, and BMI.
* Adjusted for all variables except for sex and BMI. ¶ Adjusted for all variables except for BMI. Abbreviations:
ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; HSI, hepatic
steatosis index; FLI, fatty liver index; REF, reference.

2.3. Risk of Higher Liver Enzymes and Total Urine Resveratrol Metabolites

We tested the associations of total urine resveratrol metabolites and the risk of higher ALT (A),
AST (B), and GGT (C) levels (Figure 1). Cubic splines analyses indicated that participants who had
total urinary resveratrol concentration threshold had a lower odds ratio for liver enzymes above the
ULN. Urinary resveratrol metabolites concentration threshold: ALT (169.2 to 1314.3 nmol/g creatinine),
AST (559.9 to 893.8 nmol/g creatinine), and GGT (169.2 to 893.8 nmol/g creatinine).

Figure 1. Cont.
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Figure 1. The odds ratio for liver enzymes levels above the upper limit of normal (ULN) for total urine
resveratrol concentration in nmol/g creatinine. ULN range for ALT (men ≥ 30 UI/L, women ≥ 19 UI/L)
(A), AST (men ≥ 37 UI/L, women ≥ 31 UI/L) (B), and GGT (men ≥ 60 UI/L, women ≥ 40 UI/L) (C).
The smooth line represents the estimation of higher ALT, AST, and GGT levels when using zero as
the reference value for total urine resveratrol metabolite (4 knots for ALT and GGT; 3 knots for AST)
whereas the dashed lines indicate 95% CIs.

3. Discussion

In this research, higher urine concentrations of some resveratrol phase II metabolites (total sum of
trans-resveratrol-3-O-glucuronide, trans-resveratrol-4′-O-glucuronide, cis-resveratrol-3-O-glucuronide,
cis-resveratrol-4′-O-glucuronide, and trans-resveratrol-3-O-sulfate) have associated with favorable lipid
and liver markers in individuals diagnosed with MetS. Indeed, cubic spline models suggest that total
urinary resveratrol excretion was associated with a lower risk of higher levels of liver enzymes related
with increased risk of NAFLD (concentration threshold for ALT = 169.2 to 1314.3 nmol/g creatinine,
AST = 559.9 to 893.8 nmol/g creatinine and GGT = 169.2 to 893.8 nmol/g creatinine), even after
adjustment for potential factors. MetS components increase the risk of NAFLD development [2–4].
In general, our population had an abnormal metabolic profile as characteristic of MetS where women
showed higher cholesterol and LDL-c levels compared to men. Meanwhile, men exhibited higher levels
of ALT, AST, and FLI. Epidemiological studies evidenced that age and sex affect NAFLD prevalence [3].
Ageing involves changes in sex hormones levels, fat redistribution that increases the risk of CVD
and NAFLD, especially in post-menopausal women [30,31]. Healthy dietary patterns, such MedDiet,
include foods that not only might improve weight modulation, but also have several bioactive
compounds like (poly)phenols with anti-inflammatory and antioxidant properties, which show
beneficial metabolic effects [9,10,32,33]. Some molecules, such as anthocyanidins and resveratrol,
might involve in the metabolic process involved in NAFLD [15,29]. Scientific evidence suggested
that resveratrol is a multi-targeted compound for chronic diseases [21]. However, variations in the
study design, small samples sizes, diverse analytical methods, and other factors trigger heterogeneous
conclusions. Consequently, results should be interpreted cautiously [24,29,33,34]. Interestingly, our
findings showed that individuals in the highest tertile of total urinary resveratrol metabolites had lower
levels of triglycerides, VLDL-c and total cholesterol/HDL ratio compared with those in the lowest tertile.
Previously, the PREDIMED study (PREvención con DIeta MEDiterránea) evaluated the association
of cardiovascular risk factors and total urinary resveratrol metabolites [35]. Authors demonstrated
that increased urinary resveratrol excretions were associated with higher HDL-c, lower triglycerides
concentrations and decreased heart rate, but did not found associations with blood pressure [35].
While in our results, no differences were found in the HDL-c concentrations. The discrepancies between
our results related to the lipid metabolism could be partly explained for the T2DM status attributable to
the synergetic effects of anti-diabetic drug and resveratrol as well as lipid-lowering medication [28]. It
is important to mention that incidence of T2DM in our population was lower compared to Zamora et al.,
reported [35]. Moreover, when we adjusted the regression models considering lipid-powering
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and anti-diabetic treatment, our results did not change (data not shown). Another difference
between both studies is that we quantified slightly different resveratrol metabolites. We quantified
trans-resveratrol-3-O-glucuronide, trans-resveratrol-4′-O-glucuronide, cis-resveratrol-3-O-glucuronide,
cis-resveratrol-4′-O-glucuronide and trans-resveratrol-3-O-sulfate while Zamora-Ros et al. quantified
(trans-/cis-resveratrol-3-O-glucuronide, cis-resveratrol-4′-O-glucuronide, trans-/cis resveratrol-4′-O-
sulfate, trans-/cis resveratrol-3-O-sulfate). Furthermore, we used authentic glucuronide and sulfated
standards to quantify each metabolite. In contrast, Zamora-Ros et al. used the resveratrol aglycone
to quantify all glucuronide and sulfated metabolites, which can lead to errors in the quantification
of glucuronide and sulfated metabolites [36]. The lack of commercially available glucuronide and
sulfate resveratrol standards is still an issue that hampers advancements in the quantification of
total resveratrol metabolite. The lipophilic nature of resveratrol could facilitate the entry into the
surface of albumin and lipoprotein, and these properties could confer benefits on lipid profile,
avoiding the oxidation of LDL [28,37,38]. A study found that resveratrol metabolites, including
trans-/cis-resveratrol-3-O-glucuronide, and cis-resveratrol-3-O-glucoside, as well as free trans-resveratrol,
were incorporated into the LDL of human participants after intake of moderate red wine, which could
suggest the cardioprotective role of resveratrol on atherogenic markers and oxidative stress [37].
In line with our findings, a meta-analysis indicated that more prolonged resveratrol supplementation
(≥6 months) with doses ranged from 8.1 to 3000 mg/d might improve triglyceride levels in subjects with
T2DM [28]. However, in a prospective cohort study, Semba et al. did not find significant differences in
lipid profile and inflammatory cytokines across groups of total urinary resveratrol [39]. It is essential
to highlight that our participants had MetS, which are closely related to NAFLD due to deregulation
of the de novo lipogenesis (DNL), insulin resistance, and hepatic triglyceride accumulation [5,6].
Thus, these findings suggested that resveratrol could improve liver parameters. Several mechanisms
of resveratrol action on lipid metabolism include the activation of AMP-activated kinase (AMPK),
which inhibit sterol regulatory element-binding protein 1 (SREBP-1) activity, which plays a crucial role
in the DNL [28,40]. Moreover, the regulation of hepatic enzyme 3-hydroxy-3-methylglutaryl Coenzyme
A (HMG-CoA) related to cholesterol synthesis [38], and the overexpression of the paraoxonase 1 (PON
1) that it has shown cardioprotective effects [41]. In fact, disrupted SREBP-1 levels, increased HMG-CoA
expression and decreased PON 1 activity have evidenced in NAFLD promoting a dysregulation of lipid
metabolism [28,38,40,42]. This environment stimulates the accumulation of lipids into hepatocytes
(liver steatosis) increasing risk to develop NAFLD [7,43]. In the current study, there were no statistically
significant differences in glucose metabolism markers among tertiles of total urine resveratrol metabolite,
but so far the effect of resveratrol on glucose metabolism is unclear [44]. A randomized controlled
trial did not show significant effects in HOMA-IR and fasting glucose levels after four weeks of
supplementation with 150 mg of trans-resveratrol in subjects who were overweight [45]. In contrast,
a recent meta-analysis has shown that resveratrol supplementation (≥100 mg/d) might reduce levels
of insulin and glucose in individuals diagnosed with T2DM [27]. Regarding liver parameters, 46%
of the participants had ALT values above ULN, and higher total urinary resveratrol metabolites
were significantly associated with lower AST and GGT levels. We also observed in the cubic spline
analyses that total urinary resveratrol metabolite (concentration threshold) reduced the probability of
having higher liver transaminases (ALT, AST and GGT). In this respect, clinical trials studies focus
on resveratrol effects on NAFLD individuals are scarce with ambiguous results [46,47]. For instance,
Chen et al. showed that resveratrol supplementation (600 mg for 3 months) could decrease levels
of liver transaminases, LDL-c, total cholesterol and HOMA-IR in, but did not found a significant
reduction in liver steatosis. However, another study indicated that lifestyle changes focused on a
healthy diet and physical activity in addition to 500 mg/d (12 weeks) of resveratrol supplementation
only had beneficial effects on improvements in ALT levels and hepatic steatosis [48]. In contrast, a study
showed that insulin resistance markers and hepatic steatosis remained unchanged after resveratrol
supplementation [49]. Contrary to our study, Cachay et al. only included men in their study design.
In fact, it has suggested that stilbene glucuronidation is more efficient in women compared to men [50].
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Moreover, there are significant differences in the doses. Cachay et al. used up to 20 times higher the
amount compared to other research groups. In this sense, our contrasting results can be explained
by the fact that chronic higher resveratrol doses might promote saturation in absorption sites [51].
Our findings suggested that inter-individual heterogeneities might play a key role in the effectiveness
of resveratrol metabolites in individuals with MetS who are overweight or obese. However, it should
be noted that the studies, as mentioned above, are different in study design, populations, and several
other aspects that could potentially affect results and the interpretation of their conclusions.

There is a lack of epidemiological research in evaluating the effects of resveratrol from dietary
consumption and health outcomes [21,27,28,39]. On the other hand, the majority of clinical trials
assessed the effects of resveratrol supplementation using diverse resveratrol dosage and frequency of
intake and heterogeneous treatment lengths. Therefore, it is difficult to interpret results and establish
an effective dose and treatment, especially for the use of higher amounts, which is not applicable
in a normal dietary context. Resveratrol is mainly found in wine, grapes, and grape juice [18,52,53].
In our data, wine consumption was correlated with urinary resveratrol metabolites (data not shown).
However, resveratrol content can vary in the same type of fruit, climate, and grape variety for
wine [53,54]. The bioavailability of resveratrol is poor, resulting from low water solubility (<0.05 mg/)
that can vary according to the matrix (wine, grapes, supplements, others) [20,24,54]. Rotches-Ribalta et
al. evaluated resveratrol metabolites profiles after a moderate intake of red wine and grape extract
tablets in healthy men [20]. Investigators found differences in the quantification of some resveratrol
metabolites due to the different resveratrol composition of both sources [20]. A large number of
human and animal studies suggested that bioactive phytochemicals have therapeutic effects on chronic
diseases, but several factors may affect their biological response [19,25]. The main determinants
of inter-individual variation could be attributed to the gut microbiota, sex, age, lifestyle, genetics,
and others [25]. In this line, it seems essential to consider that resveratrol metabolites could have
beneficial effects on specific population groups, where inter-individual variances in their metabolism
could confer to these discrepancies [21,25,27,28,39]. Consequently, conflicting views about the effect on
the metabolic profile of resveratrol in a supplementation or food form are still unclear.

Current recommendations for NAFLD prevention, treatment, and follow-up encourage lifestyle
modifications to focus on habitual physical activity and healthy dietary patterns. From a dietary point
of view, it is a challenge to promote healthy diets focused on foods with high content in bioactive
compounds. The MedDiet could be a preferable option to be considered since its dietary components
are rich in antioxidants, which are pivotal factors for the prevention and management of NAFLD [9–15].
In this context, well-design epidemiological and clinical trial studies to investigate the effects of dietary
resveratrol on health outcomes are crucial.

The strength of this study is the large sample size of patients with detailed clinical and biochemical
data. Moreover, the use of metabolomics has been considered a reliable and innovative technique
for food science and precision nutrition studies [8]. In the present study, we performed an analytical
method to accurately identify and quantify resveratrol metabolites using authentic standards. However,
our study has some limitations. First, for total urine analyses, not all phase II metabolites were included,
and we did not use glucosides and gut microbial metabolites, which can lead to underestimation
of total resveratrol metabolite levels and, therefore, influence our conclusions. Hence, data are not
representative of total resveratrol intake, and we included the main resveratrol phase II metabolites
reported in human studies [20,21,53] and also considering the limited availability of authentic standards.
Second, liver biopsy was not performed for diagnosing NAFLD participants. In this sense, non-invasive
markers were acceptable to identify patients with metabolic features at risk of developing NAFLD [4,55]
Finally, this study has a cross-sectional design, and the findings cannot infer causality. Likewise,
results cannot be generalized to other ethnic or age groups, because the participants were elderly
diagnosed with MetS at high CVD risk. However, type I and II errors cannot be discarded, despite that,
the results are plausible and with clinical relevance.
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4. Materials and Methods

4.1. Study Population

Participants were volunteers from the PREDIMED-Plus study, a parallel-group multi-center
randomized trial (https://www.predimedplus.com/). Details of the study design have been previously
described [56]. In brief, PREDIMED-Plus study was designed to investigate the effects of an
energy-reduced Mediterranean diet and a weight-loss intervention by the promotion of physical activity
and behavioral support on cardiovascular endpoints [57]. Individuals were men and women (65 to
75 years) who were overweight or obese and met at least three components of the MetS [58]. The study
excluded participants with excessive alcohol consumption or addiction, several medical conditions
(active cancer or history of malignancy, history of previous CVD, cirrhosis or liver injury, cytotoxic
agents, therapy with immunosuppressive drugs, or treatment with systemic corticosteroids [56].
All participants gave their informed consent to participate in the study. This clinical trial was conducted
following the Declaration of Helsinki, and the protocol was approved by institutional ethics committees
of all participant centers (http://www.isrctn.com/ISRCTN89898870). This study is a cross-sectional
study using baseline database from the Navarra-Nutrition node. A total of 266 participants with
feasible data in the form of spot urine specimen were included in the present study.

4.2. Sociodemographic, Clinical, Anthropometric, and Body Composition Variables

Sociodemographic characteristics, lifestyle data, and medical history were collected during the
baseline interview according to the study protocol [56]. Smoking habit was classified into never,
former, and current smoker. Diabetes was defined according to the criteria of the American Diabetes
Association guidelines [59]. Anthropometric variables were measured by trained dietitians using
standardized procedures and calibrated equipment [56]. Height (in centimeters) and weight (in
kilograms) were measured to calculate body mass index (BMI) (kg/m2). Visceral fat mass was estimated
using the dual-energy X-ray absorptiometry (Lunar iDXA™, software version 6.0, Madison, WI, USA)
performed by trained study staff. We used a validated Registre Gironi del Cor (REGICOR) questionnaire
to assess physical activity (Metabolic Equivalent of Task (MET)-minute/week, as described in detail
elsewhere [60–62].

4.3. Dietary Record

A validated 143-item semi-quantitative food frequency questionnaire was administered in a face
to face interviews by a trained nutritionist to explore dietary intake over the previous 12 months [63].
Furthermore, adherence to MedDiet was assessed by a 17-point score questionnaire, which is a version
of the 14-point score performed in the PREDIMED study [56,64,65]. The 17-point score questionnaire
includes additional questions to the 14-point score and more restrictive cut-offs for some caloric-dense
foods [56,65].

4.4. Urine and Plasma Collection, and Biochemical Determinations

The first spot urine was taken in the morning, and blood samples were obtained after 12 h overnight
fasting. Biological specimens were stored frozen at a −80 ◦C according to approved protocols by trained
technicians [56]. Biochemical analyses including glucose, hemoglobin A1c (HbA1c), triglyceride,
HDL-c, total cholesterol, ALT, and AST were performed on fasting plasma by using specific kits
according to manufacturer’s protocols [56]. The insulin was measured using specific ELISA kits in a
Triturus autoanalyzer (Grifols, Barcelona, Spain). The Friedewald formula was used to calculate LDL-c
and the VLDL-c [66].

https://www.predimedplus.com/
http://www.isrctn.com/ISRCTN89898870
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4.5. Urine Resveratrol Metabolites Measurements

Standards of trans-resveratrol-3-O-glucuronide, trans-resveratrol-4′-O-glucuronide, cis-resveratrol-
3-O-glucuronide, cis-resveratrol-4′-O-glucuronide, and trans-resveratrol-3-O-sulfate were obtained from
Toronto Research Chemicals (Toronto, ON, Canada). The resveratrol metabolites were extracted and
quantified using a modified method developed by Feliciano et al. (2016) [67]. The analytical method was
validated according to the Food and Drug Administration (FDA) guidelines. Briefly, 600 µL of diluted
urine samples (urine:water, 1:10) were thawed on ice and centrifuged at 15,000× g for 15 min at 4 ◦C.
Then the supernatant (350 µL) was transferred to a microtube and acidified with 4% phosphoric acid.
The mixture (600 µL) was loaded onto Oasis 96-well reversed-phase hydrophilic-lipophilic balanced
(HLB) sorbent µ-SPE plates (Waters, Eschborn, Germany) and eluded with 60 µL of methanol after
washing. Isotope labelled standards (±)-Catechin-2,3,4-13C3 (0.54 mg/mL, Sigma-Aldrich, Steinheim,
Germany) and ferulic acid-1,2,3-13C3 (0.99 mg/mL, Sigma-Aldrich, Steinheim, Germany) were spiked
in samples before µ-SPE to indicate the recovery rate. Taxifolin (0.25 mg/mL, Sigma-Aldrich, Steinheim,
Germany) were used as internal standard. The identification and quantification of resveratrol
metabolites was performed on a Shimadzu Triple Quadrupole Mass Spectrometer (LCMS8060,
SHIMADZU, Kyoto, Japan) through an electro-spray interface (ESI) source. Eluded samples (5 µL)
were injected through a Raptor Biphenyl column 2.1 × 50 mm, 1.8 µm (Restek, Bellefonte, PA, USA)
with a compatible Raptor Biphenyl Guard Cartridges 5 × 2.1 mm (Restek, Bellefonte, PA, USA) in
the UPLC system. The mobile phases consisted of solvent A: water (HPLC grade, Sigma-Aldrich,
Steinheim, Germany) with 0.1% formic acid (LC-MS grade, Thermo Fisher Scientific, Loughborough,
UK), and solvent B: acetonitrile (HPLC grade, Sigma-Aldrich, Steinheim, Germany) with 0.1% formic
acid. A fourteen-minute gradient joined by a two minutes equilibration was applied to the run under
a flow rate of 0.5 mL/min at 30 ◦C. The gradient was as follows (t(min), %B): (0, 1), (1, 1), (4, 12),
(8, 12) (8.1, 15), (11, 15), (11.5, 30), (12, 99), (14, 99), (14.1, 1), (16, 1). The MS/MS parameters and
transitions of the target compounds were obtained in optimization run. The resveratrol metabolites in
samples were identified by comparing retention times with standards in corresponding to the multiple
reaction monitoring (MRM) transitions and quantified by calibration curves made from standard
mixes. One pair of isomers cis-resveratrol-3-O-glucuronide and cis-resveratrol-4′-O-glucuronide were
quantified together as they appear in the same retention time. The identification of each metabolite
was based on retention time of its corresponding pure standard following the same conditions and
reference ion ratios based on the MS optimizations. Urinary resveratrol metabolites were normalized
for urine creatinine concentrations.

4.6. Glucose Homeostasis and Liver Markers Measurements

Glucose homeostasis markers, such as insulin resistance and insulin sensitivity, were calculated
using the homeostasis model assessment for insulin resistance (HOMA-IR) [68], as well as the
homeostasis model assessment for β-cell function (HOMA-%B) [69], the fasting glucose insulin ratio
(FGIR) [70], and the fasting insulin resistance index (FIRI) [70]. Moreover, non-invasive liver markers
such as the hepatic steatosis index (HSI) [55,71] and the fatty liver index (FLI) [72] were also determined
estimated considering clinical, biochemical and anthropometric data. Formulas followed for all these
determinations were as follows:

HOMA− IR = Insulin(mU/L) ∗ glucose (mmol/L)/22.5

HOMA−%B = Insulin(mU/L)/glucose (mmol/L) − 3.5

FGIR = glucose (mmol/L)/Insulin(mU/L)

FIRI = Insulin(mU/L) ∗ glucose (mmol/L) /25

HSI = 8×ALT/AST ratio + BMI (+2, if diabetes; +2, if female)
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FLI =
e0.953×log (triglycerides)+0.139×BMI+0.718×log (GGT)+0.053×waist circumference−15.745

1 + e0.953×log (triglycerides)+0.139×BMI+0.718×log (GGT)+0.053×waist circumference−15.745
× 100

4.7. Statistical Analysis

Descriptive statistics were shown as means and standard deviation (SD) for continuous variables,
and n (%) for categorical variables. A chi-squared test for categorical variables and Student’s t-test
were used to compare baseline characteristics of participants by sex. Participants were categorized
according to tertiles of some urinary resveratrol phase II metabolites excretion (T1 = ≤4.6 nmol/g;
T2 = >4.6 to 58.1 nmol/g; T3 = >58.1 to 2481.3 nmol/g creatinine). Unadjusted and adjusted linear
regression models were used to analyze the relationship between total urine resveratrol metabolite
and cardiometabolic profile and NAFLD risk markers.

The normality of the residuals was tested in order to assess the validity of the regression models.
Variables such as triglycerides, Triglyceride/HDL ratio, ALT, AST, and GGT were markedly skewed
and were log-transformed. Linear regression analysis was adjusted for sex (except for covariates
that include sex), age, smoking status (never, former, current), marital status (single, married, widow,
divorced, separated, others), physical activity (MET-min/week), energy intake (kcal/d), and BMI (except
for covariates that include BMI). Tests of linear trend were performed assigning the median value of
each tertile of total resveratrol urine metabolite and then using it as a continuous variable.

We applied flexible cubic spline models to evaluate the association of total urinary resveratrol
metabolites (continuous variable) with liver enzymes above the ULN. For ALT (men ≥ 30 UI/L, women
≥ 19 UI/L) [73], AST (men ≥ 37 UI/L, women ≥ 31 UI/L) [74], and GGT (men ≥ 60 UI/L, women ≥
40 UI/L) [75]. Models were adjusted by all variables previously mentioned except for sex and included
total sleeping hours (h/d). In the cubic spline analysis for total urinary resveratrol metabolites, we used
0 as a reference, with 4 knots (ALT and GGT) and 3 knots (AST). Statistical tests were two-tailed,
and the significance level was p < 0.05. All statistical analyses were conducted with STATA version
16.0, StataCorp LP, College Station, TX, USA.

5. Conclusions

Current data showed that high urinary levels of some resveratrol phase II metabolites were
associated with better blood lipid profile and liver enzymes in individuals diagnosed with MetS.
Moreover, urinary resveratrol concentration threshold is associated with a reduced risk of higher
liver enzymes. These results suggested that some resveratrol metabolites might have associated with
benefits on risk factors linked to NAFLD development. Further studies are warranted to elucidate the
impact and effectiveness of resveratrol in liver outcomes in individuals with MetS.
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