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Background. Drug-target interaction is key in drug discovery, especially in the design of new lead compound. However, the work
to find a new lead compound for a specific target is complicated and hard, and it always leads to many mistakes. Therefore
computational techniques are commonly adopted in drug design, which can save time and costs to a significant extent. Results. To
address the issue, a new prediction system is proposed in this work to identify drug-target interaction. First, drug-target pairs are
encoded with a fragment technique and the software “PaDEL-Descriptor.”The fragment technique is for encoding target proteins,
which divides each protein sequence into several fragments in order and encodes each fragment with several physiochemical
properties of amino acids. The software “PaDEL-Descriptor” creates encoding vectors for drug molecules. Second, the dataset
of drug-target pairs is resampled and several overlapped subsets are obtained, which are then input into kNN (𝑘-Nearest Neighbor)
classifier to build an ensemble system. Conclusion. Experimental results on the drug-target dataset showed that our method
performs better and runs faster than the state-of-the-art predictors.

1. Introduction

The knowledge of biological targets is key to find new
medications where the inventive process is drug design [1].
Most drugs binding to specific proteins activate or inhibit
various functions with the change of proteins’ biochemical
and/or biophysical activities [1–3]. Before designing a drug,
some properties of the drug are required to the rational drug
design, such as binding affinity, bioavailability, metabolic
half-life, and side effects. It is a hard work to obtain these
properties accurately. Therefore more attentions are being
focused on selecting candidate drugs whose physicochemical
properties can be predicted more easier than those of the
drug. The former can more likely lead to an approved drug
with fast rapid and simplified processes. However, synthe-
sizing a drug candidate involves three issues that should be
addressed [1, 2]. First, the way to finding drug effects to
different people [3–5] and the biological interaction pathways

of the drug effects in human beings [6] are the two important
issues. Moreover, since drug discovery is very complicated,
the number of new drug approvals is quite low per year. Com-
putational methods are more and more commonly used to
design drugs in complementwith in vitro experiments, where
the identification of drug-target interactions is important in
finding potential candidate drugs.

Nowadays, many computational methods have been
developed to identify drug-target interactions (DTIs). Chen
et al. proposed for the first time a “GO and KEGG enrich-
ment score” method to represent the certain category of
drug molecules by constructing a benchmark database [7].
Rarey et al. presented an automatic method for docking
organic ligands into protein binding sites, which combined
an appropriate model of the physicochemical properties of
the dockedmolecules with efficientmethods for sampling the
conformational space of ligands [8]. Cheng et al. proposed
a model-based approach using basic biophysical principles
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Table 1: The details of the drug-target dataset.

Dataset Drugs Targets Positive pairs Negative pairs Total pairs
Enzymes 419 643 2719 5438 8157
Ion channels 203 198 1372 2744 4116
GPCRs 217 92 620 1240 1860
Nuclear receptors 53 25 86 172 258
In total 892 958 4797 9594 14391§
§The total number of drug-target pairs in the four datasets.

to predict small-molecule druggability based solely on the
crystal structure of target binding sites, which quantita-
tively estimated the maximal affinity achievable by a drug-
like molecule, where the calculated values are correlated
with drug discovery outcomes [9]. Zhu et al. proposed a
probabilistic model, called mixture aspect model (MAM),
with an algorithm for estimating its parameters to mine the
relationship of “chemical compound-gene” [10]. Moreover,
Chen et al. proposed a prediction method based on Nearest
Neighbor Algorithm and a novel metric which combined
compound similarity and functional domain composition. It
concluded that the combination of compound similarity and
functional domain composition is very effective in the drug-
target interaction prediction [11].

Some methods combined information of chemical struc-
ture, genomic sequence, and 3D structure information to
predict drug-target interaction networks [12, 13]. Wang et al.
first collected drug pharmacological and therapeutic effects,
drug chemical structures, and protein genomic information
to characterize the DTIs and then proposed a kernel-based
method to predict DTIs by integrating multiple types of data
[14]. Other methods developed machine learning methods
focusing on HIV protease cleavage site prediction [15], iden-
tification of GPCR (G protein-coupled receptors) type [16],
protein subcellular location prediction [17, 18], membrane
protein type prediction [19], and a series of relevant web-
server predictors as summarized in a review [20].

Most recently, researchers proposedmanymachine learn-
ingmethods to identify DTIs. Yuan et al. proposed an ensem-
ble method that combined multiple well-known similarity-
basedmethods to predict DTIs [21]. Ba-alawi et al. developed
an efficient drug-target prediction method, called DASPfind,
that used simple paths of particular lengths inferred from
a graph to describe DTIs, similarities between drugs, and
similarities between the protein targets of drugs [22]. More-
over, Nascimento et al. proposed a multiple kernel learning
algorithm to investigate drug-target bipartite networks and
automatically selected the more relevant kernels by return-
ing weights indicating their importance in the drug-target
prediction at hand [23]. Liu et al. proposed a neighborhood
regularized logistic matrix factorization (NRLMF) for DTI
predictions. The NRLMF method modelled the probability
that a drug would interact with a target by logistic matrix
factorization, where the properties of drugs and targets are
represented by drug-specific and target-specific latent vec-
tors, respectively [24]. Recently, Hao et al. proposed a dual-
network integrated logistic matrix factorization (DNILMF)

algorithm to predict potential DTIs, which encoded drugs
and targets by inferring new drug/target profiles, construct-
ing profile kernel matrix, diffusing drug profile kernel matrix
with drug structure kernel matrix, and diffusing target profile
kernel matrix with target sequence kernel matrix as well [25].

In this work a new prediction system is proposed to
identify drug-target interactions. First, drug-target pairs are
encoded with a fragment technique and the adopted software
“PaDEL-Descriptor.”The fragment technique is for encoding
target proteins, which divides each protein sequence into
several fragments in order and encodes each fragment with
several physiochemical properties of amino acids. The soft-
ware “PaDEL-Descriptor” creates encoding vectors for drug
molecules. Second, the dataset of drug-target pairs is resam-
pled and several overlapped subsets are obtained, which are
then input into kNN (𝑘-Nearest Neighbor) classifiers to build
an ensemble system. Experimental results on the drug-target
dataset showed that our method performs better and runs
faster than the state-of-the-art predictors.

2. Methods

2.1. Datasets. To compare with other methods, datasets in
[13] were adopted for the drug-target predictions in this
study. The datasets contained 4797 drug-target pairs with
experimental information, of which 2719 are for enzymes,
1372 for ion channels, 630 for GPCRs, and 86 for nuclear
receptors. These datasets are used as the positive ones in this
work. To build the drug-target predictor, negative datasets
were also selected as in [13]. The selection steps in the
reference are (1) separating the pairs in the above positive
dataset into single drugs and proteins, (2) recoupling these
singles into pairs in a way that none of them occurs in the
corresponding positive dataset, and (3) randomly picking the
negative pairs thus until they reached the number, two times
as many as the positive pairs. The nondrug-target interaction
pairs are also divided in terms of protein target family. Finally,
the negative datasets contain 9594 drug-target pairs, of which
5438 are for enzymes, 2744 for ion channels, 1240 for GPCRs,
and 172 for nuclear receptors. In total, the positive-negative
datasets contain 8157, 4116, 1860, and 258 pairs for enzymes,
ion channels, GPCRs, and nuclear receptors, respectively.
Table 1 lists the details of the four datasets.

2.2. Feature Encoding for Target Protein. To encode target
protein, 554 physicochemical properties of amino acids from
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Figure 1: Feature encoding for target proteins. From a target protein, the amino acid composition of segments can be obtained; for example,
residue “L” appears four times in the first segment of the sequence and residue “V” three times in the 10th segment.

AAindex1 dataset were used. After the use of principal com-
ponent analysis (PCA), the number of principal components
𝑁PCA that contribute 97.54% of instance variance is obtained,
where 𝑁PCA = 7 for example. Each principal component
of amino acid property is a vector with dimensions 1 × 20,
noted as AAP = {AAP�푚}, 𝑚 = 1∼20. For target protein
TP�푖 with sequence length Len, its sequence is divided into
𝑁frag fragments (denoted as, e.g., 𝑁frag = 10) with roughly
the same numbers of amino acids from the N-terminal to
C-terminal of the sequence, that is, INT(Len/𝑁frag). For 𝑗th
fragment, 𝑗 = 1∼𝑁frag, 20 types of amino acids are counted;
that is, AA�푗�푛, 𝑛 = 1∼𝑁AA, where 𝑁AA is for 20 types of amino
acids.Thedot product between the property vectorAAP�푙, 𝑙 =
1∼𝑁PCA, of 𝑙th principal component and the amino acid com-
position AA�푛�푗 of the 𝑗th fragment yields the score of amino
acid property composition TP�푙,�푛�푗 = AAP�푙 ⊙ AA�푛�푗 . Therefore,
the encoding vector for the 𝑗th fragment is denoted as TP�푗 =
{TP�푙,�푛�푗 }. Concatenating the ten fragments yields the final

encoder vector TP�푖 = {TP�푙,�푛�푗 }|�푁PCA �푁frag �푁AA
�푙=1 �푗=1 �푛=1

, where𝑁AA means
the number of amino acid types 𝑁AA = 20, for the 𝑖th whole
protein sequence.The vector is thenwith dimensions 1×1400.
The encoding scheme for target protein is shown in Figure 1.

2.3. Feature Encoding for Drug Molecule. To encode drug
molecule, PaDEL-Descriptor software was adopted. “PaDEL-
Descriptor” can calculate molecular descriptors and finger-
prints for small molecules. Molecular descriptors are the
way that transformed the real bodies of molecules into
numbers, which can be then evaluated by computer and
play a fundamental role in chemistry and other fields. They
are traditionally divided into two main categories: exper-
imental measurements and theoretical molecular descrip-
tors. The former category contains log𝑃, molar refractivity,
dipole moment, polarizability, and physicochemical proper-
ties, while the latter one can be derived from a symbolic
representation of molecules.

Currently the software creates 1D (i.e., atom count, bond
count, chi cluster, and hybridization ratio), 2D (i.e., graph
invariants), and 3D (i.e., size, steric, surface, and volume
descriptors) molecular descriptors and 10 types of finger-
prints [26]. In this work, 55 types of 1D and 2D descriptors
were used after removing salt and detecting aromaticity
information from a molecule. Among these descriptor types,
atom type electrotopological state and autocorrelation are
the most significant ones during the used descriptors. The
atom type electrotopological state consists of 489 descriptors
that combines both electronic and topological characteristics
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of the analyzed molecules [27]. For each atom type in a
molecule, the descriptors are catenated and can be used in
a group contribution manner. The type of autocorrelation
consists of 346 descriptors that encode not only the structures
ofmolecules but also numerical properties assigned to atoms,
proposed by Moreau and Broto [28].

In this study, 1444 descriptors of 1D and 2D types are used
to encode drug molecules. So the 𝑖th drug candidate can be
formulated as 𝐷�푖 = [𝐷�푖�푗]�푇|1444�푗=1 . For the 𝑖th pair of drug-target,
DT�푖, whose target is encoded by the principal components of
AAindex1 property AAP, it can be catenated and formulated
as a (1444 + 1400)-D input vector given by

𝑉�푖,AAP = [𝐷�푖,TP�푖]�푇

= [𝐷�푖1, 𝐷�푖2, . . . , 𝐷�푖1444, [TP�푙�푗,�푛]
�푁PCA �푁frag �푁AA

�푙=1 �푗=1 �푛=1
]
�푇

,
(1)

where 𝑁PCA, 𝑁frag, and 𝑁AA denote the numbers of top prin-
cipal components, protein sequence fragments, and amino
acid types, respectively. Here 𝑁PCA = 7, 𝑁frag = 10, and
𝑁AA = 20, for example.

The corresponding target value𝑇�푖 of the instance𝑉�푖,AAP is
1 or 0, denoting whether the drug-target pair is in interaction
or not. Actually, our method expects to learn the relationship
between input matrix 𝑉AAP and the corresponding target
array 𝑇, and it tries to make the outputs of classifier as close
to the target array 𝑇 as possible, where AAP denotes the
irrelevant AAindex1 property the targets are encoded by.

2.4. Ensemble Classifier by Subspace Seperation of Input
Instances. To build a classifier system for the drug-target
prediction, the feature space of drug-target instances is
separated into several subspaces. For encoding target protein,
the use of each principal component of amino acid properties
yields features Ft�푖, 𝑖 = 1∼𝑁PCA, with dimensions 20 ×
10 = 200, while, for drug molecule, approximately 206
(≈1444/𝑁PCA, 𝑁PCA = 7) features Fd�푗, 𝑗 = 1∼𝑁PCA, are
selected in order from the 1D and 2D feature descriptors.
A drug-target pair is encoded by one principal component’s
subfeatures Ft�푖 and one subset of 1D and 2D descriptors Fd�푗
as 𝐹dt = [Ft�푖 Fd�푗] , 𝑖, 𝑗 = 1∼𝑁PCA. There are totally 7 × 7 =
49 feature subsets when 𝑁PCA = 7, each of which is with
dimensions 200 + 206 = 406. The reason of using 7 subsets of
1D and 2D feature descriptors is for balancing the encoding
features of target proteins and those of drugs. Pairs of drug-
targets with one subset of 406 features are input into classifier
system to identify drug-target interactions.

The classifier system adopted kNN algorithm to imple-
ment the drug-target prediction. In the case of classification,
kNN classifies an object to the most common class among
its 𝑘-Nearest Neighbors by a majority vote, where 𝑘 is a small
positive integer. It always assigns weights to the contributions
of the neighbors of the object, that is, assigning a weight
of 1/𝑑, where 𝑑 is the distance between the object and the
neighbor. The neighbors are taken from the training set of
objects for which the class is known.

Given drug-target pairs (𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋�푛, 𝑌�푛)
taking values in feature space 𝑅406, where 𝑌 is the class label
of 𝑋, let 𝐹dt = [Ft�푖 Fd�푗] , 𝑖, 𝑗 = 1∼𝑁PCA, be the feature
subset of drug-target pairs, where 𝑗 and 𝑖 are the subset of
drug feature descriptors and that of target features. Training
the kNNclassifier by drug-target pairs with features𝐹�푖,�푗dt yields
results knn(𝑋�푖,�푗 | 𝑌). After all of the kNN classifiers are
generated, they vote for the most popular class and thus the
prediction of the ensemble is

Pred (𝑥) = majority vote {knn (𝑋�푖,�푗 | 𝑌)}
�푁PCA

�푖,�푗=1
, (2)

where 𝑥 is a query instance.
Previous results showed that the majority vote with inde-

pendent classifiers can often make a dramatic improvement
[29, 30]. Here a pair of drug-target is labelled as interacting if
all of the classifiers identified it as positive class 1; otherwise
it is identified as nondrug-target interaction.The flowchart of
the ensemble system can be seen in Figure 2.

2.5. Drug-Target Interaction Prediction Evaluation. In this
workwe adopted four evaluationmeasures to show the ability
of our model objectively, criteria of recall (Rec), precision
(Prec), 𝐹-measure (𝐹1), Matthews correlation coefficient
(MCC), and accuracy (Acc) [31–33]. They are defined as
follows:

Rec = TP
TP + FN

,

Prec = TP
TP + FP

,

Acc = TP + TN
TP + FN + FP + FN

,

MCC

= TP × TN − FP × FN
√(TP + FP) (TP + FN) (TN + FP) (TN + FN) ,

𝐹1 = 2 × Prec × Sen
Prec + Sen

,

(3)

where TP (true positive) is the number of correctly predicted
drug-target pairs, FP (false positive) is the number of false
positives (incorrectly overpredicted nondrug-target pairs),
TN (true negative) is the number of correctly predicted
nondrug-target pairs, and FN (false negative) is false negative,
that is, incorrectly underpredicted drug-target pairs.

3. Results

In the paper, we adopted kNN algorithm to complete the
drug-target interaction predictions. In the use of kNN, for the
number of neighbors num�퐾, we adopted the implementation
of WEKA software which used cross-validation technique
to find the best number of neighbors. It trained input
instances to find which number of neighbors yields the best
performance. The trained neighboring number num�퐾 was
then applied to test the test dataset.
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Figure 2: The flowchart of the ensemble system for the drug-target prediction. It illustrates the system for the 7 top principal components.
The “PCA 1” denotes the features of protein targets created by the first top principal component, while the “𝐷1 1∼206” means the first feature
group of drugs from 1 to 206 created by the “PaDEL” software. Each feature group consists of the roughly same number of features.Therefore
each instance is composed of one “PCA” feature group and one “PaDEL” feature group. In total, there are 49 combinations for the case of the
7 top principal components.

Moreover, We used the 7 PCAs in this work because the
top 7 components account for themost of instance variance of
the 544 amino acid properties, up to 97.54%.The 10 fragments
of a protein sequence are adopted corresponding to the
number of 1D and 2D descriptors. We used approximately
the same numbers of features for drugs and target proteins
due to the balance of their effects to classifier. That is to say,
if we use 5 fragments of protein sequence, the number of
PCAs is suggested to be set as 14 (then the total number
of features for protein targets is 5 × 14 × 20 = 1400), 15
fragments are corresponding to 5 PCAs (then the number of
features for targets is 15 × 5 × 20 = 1500), and 4 fragments
are corresponding to 19 PCAs (1520 features). All numbers of
features for targets are approximately the same as the number
of features for drugs (totally 1440). For details, please refer to
Table 4.

3.1. PCA Analysis of the AAindex1 Properties. In AAindex1
dataset, there are 544 amino acid properties. Most of them
are highly correlated. In order to extract the main proper-
ties from the dataset, PCA technique was adopted. In this
study, 7 top principal components are obtained first, which
account for 97.54% variance of the properties. Therefore the
7 components are retained and the others are ignored. The
other principal components account for only 2.46% variance.
Table 2 shows the 7 principal components.

3.2. Performance on Different Top Principal Components
of Amino Acid Properties. Drug-target interactions can be
commonly grouped in terms of target protein type: enzymes,

ion channels, GPCRs, and nuclear receptors. Our proposed
method is performed on the four individual types of drug-
target interactions. Instances in each interaction type are
divided into 10 subsets with roughly the same number of
instances, where one subset is used as test dataset 𝐷ts and
the remaining nine subsets are used as training dataset
𝐷tr, by 10-fold cross-validation technique. The test subset is
selected one by one and finally all of the instances are tested.
Meanwhile, the features of each instance consist of one “PCA”
feature group and one “PaDEL” feature group. Inputting the
instances into kNN classifier forms a predictor to identify
drug-target interactions.

For the case of GPCRs type, the instances encoded by
different pairs of drug-target feature groups are input into
kNN classifier. The prediction performance can be seen in
Table 3. From Table 3, the individual classifier encoded by
the third “PCA” group and the seventh descriptor group
performs better than others, under the estimation of “Acc,”
and the classifiers with the seventh descriptor group perform
the best. Moreover, it is interesting to show that the classifiers
encoded by the sixth principal component perform better
than those by other components.

Also, performance on different numbers of PCAs and
the corresponding numbers of fragments is investigated and
shown in Table 4. The number of fragments is changed with
the number of PCAs since the number of the corresponding
features for targets is approximately the same as that of fea-
tures for drugs (totally 1444 features).Therefore, the instances
encoded by the drug features and the target features are used
to build drug-target prediction classifier. From Table 4, the
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Table 2: PCA physicochemical property.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7
−82.02 357.18 −55.81 26.80 −18.23 26.74 19.30
−269.25 −276.13 −18.42 137.60 87.32 99.24 8.59
−280.14 −66.50 −85.96 −55.27 −74.70 20.86 −10.55
−134.57 −20.18 243.00 −95.26 −12.48 −25.00 91.83
460.62 102.96 214.88 −209.61 43.97 25.68 −69.26
−277.72 −209.13 −16.25 −51.29 −29.74 2.98 −27.24
−257.00 −101.24 150.56 3.46 −21.27 −7.72 49.92
−260.61 376.97 −105.75 −48.65 90.13 −27.93 32.63
−19.38 −257.49 −154.94 −98.92 26.61 59.15 −1.32
271.52 74.55 −81.98 58.23 −58.45 13.58 −28.15
220.12 203.29 −67.17 179.39 2.03 −26.37 0.92
−350.16 −77.85 212.57 185.66 3.86 −52.35 −99.21
316.33 −140.77 −70.95 −100.15 −67.87 1.04 −5.41
408.95 −30.29 −35.82 67.80 25.37 −5.40 2.90
−262.26 −30.49 −187.34 −151.98 44.89 −97.33 −38.50
−262.34 189.47 −44.11 −28.52 −38.51 40.75 −11.42
−44.89 112.74 155.45 −31.04 −11.86 13.72 12.65
467.95 −270.00 10.58 28.37 52.56 −36.18 31.41
125.11 −178.27 −76.35 104.42 −37.11 −62.19 42.52
229.75 241.19 13.81 78.94 −6.55 36.72 −1.62
51.01% 25.45% 10.09% 7.23% 1.40% 1.26% 1.10%
The last row denotes the variances the components account for.

model with 7 PCAs performed better than the model with
other number of PCAs in terms of the measure 𝐹1.

3.3. Performance of Ensemble System. Table 5 shows the
performance comparison of the ensemble system for the four
protein target classes. From Table 5, it can be seen that the
ensemble system tested on nuclear receptors class performs
better than those on other classes. It yields an accuracy of
0.921 and a precision of 0.856 at a recall of 0.916.

3.4. Comparison with Other Methods. On the same datasets,
our proposedmethod, called “DrugECs,” was compared with
othermethods, such as thework in [13], fourweb-servers, and
a random predictor. The performance comparison in terms
of the measure “accuracy” is shown in Table 6. Our method
yields accuracies of 0.918, 0.882, 0.863, and 0.921 for classes
of enzymes, ion channels, GPCRs, and nuclear receptors,
respectively. Our method achieves accuracy improvements
of 6.3% to 7.8% than the work [13] for the four drug-target
classes. Moreover, our method performs better than the four
web-servers: iEzy-Drug, iCDI-Drug, iGPCR-Drug, and iNR-
Drug. In comparisonwith the randompredictor, the accuracy
of our proposed method is increased more than twofold.

Furthermore, we also compared our method with other
methods based on another dataset. In [11], Chen et al.
proposed a prediction method based on Nearest Neighbor
Algorithm and a novel metric combining compound simi-
larity and functional domain composition. It was tested on
the database similar to that of our method. The difference
between the two datasets is in the fact that, in [11], the number

M
CC

Reference [11]
Ours

Enzyme Ion channel GPCR Nuclear receptor

0.349

0.356

0.465

0.464

0.611

0.655

0.647

0.587

Figure 3: Performance comparison of the two methods in MCC.

of negative pairs in each target class was around 50 times as
many as that of positive ones, while being only 2 times as that
of positive ones in our dataset. We compared our method
with the work based on the same dataset. Actually, since
the dataset is extremely imbalanced, the final performance
of drug-target interaction predictions is preferable to the
class with large instances, the negative class in this study.
The MCC can be a more suitable measure than Acc in
the evaluation of classifier performance. Figure 3 shows the
performance comparison of ourmethod and the work in [11].
From Figure 3, our method outperformed the work [11] for
the target classes of GPCR and enzyme, and it also performed
comparably to the work for the class of ion channel. For the
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Table 3: Prediction performance on GPCRs dataset for each pair of
drug-target feature groups by the use of kNN classifier.

PCA 𝐷�푖 Rec Acc Prec 𝐹1
1 1 0.988 0.349 0.337 0.503
1 2 0.895 0.419 0.353 0.507
1 3 0.988 0.349 0.337 0.503
1 4 0.988 0.357 0.340 0.506
1 5 0.581 0.628 0.455 0.510
1 6 0.930 0.411 0.354 0.513
1 7 0.314 0.709 0.628 0.419

Average 0.812 0.460 0.401 0.494
2 1 1.000 0.353 0.340 0.507
2 2 0.895 0.422 0.355 0.508
2 3 0.988 0.345 0.336 0.501
2 4 0.988 0.349 0.337 0.503
2 5 0.570 0.636 0.462 0.510
2 6 0.907 0.426 0.358 0.513
2 7 0.279 0.717 0.686 0.397

Average 0.804 0.464 0.411 0.491
3 1 0.988 0.349 0.337 0.503
3 2 0.942 0.391 0.348 0.508
3 3 0.988 0.349 0.337 0.503
3 4 0.988 0.349 0.337 0.503
3 5 0.500 0.632 0.453 0.475
3 6 0.930 0.419 0.357 0.516
3 7 0.419 0.736 0.667 0.514

Average 0.822 0.461 0.405 0.503
4 1 0.988 0.349 0.337 0.503
4 2 0.895 0.415 0.352 0.505
4 3 1.000 0.345 0.337 0.504
4 4 1.000 0.349 0.339 0.506
4 5 0.558 0.632 0.457 0.503
4 6 0.942 0.419 0.358 0.519
4 7 0.314 0.713 0.643 0.422

Average 0.814 0.460 0.403 0.495
5 1 0.988 0.357 0.340 0.506
5 2 0.895 0.415 0.352 0.505
5 3 0.988 0.349 0.337 0.503
5 4 0.988 0.349 0.337 0.503
5 5 0.570 0.609 0.434 0.492
5 6 0.930 0.407 0.352 0.511
5 7 0.419 0.686 0.537 0.471

Average 0.825 0.453 0.384 0.499
6 1 0.988 0.349 0.337 0.503
6 2 0.895 0.426 0.356 0.510
6 3 0.988 0.349 0.337 0.503
6 4 1.000 0.345 0.337 0.504
6 5 0.535 0.640 0.465 0.497
6 6 0.942 0.419 0.358 0.519
6 7 0.337 0.733 0.707 0.457

Average 0.812 0.466 0.414 0.499

Table 3: Continued.

PCA 𝐷�푖 Rec Acc Prec 𝐹1
7 1 0.988 0.349 0.337 0.503
7 2 0.930 0.403 0.351 0.510
7 3 1.000 0.357 0.341 0.509
7 4 0.988 0.349 0.337 0.503
7 5 0.570 0.628 0.454 0.505
7 6 0.965 0.403 0.355 0.519
7 7 0.302 0.713 0.650 0.413

Average 0.820 0.457 0.283 0.495

class of nuclear receptor, since the data subset is much small,
the prediction performance cannot fully represent the power
of methods in drug-target predictions although our method
performed worse than the work.

3.5. Discussion on the Top 7 Properties. Since the top 7
properties were created by the use of PCA technique on
AAindex1 dataset, they account for the main component
variance. When calculating the correlation between each
top component of PCA and each amino acid property in
AAindex1 dataset, the most correlated property in AAindex1
dataset was found for each top component of the PCA
calculation. Table 7 shows the most correlated properties to
the components of PCA. Data description of each AAindex1
amino acid property is also shown in Table 7.

In the most correlated AAindex1 properties, two are for
hydrophobicity property (the first one and the third one) and
two are for position-specific amino acid preferences in helices
(the fourth one and the sixth one). Another one is for free
energies of transferring amino acid side chains from vapor
to cyclohexane that are linearly related to their respective
surface areas, which is an experimental measure of their
susceptibility to attraction by dispersion forces.The other two
properties are the Kerr-constant increments, which can be
used in the conformational analysis of peptides and proteins,
and the correlation coefficient between the contact areas of
residues and their spatial positions from the centroids of the
best-fitting ellipsoids.These amino acid properties are impor-
tant for encoding protein sequence in that they represent
protein sequences by different environmental features. The
encoding schema aims to apply various statistic features to
recover real interactions among amino acid residues.

It is interesting to show the correlation coefficient of
the top PCA component and AAindex1 property. Figure 4
illustrates the biggest correlation coefficient of each PCA
component to AAindex1 properties and the variance of each
PCA component accounted for. From Figure 4, the top PCA
component has the biggest correlation coefficient. Moreover,
the bigger variance the PCA component contains, the bigger
correlation coefficient the component has. It suggests that
the trend of the correlation coefficients is in accordance with
that of the component variances for the AAindex1 dataset.
That is to say, for the case of the first principal component,
more properties in AAindex1 dataset can be projected into
the component and therefore it is more probable for the
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Table 4: Prediction performance on GPCRs dataset for different numbers of PCAs and feature groups by the use of kNN classifier.

PCAs Number of fragments Number of features‡ Rec Acc Prec 𝐹1
3 24 1440 0.670 0.873 0.930 0.793
5 14 1400 0.914 0.850 0.715 0.801
7 10 1400 0.985 0.863 0.712 0.827
15 5 1500 0.825 0.792 0.648 0.726
19 4 1520 0.631 0.846 0.871 0.732
‡The number of features for targets when using the top PCAs and the fragment of protein sequences.

Table 5: Prediction performance of the kNN ensemble classifier with majority vote technique. The ensemble system predicts a drug-target
pair to be interacting if all of kNN classifiers in the ensemble predict it to be interacting.

Dataset Target type Rec Acc Prec 𝐹1

Test‡
Enzymes 0.779 0.918 0.972 0.864

Ion channels 0.906 0.882 0.778 0.837
GPCRs 0.985 0.863 0.712 0.827

Nuclear receptors 0.916 0.921 0.856 0.885
‡Prediction on the test dataset ℵts.

Table 6: Performance comparison of our method with two works on the same datasets in terms of “Acc” measure.

Method Type Enzymes Ion channels GPCRs Nuclear receptors
DrugECs kNN 0.918 0.882 0.863 0.921
Reference [13] kNN 0.855 0.808 0.785 0.857
Web-servers 0.910a 0.873b 0.855c 0.892d

Random predictor 0.489 0.489 0.488 0.488
aSee [34] for the iEzy-Drug predictor and its reported success rates; bsee [35] for the iCDI-Drug predictor and its reported success rates; csee [36] for the
iGPCR-Drug predictor and its reported success rates; dsee [37] for the iNR-Drug predictor and its reported success rates.

Table 7: The most correlated properties in AAindex1 to the top component of PCA.

PCA AAindex1 Data description

1 NADH010104 Hydropathy scale based on self-information values in the two-state model (20% accessibility) (Naderi-Manesh
et al., 2001)

2 RADA880103 Transfer free energy from vap to chx (Radzicka-Wolfenden, 1988)

3 NADH010107 Hydropathy scale based on self-information values in the two-state model (50% accessibility) (Naderi-Manesh
et al., 2001)

4 RICJ880112 Relative preference value at C3 (Richardson-Richardson, 1988)
5 KHAG800101 The Kerr-constant increments (Khanarian-Moore, 1980)
6 RICJ880113 Relative preference value at C2 (Richardson-Richardson, 1988)
7 PRAM820103 Correlation coefficient in regression analysis (Prabhakaran-Ponnuswamy, 1982)
The first column denotes the top components in PCA calculation; the second column denotes the property accessions in AAindex1 dataset.

component to have bigger correlation coefficient to these
properties.

Moreover, the paper proposed amethod to identify drug-
target interactions only with the physicochemical properties
of amino acids from AAindex1. The reason of using physico-
chemical properties alone is in that it can extend the proposed
method to most cases of drug-target predictions. The model
with more functional and structural features may lead to
better performance than that with only physicochemical

properties, but it limited the applications of the structure-
based methods without the information of functional and
structural features for drug-target predictions.

4. Conclusions

This paper proposed an ensemble system integrating kNN
classifier with a novel feature encoding scheme to identify
drug-target interactions. The features of physicochemical
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Figure 4: Illustration of the biggest correlation coefficient of each
PCA component to AAindex1 properties and the variance of each
PCA component accounted for. In 𝑥-axis, number 1 is for the
first principal component while the height of green bar denotes
the biggest correlation coefficient between the component and
properties in AAindex1 dataset.The yellow bar denotes the variance
the component accounted for.

properties fromAAindex1 for targets and those of descriptors
for drugs are catenated for representing each drug-target
pair. The feature space for targets and that for drugs are
individually divided into 𝑁PCA = 7 subspaces in this
work. A pair of drug-target feature subspaces forms an input
dataset and then is input into a kNN classifier. The total
𝑁PCA × 𝑁PCA = 49 feature subspaces lead to 49 individual
kNN classifiers. The ensemble system performs the drug-
target interaction predictions. Experimental results on the
commonly used drug-target dataset showed that our method
performs better and runs faster than the state-of-the-art
predictors.
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multiple kernel learning algorithm for drug-target interaction
prediction,” BMC Bioinformatics, vol. 17, no. 1, 2016.

[24] Y. Liu, M. Wu, C. Miao, P. Zhao, and X.-L. Li, “Neighborhood
Regularized Logistic Matrix Factorization for Drug-Target
Interaction Prediction,” PLOS Computational Biology, vol. 12,
no. 2, Article ID 1004760, 2016.

[25] M. Hao, S. H. Bryant, and Y. Wang, “Predicting drug-target
interactions by dual-network integrated logistic matrix factor-
ization,” Scientific Reports, vol. 7, p. 40376, 2017.

[26] C. W. Yap, “PaDEL-descriptor: an open source software to
calculate molecular descriptors and fingerprints,” Journal of
Computational Chemistry, vol. 32, no. 7, pp. 1466–1474, 2011.

[27] L. B. Kier and L. H. Hall, “An Electrotopological-State Index for
Atoms in Molecules,” Pharmaceutical Research, vol. 7, no. 8, pp.
801–807, 1990.

[28] G. Moreau and P. Broto, “Autocorrelation of a topological
structure: A new molecular descriptor,” Nouveau Journal De
Chimie, vol. 4, pp. 359-360, 1980.

[29] P. Chen and J. Li, “Prediction of protein long-range contacts
using an ensemble of genetic algorithm classifierswith sequence
profile centers,” BMC Structural Biology, vol. 10, no. Suppl 1, p.
S2, 2010.

[30] L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W.
Duin, “Limits on themajority vote accuracy in classifier fusion,”
Pattern Analysis and Applications, vol. 6, no. 1, pp. 22–31, 2003.

[31] P. Chen and J. Li, “Sequence-based identification of interface
residues by an integrative profile combining hydrophobic and
evolutionary information,” BMC Bioinformatics, vol. 11, no. 1, p.
402, 2010.

[32] P. Chen, C. Liu, L. Burge et al., “DomSVR: Domain boundary
prediction with support vector regression from sequence infor-
mation alone,” Amino Acids, vol. 39, no. 3, pp. 713–726, 2010.

[33] B. Wang, P. Chen, D. Huang, J. Li, T. Lok, and M. R. Lyu, “Pre-
dicting protein interaction sites from residue spatial sequence
profile and evolution rate,” FEBS Letters, vol. 580, no. 2, pp. 380–
384, 2006.

[34] J. Min, X. Xiao, and K. Chou, “iEzy-Drug: A Web Server for
Identifying the Interaction between Enzymes and Drugs in
Cellular Networking,” BioMed Research International, vol. 2013,
Article ID 701317, 13 pages, 2013.

[35] X. Xiao, J. Min, P. Wang, and K. Chou, “iCDI-PseFpt: Iden-
tify the channel–drug interaction in cellular networking with
PseAAC and molecular fingerprints,” Journal of Theoretical
Biology, vol. 337, pp. 71–79, 2013.

[36] X. Xiao, J. Min, P. Wang, K. Chou, and S. Singh, “iGPCR-Drug:
A Web Server for Predicting Interaction between GPCRs and
Drugs in Cellular Networking,” PLoS ONE, vol. 8, no. 8, p.
e72234, 2013.

[37] Y. Fan, X. Xiao, J. Min, and K. Chou, “iNR-Drug: Predicting
the Interaction of Drugs with Nuclear Receptors in Cellular
Networking,” International Journal ofMolecular Sciences, vol. 15,
no. 3, pp. 4915–4937, 2014.


