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Characterizing Cancer Drug 
Response and Biological Correlates: 
A Geometric Network Approach
Maryam Pouryahya1,2, Jung Hun Oh2, James C. Mathews2, Joseph O. Deasy2 & Allen R. 
Tannenbaum1,3

In the present work, we apply a geometric network approach to study common biological features of 
anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by 
the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis 
can provide novel insights into drug response and cancer biology. We adopted a discrete notion of 
Ricci curvature to measure, via a link between Ricci curvature and network robustness established by 
the theory of optimal mass transport, the robustness of biological networks constructed with a pre-
treatment gene expression dataset and coupled the results with the GI50 response of the cell lines 
to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that 
are likely associated with individual drug response. For genes identified as important, we performed 
a gene ontology enrichment analysis using a curated bioinformatics database which resulted in 
biological processes associated with drug response across cell lines and tissue types which are plausible 
from the point of view of the biological literature. These results demonstrate the potential of using 
the mathematical network analysis in assessing drug response and in identifying relevant genomic 
biomarkers and biological processes for precision medicine.

In this paper, we propose the use of certain tools from discrete geometry to gain new insights into cancer drug 
response. For this purpose, we tested our methodology on a panel of 60 human cancer cell lines (NCI-60). It has 
been more than 30 years since the U.S. National Cancer Institute (NCI) established a human cell line panel for the 
purpose of discovering novel cancer drugs. The NCI-60 panel was designed to recast the previous murine-based 
drugs from leukemia treatment to the treatment of more diverse human solid tumors. This departure was due to 
the difference and diversity of the biology of human tumors from murine leukemia1. This panel was developed as 
part of the NCI’s Developmental Therapeutics Program (DTP, http://dtp.nci.nih.gov) to screen in vitro response 
to over 100,000 chemical compounds and natural products including FDA-approved anti-cancer drugs and those 
currently undergoing clinical trial. This ongoing service is accepting global submissions and continues screening 
up to 3,000 small molecules per year as potential anti-cancer therapies. The NCI-60 panel represents nine tumor 
types: leukemia, breast, central nervous system, colon, skin, lung, ovarian, prostate, and renal cancers. The NCI-
60 panel is thus an established tool for in vitro drug screening and has significantly improved the philosophy and 
research of human cancer drugs2. This panel has led to many important discoveries, including a general advance 
in the understanding of the mechanism of cancer and the action of drugs3,4. Moreover, comprehensive genomic 
data including transcript expression data, protein expression data, sequencing (mutation) data, DNA copy num-
ber, and methylation as well as drug screening data on the 60 cell lines make it a unique resource for system phar-
macogenomics and systems biology5. Most importantly for our work, this data resource enables us to explore both 
pre-treatment genomic data and drug responses of a notable number of FDA approved anticancer agents (~130) 
which is unmatched by any other cancer databases1.

We are interested in analyzing the gene interaction network for these cell lines via mathematical tools. In 
recent years, there have been tremendous efforts to elucidate the complex mechanisms of biological networks 
by investigating the interactions of different genetic and epigenetic factors. Given that gene/protein interactions 
inherently form a mathematical network, it is reasonable to expect that mathematical tools can facilitate a better 
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understanding of the complexities of such networks6. The methods and tools employed in network analyses are 
quite diverse and heterogeneous, ranging from graph theory for abstract representation of pairwise interactions 
to complicated systems of partial differential equations that try to capture all details of biological interactions. 
The ability to sequence and analyze genomes has revolutionized the diagnosis and treatment of diseases. With 
the exponential growth of genomic data, the need for improved mathematical methods to analyze the data is 
becoming even more prevalent. Here, we adopt a discrete mathematical notion of curvature defined on networks 
to study the robustness of gene interaction networks in response to drugs. We rank the effectiveness of anticancer 
drugs and find the biological processes in which the important genes are involved. The network based analysis 
of ‘omics’ allows identification of new disease genes, pathways and rational drug targets that were not easily 
detectable by isolated gene analysis. This study illustrates the use of a novel mathematical approach to networks to 
identify pertinent biological processes as well as effective drugs for the treatment of cancer.

The mathematical notions can be summarized as follows. Ricci curvature is a fundamental concept in 
Riemannian geometry; see7,8 for all of the details. Here, we use an analogous notion on discrete spaces, namely, 
Olivier-Ricci curvature9,10. The concept of curvature was initially introduced to express the deviation of a geomet-
ric object from being flat. The Riemann curvature tensor of such a manifold encodes key geometric properties 
and expresses the deviation from Euclidean (flat) space. The sectional curvature is defined on two-dimensional 
subspaces of the tangent planes, and Ricci curvature is the average of sectional curvatures of all tangent planes 
containing some given direction7. Interestingly, Ricci curvature also appears in optimal mass transport theory11,12, 
and serves as the motivation for certain discrete analogues. Indeed, on a Riemannian manifold, one can endow 
the space of probability densities with a natural Riemannian structure13,14 employing the 2-Wasserstein distance 
from optimal mass transport15. Thus, given the Riemannian-type metric, one can define a notion of geodesics on 
the space of probability densities. As noted by Lott-Sturm-Villani16–18, considering this Riemannian structure, one 
can relate the Ricci curvature of the underlying manifold, the entropy of densities along a given geodesic path, and 
the 2-Wasserstein distance in one remarkable formula (see our discussion below for the details). In conjunction 
with the Fluctuation Theorem19, we can conclude that increases in the Ricci curvature are positively correlated 
with increases in the robustness, herein expressed as ΔRic × ΔR ≥ 0. Following our previous work20–22, we are 
interested in finding important nodes (genes) within the network in terms of robustness.

Coupling the results of the network analysis with the drug growth inhibition values provides us with a 
network-based guide to the sensitivity/resistance of the tumor cell lines to these drugs. The hypothesis behind 
this idea is that robustness in the biological network contributes to tumor drug resistance, thereby enabling us to 
predict the effectiveness and sensitivity of drugs in the cell lines. Here, due to some missing values, we focus on a 
subset of 58 cell lines. The transcription expression data provided for these cell lines along with the gene-to-gene 
relationships enables us to construct a weighted network. Investigating this network and relating the information 
it provides to the drug response gives a novel insight into the NCI-60 database which has not been studied using 
a network mathematical approach before.

Our main results are based on the application of the aforementioned discrete notion of Ricci curvature to the 
network generated from the pre-treatment gene expression for all 58 cell lines. This notion allows us to identify 
possible targets for the anti-cancer drugs. For a given drug, we find the average Ricci curvature of the genes 
whose expressions are significantly correlated to the response of the drug. Using this we identify which part of 
the network is most correlated to a specific drug’s action. The average Ricci curvature for this subnetwork can 
act as a guide to the sensitivity/resistance of cell lines to the drug. Specifically, a higher degree of robustness for 
the subnetwork identifies resistance to the drug along the tested cell lines. We are also interested in the biological 
processes in which the significant genes of effective drugs are involved. This can help us to detect key biological 
processes associated with the drug response.

The results in the present work are all derived from the network analysis of the NCI-60 genomic information. 
In our work, we utilized geometric tools in discrete mathematics to better understand these complex networks. 
This point of view can help to elucidate important drug stratification and biomarkers, which in turn may allow 
researchers to glean new clinical information from the NCI-60 database.

Methods
Background on curvature.  In the present study, we employed an analogue of Ricci curvature to analyze 
cancer protein expression networks. In the classical continuous setting, the Ricci curvature tensor provides a way 
of measuring the degree to which the geometry determined by a given Riemannian metric differs from that of 
ordinary Euclidean space; see7 for all the details. We briefly sketch the main ideas to motivate the discrete defini-
tion applicable to the networks of interest.

Assume that M is a complete connected Riemannian manifold equipped with metric g. On such spaces, one 
has a notion of geodesic, namely curves which locally travel the shortest distance between points. Geodesics gen-
eralize the notion of straight lines in Euclidean space. Let x, y ∈ M be two very close points defining tangent vector 
(xy). Moreover, let ω be a tangent vector at x and ω′ be the tangent vector at y obtained by parallel transport of w 
along (xy).

Positivity for the Ricci curvature near x or y is characterized by the fact that the trajectories of the geodesics 
corresponding to ω and ω′ will approach each other. This can be compared to the situation of the traditional flat 
geometry of Euclidean space, where such geodesics are always equidistant from each other with their “direction” 
being unchanged by parallel transport. Equivalently, this positivity may be formulated by the fact that the average 
distance between two small geodesic balls is less than the distance of their centers. Ricci curvature along the direc-
tion (xy) quantifies this, averaged on all directions w at x. On the other hand, when the curvature is negative, the 
geodesics diverge. Lower bounds on the Ricci curvature prevent geodesics from diverging too fast and geodesic 
balls from growing too quickly in volume7. In other words, lower Ricci curvature bounds estimate the tendency 
of geodesics to converge.
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Interestingly, optimal transport offers a lower bound on the Ricci curvature in terms of entropy17,18. This fact 
will be exploited below to show that on a weighted graph one may use curvature as a proxy for functional robustness. 
Optimal mass transport theory is concerned with the problem of finding an optimal transport plan (relative to 
some cost function) for moving a given initial mass distribution (or gene expression levels in our case) μ into a 
final configuration ν in a mass preserving manner11,12,16,23. We will assume that μ and ν are normalized to be 
probability measures. Let X d( , ) denote a metric measure space. Then the p-Wasserstein distance between μ and 
ν is defined as

W d x y d x y( , ) inf ( , ) ( , ) ,p
p

p

( , )

1/

∫µ ν π=





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where the latter infimum is taken over all joint probability measures π on X X×  whose marginals are μ and ν, 
i.e.:

μ π ν π∀ ∈ = × = × .U V X U U X V X V, ( ) ( ), ( ) ( )

Consider the case X is a Riemannian manifold. The Wasserstein distance defines a Riemannian distance func-
tion on the space of the probability measures on X13,14. We denote this space by =P P W( ): ( ( ), )2 2X X . Using the 
theory of optimal transport, Lott, Sturm and Villani17,18 derived an elegant connection between Ricci curvature, 
Ric, and the Boltzmann entropy, Ent. Namely, Ric ≥ k if and only if the entropy functional is displacement 
k-concave along the 2-Wasserstein geodesics, i.e. for all μ μ ∈ XP, ( )0 1 2  and t ∈ [0, 1] we have:

μ μ μ μ μ≥ − + +
−
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Note that by definition,

∫μ ρ ρ=−Ent( ): log dvol,
X

where ρ = dμ/dvol.

Robustness defined on networks.  The relation (1) indicates a positive correlation between changes in 
entropy and changes in Ricci curvature that we express as

Ent Ric 0 (2)Δ × Δ ≥ .

We will describe notions of Ricci curvature and entropy on graphs below. Here, we show that changes in 
robustness, i.e., the ability of a system to functionally adapt to changes in the environment (denoted as ΔR) is also 
positively correlated with entropy24, and thus with network curvature (2):

Δ × Δ ≥ .R Ric 0 (3)

More precisely, the measure of robustness employed in19 is the rate function, R, from the theory of large devia-
tions25. One considers random perturbations of a given network that result in deviations of some observable. We 
let pε(t) denote the probability that the mean of the observable deviates by more than ε from the original (unper-
turbed) value at time t. Since pε(t) → 0, we want to measure its relative rate, that is, we set

R
t
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Therefore, large R means not much deviation and small R corresponds to a large deviation. In thermody-
namics, it is well-known that entropy and rate functions from large deviations are very closely related19. The 
Fluctuation Theorem is an expression of this fact for networks, and may be written as

Δ × Δ ≥ .REnt 0 (4)

In classical thermodynamics, the entropy controls the asymptotics of thermodynamical limits, and states of 
highest probability have maximum entropy.

The Fluctuation Theorem has consequences for just about any type of network: biological, communication, 
social, or neural19. In rough terms, it means that the ability of a network to maintain its functionality in the face 
of perturbations (internal or external) can be quantified by the correlation of activities of various elements that 
comprise the network. In the standard statement, this correlation is given via entropy. This has been reformulated 
geometrically in terms of curvature21,22. In fact, the correlations (2) and (4) yield (3). Therefore, by calculating 
the Ricci curvature, we can measure the robustness of the networks. We provide some examples of known graph 
models in the Supplementary Information. In all cases, the graphs that are expected to be more robust possess 
higher average Ricci curvatures (Supplementary Figs S2, S3). We will now give the precise definition for networks 
modeled as weighted graphs.

Curvature on weighted graphs.  In discrete settings, we assume that our network is represented by an 
undirected and positively weighted graph, G = (V, E), where V is the set of n vertices (nodes) in the network and 
E is the set of edges. We set
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where the sum is taken over all neighbors z of x, and wxy denotes the weight of an edge connecting x and y (it is 
taken as zero if there is no connecting edge between x and y).

One of the key notions of Ricci curvature on a discrete metric measure space is the Ollivier-Ricci curvature. As 
discussed by Ollivier10 and indicated in Fig. 1, the Ricci curvature of a Riemannian manifold can be characterized 
by comparing the average distance between small geodesic spheres and the distance between their centers. 
Ollivier then extended this idea from the geodesic sphere to an associated probability measure near a point on a 
metric space X.

Consider any metric d V V: × → + on the set of vertices V. For example, d(x, y) may denote the number of 
edges in the shortest path connecting x and y. For any two distinct points x, y ∈ V, the Ollivier-Ricci (OR) curva-
ture is defined as follows:

μ μ
= −k x y

W

d x y
( , ) : 1

( , )

( , )
,x y1

where μx, μy are defined in (5). In the present study, we used the Hungarian algorithm26 to compute the Earth 
Mover Distance on our reference networks. This discrete notion of Ricci curvature has been already used to inves-
tigate the robustness of cancer networks21,22.

Using this edge based notion of curvature, we can also define the scalar curvature of a given node in the graph 
as follows:

∑=S x k x y( ): ( , ),OR
y

where the sum is taken over all neighbors of x.

Gene expression and drug activity data.  The summary of our methodology is shown in Fig. 2. The 
mRNA expression data for the NCI-60 human tumor cell lines were retrieved from the CellMiner web appli-
cation (http://discover.nci.nih.gov/cellminer). Cellminer, written by the Genomics & Bioinformatics Group, 
(LMP, CCR,NCI)5, provides freely accessible analysis tools and downloadable data sets for exploring NCI-60 
data. The database contains transcript expression values for several assays of the NCI-60 cell lines. This study 
utilizes Affymetrix HG-U133 (A-B) with GeneChip RMA (GC-RMA) normalization from this website. There 
was no expression information of Affymetrix HG-U133 (A-B) for LC:NCI-H23 in non-small cell lung cancer 
(NSCLC), and there were many missing GI50 values for the drug responses of ME:MDA-N of the melanoma cell 
line. Excluding these two cell lines resulted in 58 complete data sets (see Fig. 3(a)).

Using the gene expressions arrays, we found the gene-to-gene correlations to build our weighted networks. The 
underlying topology has been derived from Human Protein Reference Database (HPRD, http://www.hprd.org)27. 
Specifically, we took the intersection of the genes that appear in both HPRD data and the gene expression data, and 
then retained the largest connected component. The weights of the edges, however, come from NCI-60 gene expres-
sions. Even though our method is robust to network topologies, we chose the HPRD due to its reliability (a manually 

Figure 1.  In a positively curved space the distance between the end points of tangent vectors ω and ω′ is less 
than δ. Curvature (K) quantifies this difference.

http://discover.nci.nih.gov/cellminer
http://www.hprd.org
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curated database) compared to other databases28. Affymetrix HG-U133 (A-B) data contains 34,899 probes. For the 
repeated gene IDs, we used the average RNA expression of the corresponding probes. We used only probes with 
known gene names, resulting in 16,821 genes with RNA expression. We chose the intersection of these genes with 
the HPRD database as the nodes of the pre-treatment network. Overall, the network consists of 8240 genes. The 
weights of the edges are defined by the Pearson correlation between the gene expressions along the 58 cell lines. We 
further used the transformation of + corr i j(1 ( , ))

2
 for the genes i and j to make a positively weighted network. The main 

advantage of using this affine transformation as compared to taking the absolute values of the correlations is that the 
transformation is invertible, and thus does not result in any loss of information of the weighted network. This is not 
true of the absolute value. In practice, however, using either absolute value or the affine transformation seems to give 
similar results21,24. We then found the Ollivier-Ricci curvature for all the edges, and the scalar curvature for all the 
nodes (genes) within the pre-treatment network. We further identified significant genes (nodes) for each drug in 
this network. These important genes were selected based on significant Spearman’s correlations (Rs) values (p-value 
<0.05) between drugs’ activity, 50% growth inhibition (GI50), and gene expressions across the cell lines. The corre-
lation values can be either positive or negative depending on whether the given gene acts as an oncogene or tumor 
suppressor. The observed range for absolute value of the significant correlations was 0.26 < |Rs| < 0.68. Finally, we 
computed the average of Ricci curvature values for the significant genes associated with each drug. The program-
ming was done primarily in Matlab.

The GI50 is the drug concentration resulting in a 50% reduction in the net protein increase during drug incu-
bation as compared with the same increase in control cells29,30. Normalized ( log10− ) GI50 was retrieved using the 
R package rcellminer31. This package complements the functionality of CellMiner by providing programmatic 
data access as well as analysis and visualization tool. By computing the Spearman’s correlation between the 
expression of all 8240 genes and the GI50 response of 129 FDA approved drugs along the 58 cell lines we con-
structed the correlation matrix (D) shown in Fig. 2D. This is a matrix of 8240 × 129 elements which includes the 
correlations for all the pairs of genes and drugs. As an example, Fig. 3(b) derived from the rcellminer package 
illustrates the Spearman’s correlation between the gene expression of MYC (z-score) and methotrexate activity 
(z-score). In this case, the correlation is very significant (Rs = 0.41) with a very low p-value of 0.001, therefore, 
MYC would be one of the selected genes for methotrexate. We provide another example, the gene MAPK8 and 
drug Salinomycin with a significant negative correlation (Rs = −0.38, p-value = 0.004) in Supplementary Fig. S4.

Ranking drugs and gene ontology enrichment analysis.  The FDA approved drugs correspond to 161 
NSC drug numbers (numeric identifiers for substances submitted to the National Cancer Institute). Among them 
we analyzed those with less than 2 missing GI50 values across all the cell lines, resulting in 129 drugs. For each 
drug, we identified genes whose expressions were significantly correlated (p-value< 0.05) to GI50. We compared 
the Ricci curvature distribution of these significant genes across the top and bottom ranked drugs and also com-
pared them to the calculated Spearman’s correlation in Supplementary Figs S5, S6. The median number of the 

Figure 2.  Methodology for establishing a network-robustness ranking of genes across cancer drugs and cancer 
cell lines: (A) GI50 drug activity matrix of 129 drugs for 58 cell lines. (B) Matrix of 8240 gene expressions for 58 
cell lines. (C) Pre-treatment network made by the gene expression correlation along 58 cell lines as the weights, 
and the underlying topology of gene-to-gene interactions is derived from HPRD. (D) Matrix of Spearman’s 
correlations between each drug’s activity (rows of matrix A.) and gene expression (rows of matrix B.) along 58 
cell lines. (E) Drug ranking in ascending order of average Ricci curvature values of significant genes. (F) Drug 
ranking used to score the significant genes correlated to the drugs. (G) Top 200 genes selected for gene ontology 
enrichment analysis.
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genes selected for each drug was ~500 with the minimum number of ~300. The average Ollivier-Ricci curvature 
of these genes was calculated for each drug.

We then sorted the 129 FDA approved drugs in ascending order according to the average Ricci curvature 
(Fig. 2E) arguing that since the effective drugs should be able to perturb the subnetwork of its significant genes, 
this subnetwork should possess a lower average Ricci curvature. We used this ranking of 129 drugs to assess the 
importance of 8240 genes in our network across cell lines. More precisely, we gave a linear weight of (129−r) + 
1 to all the selected genes associated with the r-th ranked drug. Then, for each gene, we computed the sum of all 
these weights and ranked the genes in descending order of the total weights. Thus, the final gene score increases 
if a gene (a) is important for many drugs, and (b) strongly contributes to robustness across multiple drugs. For 
a biological analysis, the top 200 genes were selected where the histogram has an apparent sharp decline; see 
Fig. 4. We performed a gene ontology (GO) enrichment analysis on the top 200 ranked genes using the MetaCore 
software (Thomson Reuters). MetaCore is an integrated software system based on a manually-curated database 
of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism and toxicity 
information.

Figure 3.  (a) Distribution of the 58 cell lines by type; (b) The Spearman’s correlation along cell lines between 
each drug’s GI50 activity and each gene’s expression (only Methotrexate and MYC are shown) was calculated to 
create the correlation matrix (D) shown in Fig. 2.
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The list of 129 drugs includes 23 repeated drugs. For these repeated drugs, the GI50 data were different for the 
different NSC numbers, and therefore, they have different rankings. Although the rankings were close for these 
drugs, we chose the highest ranking as a representative for the repeated drug. Consequently, our final ranking 
consists of 106 drugs.

Results
We found the scalar Ollivier-Ricci curvature of all the 8240 genes in the pre-treatment interaction network dis-
cussed previously. The scalar curvatures range between −210.4 and 3.6 with an average of −5.2. Supplementary 
Table S1 presents the top 40 genes with the highest absolute value of Ricci curvature. The top two genes, TP53 
and YWHAG, stand out with regards to their Ricci curvatures. A visualization of the pre-treatment network is 
provided in Supplementary Fig. S7. We then ranked the drugs based on the average Ricci curvature of significant 
genes for each drug. The top 30 ranked drugs are presented in Table 1. There are a number of very effective drugs 
that are ranked highly in this table; we elaborate on these drugs further in the discussion section below. The rank-
ing of all 106 drugs are presented in Supplementary Table S2.

We validated this ranking by running the entire algorithmic pipeline nine times; see Fig. 2. Each time we 
excluded all the cell lines of one of the nine cancer tissues. We then computed the Spearman’s correlation between 
drug rankings resulting from all the cell lines and those based on leave-one-out rankings. Interestingly, correla-
tions are very high with low p-values, showing relative consistency of the results across cell lines. The color map 
in Fig. 5 illustrates these correlations. The rows (columns) of this symmetric map are numbered by excluding 
all the cell lines of one cancer type (Fig. 3(a)). For example, ‘w/o Breast’ corresponds to exclusion of all the five 
cell lines of breast cancer. The 10th row (column) corresponds to the case of considering all the cell lines. The 

Figure 4.  Top 200 genes selected for the gene ontology enrichment analysis.

Drug 
ranking Drug name

Drug 
ranking Drug name

1 Salinomycin 16 Doxorubicin

2 Gefitinib 17 Simvastatin

3 Homoharringtonine 18 Batracylin

4 Mitomycin 19 Daunorubicin

5 Idarubicin 20 Azacitidine

6 Geldanamycin Analog 21 Itraconazole

7 Cabozantinib 22 Dasatinib

8 Vinblastine 23 Arsenic trioxide

9 PX-316 24 Ibrutinib

10 Raloxifene 25 Tyrothricin

11 Pipamperone 26 Crizotinib

12 Erlotinib 27 Paclitaxel

13 Fluorouracil 28 Trametinib

14 Matinib 29 Fenretinide

15 Irinotecan 30 Tamoxifen

Table 1.  Top 30 drugs ranked by average Ricci curvature of significantly correlated genes.
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correlation values are also included in the color map. As we see in Fig. 5, the correlation is very significant among 
the rankings (0.19 < Rs < 0.82, p-value ≪ 0.05), yet it is less significant after excluding the cell lines of leukemia 
(4th column or row). In other words, ranking of the drugs after exclusion of cell lines of leukemia is different from 
excluding any of the other eight cancer cell lines. This highlights that the effect of leukemia in the drug ranking 
is different than other cancer tissues. Of note, this is not a computational effect alone, given that leukemia is 
not even the cancer type with the greatest number of cell lines (colon, melanoma, lung and renal have more cell 
lines; see Fig. 3(a)). In order to determine which subset of leukemia accounts for this observation, we repeated 
the pipeline for the 6 cell lines of leukemia. We found two clusters of cell lines for leukemia according to their 
drug rankings (Supplementary Fig. S8). We then compared the drug rankings after adding these two subsets to 
the other cell lines. We discovered that a subset consisting of two cell lines most likely caused this deviation of 
leukemia from the other cell lines. Interestingly, these two cell lines belong to the same type of leukemia, namely, 
ALL. Of note, even though leukemia is different from other cancer types, there still exists a strong correlation with 
the others. The highest p-value (Rs = 0.19) that is between ‘w/o Leukemia’ and ‘w/o Breast’ is 0.03, which is still 
less than 0.05. The correlation between all cell lines and w4 (leukemia) is 0.33 with a p-value of 0.00012.

The top 200 ranked genes are presented in Supplementary Table S4. The results of the gene ontology enrich-
ment analysis of this 200 gene set are shown in Fig. 6(a). The top ten biological processes presented with very 
small p-values (<10−8). These p-values correspond to the hypergeometric test performed by MetaCore using the 
number of input genes, ontology related genes, and the total number of genes in the database. The top three bio-
logical processes are all involved with cellular localization. Also, the protein-protein interaction network of this 
analysis is presented in Fig. 6(b). The network contains two hubs associated with the gene product of CUX1 and 
PRKACA, which will be elaborated upon in the discussion section below. We further investigated the connectivity 
of these 200 genes in our pre-treatment network to ensure that these genes are not simply spread across distant 
parts of the network. We found that a subset of 146 genes of these 200 genes are mutually connected by paths of 
length two (i.e., connected with two edges), which is shown in Supplementary Fig. S9. The gene ontology enrich-
ment analysis of these 146 genes resulted in very similar top biological processes (Supplementary Fig. S10), and 
included a branch of cellular localization, namely intracellular transport, with a p-value of 7.8 × 10−6. The table 
of the top 50 biological processes with their corresponding p-values is provided in Supplementary Table S3. Also, 
Supplementary Table S4 includes these 146 genes.

In addition to the analysis of all cancer cell lines, we performed our algorithmic pipeline separately for four 
specific cancer tissues with the greatest number of cell lines: melanoma (9 cell lines), lung and renal (both 8 cell 
lines) and colon (7 cell lines) cancers. We performed the gene ontology enrichment analysis using the top 200 
genes (Supplementary Table S4) of these specific cancer tissues, and compared the results to the biological pro-
cesses of all the cell lines. We present the results of the gene ontology enrichment analysis of the top 200 genes of 
renal, lung, melanoma and colon cancer tumors in Supplementary Figs S11, S12, S13 and S14. Interestingly, these 
cancer types share some similar biological processes to those resulting from all 58 cell lines, which we will discuss 
further in the next section. However, the cancer specific analysis of this database is limited due to the small num-
ber of cell lines in any given specific cancer.

Figure 5.  Color map of Spearman’s correlation between drug rankings after excluding all the cell lines of 
one cancer type. “All” corresponds to the drug ranking with inclusion of all cell lines. Correlation values 
are also shown in the color map and are mostly very high between these drug rankings (with the average p-
value = 0.002).
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Discussion
In the present study, we considered the NCI-60 panel comprised of 58 individual cancer cell lines derived from nine 
different tissues (breast, brain, colon, blood, skin, lung, ovarian, prostate and kidney). The gene expressions of the 
cell lines were used to construct the network consisting of 8240 genes. This is a weighted graph where the underlying 
interactions are derived from Human Protein Reference Database. In this graph, the weights of the edges are the 
gene-to-gene (Pearson) correlations. The network was analyzed by calculating the discrete Ricci curvature. Based on 
our arguments in the Methods section, we claim that this is a guide to the robustness of the network, i.e., the ability to 
withstand perturbations in the system. In our case, these perturbations are induced by the drugs.

The scalar Ricci curvature helps us to identify the important targets (genes) for the drugs within the net-
work. We present the top 40 genes with the least negative value (highest absolute value) of Ricci curvature in the 
pre-treatment network in Supplementary Table S1. The top two genes, TP53 and YWHAG have very low scalar 
Ricci curvatures compared to other genes (See Supplementary Table S1). Of note, mutations of TP53 are present 

Figure 6.  Gene ontology enrichment analysis (MetaCore) of the significant genes correlated with the top 
ranked drugs: (a) Top ten biological processes; top three biological processes are involved with the cellular 
localization. The corresponding p-value (hypergeometric test) of the top biological processes are also included 
in the bar plot. (b) Protein-protein interaction network has two hubs: CUX1 and cAMP-dependent protein 
kinase.
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in more than 50% of human cancers, making it the most common genetic event in human cancer32,33. This gene 
has many connections to other genes within the network which also contributes to its extreme value of scalar 
Ricci curvature (See Supplementary Fig. S7). Even though our primary focus in this study is to identify the impor-
tant genes based on drug response (Fig. 4) and the biological processes they are involved in (Fig. 6), we briefly 
discuss the roles of TP53 and YWHAG (top 2 ranked genes in the pre-treatment network) in cancer pathogenesis 
in the Supplementary Information.

Furthermore, we measure the effectiveness of the drugs by the average Ricci curvature of the nodes (genes) it 
affects. For each drug, we found the significantly (positive/ negative) correlated genes by computing the correla-
tion between GI50 and gene expression along the 58 cell lines. The significant genes for each drug were chosen 
based on p-values less than 0.05. On average ~500 genes were selected for each drug. These genes identify a 
subnetwork within our pre-treatment network which is affected by the drug. We provide the average discrete 
Ricci curvature of these genes for each drug. Since robustness and Ricci curvature are positively correlated, we 
can study the efficacy of the drug on the network by considering the average Ricci curvature of the subnetwork 
affected by that drug. If these subnetworks possess a higher average Ricci curvature, we expect them to show more 
resistance to the drug. In other words, drugs cannot effectively perturb the subnetworks with high average curva-
ture. Therefore, the ranking of the drugs in ascending order (of average Ricci curvature) is a guide to the efficacy 
of the drugs for the cell lines. This network based view of the drug’s effectiveness considers the gene interactions 
of the cell lines as well as the drug response. The table of top 30 drugs is presented in Table 1. We also provide the 
table of all 106 drug ranking in Supplementary Table S2.

Salinomycin, the first ranked drug, has recently been considered as a promising novel anti-cancer agent for tar-
geting human cancer stem cells despite its not well-known mechanism of action34–36. The chemotherapeutic prop-
erty of Salinomycin can overcome the resistance of tumor cells toward multiple drugs while selectively targeting the 
cancer stem cells. This antibiotic drug has been shown to kill breast cancer stem cells in mice at least 100 times more 
effectively than the known anti-cancer drug Paclitaxel. The study screened 16,000 different chemical compounds 
and found that only a few drugs, including Salinomycin, targeted cancer stem cells responsible for metastasis37.

Gefitinib, our second ranked drug, is a molecular targeted drug in the treatment of non-small cell lung cancer. 
Approximately 85–90% of lung cancer cases, the most deadly cancer in the US, are NSCLC tumors. Mutations 
in the EGFR (epidermal growth factor receptor) gene are present in about 10 percent of NSCLC tumors (https://
www.iressa-usa.com). EGFR overexpression leads to inappropriate activation of the anti-apoptotic Ras signalling 
cascade, thereby leading to uncontrolled cell proliferation38. Gefitinib competes with adenosine triphosphate at 
the ATP binding site in epithelial cells, blocking its tyrosine kinase activity, and consequently inhibiting EGFR 
signaling pathway, which can induce tumor cell apoptosis39. In 2015, gefitinib was FDA approved as a first line 
treatment in patients with metastatic NSCLC who harbor the most common types of EGFR mutations in NSCLC 
(exon 19 deletions or exon 21 L858R substitution gene mutations)40.

Omacetaxine mepesuccinate, also known as homoharringtonine, the 3rd ranked drug, was originally identi-
fied over 35 years ago as a novel plant alkaloid with antitumor properties. Its mechanism of action is thought to 
be inhibition of protein translation by preventing the initial elongation step of protein synthesis via an interaction 
with the ribosomal A-site41. It was approved by the FDA in October 2012 for the treatment of adult patients with 
chronic myeloid leukemia (CML) with resistance and/or intolerance to two or more tyroskine kinase inhibitors 
as the current first-line treatment42. Furthermore, clinical studies have shown activity of omacetaxine in other 
malignancies as a single agent or in combination with other therapies in acute myeloid leukemia (AML) and 
myelodysplastic syndrome (MDS), and studies are ongoing in this regard43–45. Also, a number common antitu-
mor agents were ranked highly: doxorubicin, paclitaxel, fluorouracil (5-FU) and tamoxifen are commonly used 
in breast cancer treatment. Paclitaxel, vinblastine and irinotecan are often used in NSCLC. Homoharringtonine, 
azacitidine, and arsenic trioxide are common anticancer agents against leukemia.

The leave-one-out validation of drug rankings suggests that the rankings are not highly dependent on specific 
cancer tissue. As in clinical practice, this supports the use of anticancer drugs for the treatment of different can-
cer types. Overall, the Spearman’s correlations are higher among solid tumors as compared to the liquid tumor, 
Leukemia. Network-based analysis can also help to understand important biological processes in which the most 
correlated genes of the top ranked drugs are involved. To this end, we ranked the genes by using our drug ranking. 
The genes that are correlated to the top ranked drugs are given higher weights. The genes were then ranked in the 
descending order of the sum of the weighted values. Therefore, the top ranked genes are more correlated with the 
drug sensitivity in the cell lines and are better targets in the network. The gene ontology analysis, performed via 
MetaCore, was employed to find the biological processes with which the top 200 genes are involved.

The top three biological processes are concerned with cellular localization. Cells consist of many different 
compartments that are specialized to carry out various tasks. Based on the gene ontology directory, cellular locali-
zation of a protein is involved with the process whereby a protein complex is transported to, and/or maintained in, 
a specific location within a cell, including the localization of substances or cellular entities to the cell membrane. 
The number of proteins that have reliable subcellular location annotations is approximately 20% of all known 
proteins to date46. It is of particular interest to determine if a potential target is a cell surface or secreted molecule 
which would be more easily accessible for the targeted drug approach47. Therefore, knowledge of the subcellular 
localization of a protein can significantly improve target identification during the drug development process48. 
We further repeated the gene ontology enrichment analysis of the subset of 146 among the top 200 genes, which 
are connected with a path of length two. A more specific ontology term which is a branch of cellular localization, 
namely intracellular transport, is included in the top biological processes of these genes (Supplementary Table S3). 
In this regard, disruption of normal intracellular protein transport is critically involved in the pathophysiology of 
a broad range of human malignancies. Aberrant localization of oncoproteins and tumor suppressors may result 
in their over-activation or inactivation, respectively, and this can allow evasion of anti-neoplastic therapy as 
well49,50. Therefore, the therapeutic targeting of the nucleocytoplasmic shuttling of macromolecules has emerged 

https://www.iressa-usa.com
https://www.iressa-usa.com
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as a promising novel therapeutic approach to treat human diseases including cancer. More specifically, targets 
involving the nuclear envelope and nuclear intracellular transport machinery including cargo proteins, transport 
receptors, Ran regulators, and the nuclear pore complex have been proposed for therapeutic intervention. Several 
agents have been developed against these targets, some of them with promising therapeutic windows51.

We also present in Fig. 6(b) the protein-protein interaction network identified by MetaCore corresponding to 
the top 200 genes. There are two notable hubs in this network: CUX1 and cAMP-dependent protein kinase which 
is a gene product of PRKACA. CUX1 is specifically important since it is a transcription factor to a number of our 
top ranked genes associated with the drug sensitivity. CUX1 (also known as CUTL1) is a homeobox transcription 
factor highly evolutionarily conserved and plays a known role in embryonic development, cell growth and differ-
entiation in mammals52. Moreover, the role of CUX1 in drug resistance/sensitivity, has been explored. Specifically, 
gain-of-function as well as loss-of-function studies have shown that increased CUX1 activity significantly enhanced 
cell sensitivity and cancer tissue response to chemotherapy drugs and resulted in increased apoptosis and growth 
inhibition. In contrast, decreased CUX1 expression reduced cell sensitivity to chemotherapy drugs with fewer 
apoptoses and resultant drug resistance53. These studies, which have been in the context of gastric cancer, suggest 
an inverse association between CUX1 and drug resistance, implying that CUX1 is an attractive therapeutic tar-
get. Whether this phenomenon applies to cancers other than gastric cancer remains to be elucidated. The human 
PRKACA gene encodes the PKA catalytic subunit alpha (Cα) isoform. With regards to drug sensitivity/resistance, 
PRKACA is over expressed in invasive and anti-HER2 therapy (trastuzumab/ lapatinib)-resistant breast cancers. 
In addition to PRKACA conferring resistance to anti-HER2 therapy, it also impairs apoptosis54. Consequently, 
inhibition of PRKACA and/or its downstream anti-apoptotic effectors in combination with anti-HER2 therapy 
may increase the drug sensitivity. Its role in drug sensitivity/resistance for other cancers needs to be studied further.

Finally, we were interested in comparing the results of the gene ontology enrichment analysis of all 58 cancer 
type cell lines to some specific cancer tissues with the largest number of cell lines. The repeated algorithmic pro-
cess for lung, renal, melanoma and colon cancers yields some consistency. Similar to all cancer type genes, the 
gene ontology enrichment analysis for the top genes involved with renal and lung cancers results in cellular locali-
zation and cellular component organization. However, most of the biological processes from melanoma and colon 
cancer gene ontology enrichment analysis are quite broad such as negative regulation of cellular process, which 
is also a top biological process of all cancer types as well as renal cancer. Of note, colon cancer has fewer cell lines 
(7 cell lines) than melanoma (9 cell lines) and lung and renal cancer (8 cell lines). However, as mentioned earlier, 
the cancer specific analysis of this database is limited due to the small number of cell lines in each specific cancer.

The need for network based techniques is becoming more and more prevalent as a result of the exponential 
growth of data in the genomic era. In this work, we utilized mathematical techniques to drive a network based anal-
ysis in order to explore the genomic and pharmacogenomics information of NCI-60. The framework of this study 
can be extended to find possible optimal combinations of drugs. Combining anti-cancer agents, whether cytotoxic 
or molecularly targeted, with different mechanisms of action is the most practical approach to overcome single 
drug resistance and can produce sustained clinical remissions. Also, the study described in the present work may 
be extended to tissue-specific drugs employing a more appropriate tissue-specific cell line database. This analysis 
on the NCI-60 is promising and supports efforts to analyze larger datasets with advanced network mathematics55,56
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