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Diabetic foot ulcers (DFUs) are pathological states of tissue destruction of the

foot or lower extremity in diabetic patients and are one of the serious chronic

complications of diabetes mellitus. Matrix metalloproteinases (MMPs) serve

crucial roles in both pathogenesis and wound healing. The primary functions

of MMPs are degradation, which involves removing the disrupted extracellular

matrix (ECM) during the inflammatory phase, facilitating angiogenesis and cell

migration during the proliferation phase, and contracting and rebuilding the

tissue during the remodeling phase. Overexpression of MMPs is a feature of

DFUs. The upregulated MMPs in DFUs can cause excessive tissue degradation

and impaired wound healing. Regulation of MMP levels in wounds could

promote wound healing in DFUs. In this review, we talk about the roles of

MMPs in DFUs and list potential methods to prevent MMPs from behaving in a

manner detrimental to wound healing in DFUs.
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Introduction

Diabetic foot ulcers (DFUs) are one of the serious chronic complications of diabetes

mellitus and also a substantial cause of morbidity and mortality in developed countries

(Røikjer et al., 2022). The lifetime chance of a diabetic patient having a foot ulcer has been

reported to range between 19% and 34%. Due to reduced blood supply to the lower

extremities, DFUs are likely to be subject to necrosis, infection, and deep tissue

involvement, which may result in amputation (Lipsky et al., 2012; Centers for Disease

Control and Prevention, 2014; Hingorani et al., 2016). The rate of lower limb amputations

due to DFUs is 10–20 times higher than those without diabetes. The treatment of DFUs

can be complicated and expensive. Healing rates with conventional treatments for DFUs

have been found to range from 12% to 20% on average in clinical trials. Current

managements of DFUs include offloading the wound, using dressings to maintain a

moist wound environment, debridement when necessary, controlling infection and blood
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glucose(Everett and Mathioudakis, 2018). However, ulcer

recurrence rates remain high: 40% within one year and 65%

within five years after wound healing (Armstrong et al., 2017; Fu

et al., 2019).

Many factors affect the wound healing of DFUs, including a

long-lasting ulcer, deficiency in either the arteries or veins, the

patient’s general health status and medication usage,

neuropathy, poor nourishment, and bacterial infection

(Jalilian et al., 2020). Among them, infection is the main

factor contributing to delayed healing of diabetic foot

wounds (Bader, 2008). In addition, ischemia, and

hyperglycemia, were also closely associated with the

fundamental mechanisms leading to chronic wounds (Syauta

et al., 2021). Several physiologic and biochemical abnormalities,

including prolonged inflammation, imbalance in extracellular

matrix (ECM) synthesis and degradation, poor

neovascularization, and impaired macrophage activity, are

known to hinder the wound healing process (Clayton and

Elasy, 2009). In all these processes, the matrix

metalloproteinases (MMPs) seem to be involved.

Overview of MMPs

The MMPs belong to a family of zinc-containing proteolytic

enzymes that were first discovered in tadpoles with the function of

the degradation of ECM (Gross and Lapiere, 1962; Kaur et al.,

2020). All MMPs share a structural similarity and several domains

in common: 1) an NH2-terminal signal sequence (signal peptide)

guiding MMPs to the secretory or plasma membrane insertion

pathway; 2) a pro-peptide domain occupies the active site, blocking

substrate access to the catalytic enzyme. The enzyme is activated by

the cleavage of the pro-peptide domain; 3) catalytic domain, a zinc

ion binding domain; 4) hinge domain, following the catalytic

domain and followed by hemopexin domain; 5) hemopexin-like

C-terminal domain, mediating interactions with substrates and

granting enzyme selectivity. The hemopexin domain can be found

in all the MMPs except MMP-7 (Nagase et al., 2006). According to

the substrate specificity and domain organization, MMPs can be

categorized as follows: matrilysins, collagenases, gelatinases,

stromelysins, membrane-type MMPs, and other MMPs (Zítka

et al., 2010) (Figure 1).

FIGURE 1
Classification of MMPs according to their domain structure. Pre, signal peptide; Pro, propeptide; CAT, catalytic; ZN, zinc-binding site; Fu, furin
cleavage site; TM, transmembrane; Cy, cytoplasmic; SA, type-II signal anchor, H, hinge region; GPI, GPI anchor; FN, fibronectin repeat.
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MMPs are produced as pro-MMPs, which are inactive

zymogens that need protease removal of pro-domain to

become active. Active MMPs are mediated by tissue inhibitors

of matrix metalloproteinases (TIMPs), including TIMP-1, 2, 3,

and 4 that obstruct access to the catalytic site and regulate MMPs

activity. An imbalance between TIMPs and MMPs has been

linked with the pathogenesis and progression of several diseases

(Gill and Parks, 2008; Brew and Nagase, 2010). MMPs participate

in cell-cell contacts and cellular interactions with the ECM by

modifying the amounts of cytokines, hormones, and ECM

components. MMPs indirectly affect cellular activity by

modifying membrane receptors, junctional proteins, and

diverse physiological activities, such as cell apoptosis and

inflammatory processes. In normal skin or acute wounds, the

expression of MMPs is maintained at minimal levels, however,

their levels are elevated in chronic wound healing involving ECM

remodeling(Armstrong and Jude, 2002).

MMPs in normal wound healing

During normal wound healing, MMPs play an important

role. They are involved in each stage of the recovery process:

removing the disrupted protein, degrading the temporary ECM,

promoting the recruitment of related cells to the wound,

restructuring the granulation tissue, and regulating

angiogenesis and the expression of growth factors (Kandhwal

et al., 2022). Despite their importance in each stage of wound

healing, MMPs expression are intricately modulated. During the

homeostasis/inflammatory phase, the inflammatory cells are

recruited to the injured site through the secretion of chemical

messengers from platelets and release MMPs to degrade

damaged ECM. This not only aids in the removal of damaged

and dead tissue but also ensures the proper interaction of newly

produced ECM at the wound edge. During the proliferation

phase, MMPs act on the arteriole basement membranes and

promote the formation of granulation tissue. MMPs facilitate the

migration of endothelial cells, fibroblasts, keratinocytes, and

vascular endothelial cells across the ECM to the wound bed

(Chen and Parks, 2009). In response to growth factors,

endothelial cells of existing blood arteries initiate signaling

cascades that culminate in the production of MMPs, thereby

enabling endothelial proliferation and migration via digestion of

tissue matrix (Martins et al., 2013). MMPs-regulated fibroblasts

migrate to the wound site and synthesize both collagen and

elastin fibers, which are necessary for granulation tissue

formation. The cytokines generated by fibroblasts and

platelets, which are regulated by MMPs, stimulate

angiogenesis, allowing the migration of vascular endothelial

cells from blood vessels close to the healing wound thus

forming new vessels in the wound bed (Darby et al., 2014).

Similarly, migrating keratinocytes release MMPs that alter

keratinocyte motility by degrading proteins involved in cell-

cell and cell-matrix adhesion, promoting re-epithelialization

(Raja et al., 2007). During the remodeling phase,

myofibroblasts produce MMPs that aid in the contraction of

freshly scar tissue (Darby et al., 2014). Thus, MMPs are

important at every stage of wound healing, and it is believed

that uncontrolled activity of these proteases is one of the main

reasons why wounds do not heal properly.

MMPs in DFUs

MMPs are crucial in the wound healing process. However, if

MMPs are present in high amounts in a wound for an extended

period and at the wrong moment, they could slow down wound

healing by destroying proteins that are essential for wound

recovery. Numerous studies have shown that MMPs are

highly expressed in DFUs (Izzo et al., 2014) (Table 1). The

elevated MMPs are believed to be responsible for poor wound

healing because these MMPs degrade the components of the

ECM and impede growth factors, both of which are essential for

wound healing.

Gelatinases

Gelatinases A (MMP-2) and B (MMP-9) are the most

prominently upregulated enzymes in chronic wounds. Several

studies demonstrate higher levels of MMP-2 and MMP-9 in

DFUs than those in acute wounds or normal skin (Lobmann

et al., 2002). Gelatinases can degrade a broad spectrum of ECM

components that in turn regulate cell growth, migration, and

angiogenesis. In chronic wounds, MMP-9, which is produced by

inflammatory cells, selectively degrade the growth factors and

other components that assist the healing process. Vascular

endothelial growth factor (VEGF) and dermatopontin are two

proteins that promote wound healing; however, they are

destroyed at higher rates by upregulated MMP-9, which

renders them ineffectual in wound healing (Christoffersson

et al., 2012; Krishnaswamy et al., 2014). The existence of

elevated MMP-9 levels indicated the continuation of the

inflammatory phase and poor wound healing in DFUs.

Numerous investigations have verified that MMP-9 is

detrimental to the process of wound healing in DFUs, and

these investigations all come to the same conclusion. Wound

healing is accelerated in diabetes patients with selective MMP-9

inhibition (Gooyit et al., 2014; Peng et al., 2020) or MMP-9

deletion (Gao et al., 2015). This is supported by the confirmation

of the target MMP-9 in debridement tissue taken from human

patients diagnosed with DFUs, where DFUs were scaled

according to Wagner’s classification. MMP-9 showed

significantly greater quantities in grade 3–4 ulcers than in

grade 1–2 ulcers, which were significantly greater than in

control ulcers (Nguyen et al., 2018). On the other hand,
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MMP-2 is necessary for normal wound healing. Endothelial cells

that have been treated with exogenous MMP-2 have undergone

dose-dependent morphologic alterations that are compatible

with an angiogenic response (Dean et al., 2007; Dean et al.,

2007). However, an overactive MMP-2 protein causes an

abnormal breakdown of the matrix and limits the production

and remodeling of the new matrix, which can lead to a chronic

wound (Zhou et al., 2021). MMP-2 cleaves laminin-332 to

stimulate the migration of keratinocytes, and it also releases

an epidermal growth factor (EGF)-like fragment of the γ2-
subunit short arm. This fragment binds to the EGF receptor

and initiates cell movement, and it has the potential to obliterate

re-epithelialization when its levels are altered(Schenk et al.,

2003).

Collagenases

MMP-1,8 and 13 can cleave the triple helix of fibrillar

collagen, making them the only enzymes in mammals with

this ability. High collagenase activity and decreased levels of

TIMP-1 were observed in the wounds of DFUs (Hennessey et al.,

1990). MMP-1 is primarily accountable for collagenase-related

wound healing for its ability to complete the proliferative phase.

MMP-1 is responsible for cleaving type I collagen, which is

necessary for regulating keratinocyte migration to the injured

site and thus re-epidermization (Sudbeck et al., 1997). In DFUs,

the MMP-1 concentrations were considerably 65 times greater

than in acute lesions from non-diabetic patients (Lobmann et al.,

2002). Upregulated MMP-1 is beneficial to the wound healing

process and the ratio of MMP-1 to TIMP-1 was used to predict

wound healing in DFUs (Muller et al., 2008). Overexpressed

MMP-8, which is derived from neutrophils plays a direct role in

the etiology of chronic wounds. By breaking down fibronectin,

α1-antiproteinase, α2-macroglobulin, growth factors, and

products of fibroblast synthesis, MMP-8 plays an important

role in the pathophysiology of the wound. Although high

levels of MMP-8 were reported in the wounds of DFUs

(Muller et al., 2008), a conflicting conclusion was reached

about the function of MMP-8 in the wound healing process.

Danielsen et al. have evaluated the effect of highly expressed

MMP-8 on chronic wound healing and the findings show that

overexpression of MMP-8 can degrade collagen and result in

impaired wound healing (Danielsen et al., 2011). A recent study,

on the other hand, found that topical active recombinant MMP-8

in diabetic wounds boosted the wound healing rates because it led

TABLE 1 The expression level of MMPs in DFUs.

Types Subgroup Cells source Substrates Significant role
in DFUs

DFUs vs.
normal
wound

References

Gelatinases MMP-2 Fibroblasts,
Keratinocytes,
Endothelial cells,
Macrophages

Gelatines; Collagens
III, IV, V, VII, X,
XI, XIV

upregulated MMP-2 is
detrimental to DFU
healing

-a Muller et al. (2008)

↑ Lobmann et al. (2002)

MMP-9 Keratinocytes,
Neutrophils,
Macrophages,
Endothelial cells

Gelatines; Collagens
I, IV, V

upregulated MMP-9 is
detrimental to DFU
healing

↑ (Lobmann et al., 2002; Muller et al., 2008;
López-López et al., 2014; Jindatanmanusan
et al., 2018; Nguyen et al., 2018)

Collagenases MMP-1 Proliferating and
migrating keratinocytes,
fibroblasts

Collagens I, II, III, V,
VII, X, XI; gelatines

upregulated MMP-1 is
beneficial to DFU
healing

↓ Muller et al. (2008)

↑ (Lobmann et al., 2002; López-López et al.,
2014)

MMP-8 Neutrophils Collagens I, II, III,
VII, VIII, X; Gelatines

upregulated MMP-8 is
beneficial to DFU
healing

-a Muller et al. (2008)

↓ López-López et al. (2014)

↑ (Lobmann et al., 2002; Nguyen et al., 2018)

MMP-13 Fibroblasts, Migrating
keratinocytes

Collagens I, II, III, IV,
IX, X, XIV

unclear ↑ Castruita-De la Rosa et al. (2017)

Stromelysins MMP-3 Basal proliferating
keratinocytes, Fibroblasts

Collagens I, III, IV, V,
IX, X; Gelatines

unclear ↓ Castruita-De la Rosa et al. (2017)

MMP-10 Migrating keratinocyte,
Fibroblasts

Collagens I, III, IV, V,
IX, X; Gelatines

unclear ↓ López-López et al. (2014)

Membrane-
type

MMP-14 Migrating keratinocytes Collagen I, II, III;
Gelatines

unclear ↓ Bassar et al. (2022)

Others MMP-19 Keratinocyte, Fibroblast,
Endothelial cells

Gelatines;
Collagen IV

unclear - López-López et al. (2014)

aOverexpressed levels without statistical difference.

↑: upregulation; ↓: downregulation; -: no change.
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to complete re-epithelialization, less inflammation, and more

blood vessel growth (Gao et al., 2015). A diabetic wound that was

treated with a selectiveMMP-8 inhibitor took significantly longer

to heal, had significantly less re-epithelialization, and displayed a

high level of apoptosis (Gooyit et al., 2014). Confirmation of the

beneficial effects that MMP-8 plays in DFUs, in which mice

lacking MMP-8 heal their wounds more slowly and exhibit

higher levels of inflammatory responses. All the findings point

toMMP-8 being an essential component in the healing process of

diabetic wounds. A high level of expression of MMP-13

(collagenase-3) is observed in chronic wound beds but not in

normally healing wounds (Vaalamo et al., 1997). MMP-13 has

been demonstrated to improve the remodeling of dermal

fibroblasts’ 3D collagen matrix, cell morphology, and cell

survival. It demonstrates that MMP-13 plays particular

functions in the production of granulation tissue as well as in

the modification of the ECM (Toriseva et al., 2012). In non-

healing wounds, MMP-13 exhibits distinct spatial expression

patterns (Vaalamo et al., 1997). In the deeper layers of the

chronic ulcer bed, fibroblasts showed high levels of MMP-13

expression, although the epidermis showed no signs of it. MMP-

13 is not engaged in the normal process of wound healing;

nevertheless, it plays a significant role in the remodeling of

dermal stroma in chronic wounds, which may impair the

wound healing. In general, the findings of this more recent

research point to the fact that collagenases are essential for

the ECM remodeling that takes place throughout the process

of wound healing.

Stromelysins

Due to their extensive substrate specificity, stromelysins

play a variety of roles in ECM degradation. Stromelysin-1

(MMP-3) and stromelysin-2 (MMP-10) regulate

collagenolytic activity and wound remodeling. MMP-3 is

secreted by proliferating keratinocytes at the distal portion of

the wound, while co-localization of MMP-10 with MMP-1 was

identified near the leading edge of the wound (Caley et al.,

2015). According to research conducted on the function of

MMP-3 in wound healing, a lack of MMP-3 causes disrupted

dermal wound healing, which results in an impaired ability of

fibroblasts to contract the wound in vivo. The findings indicate

that MMP-3 plays an important role in the process of wound

healing. The application of MMP-3 topically resulted in

dramatically enhanced angiogenesis and reparative dentin

production. Inhibition of MMP-3 activity results in

untoward wound healing (Zheng et al., 2009). Importantly,

MMP-3 is a physiological activator of MMP-9, therefore

increased MMP-9 activity may worsen the inflammatory

phase of chronic wound healing. (Ogata et al., 1992). In

contrast, animals with aberrant MMP-10 expression have a

disorderly migrating epithelium, breakdown of ECM, abnormal

cell-cell interactions of the migrating keratinocytes, and a

higher rate of cell death in the keratinocytes near the edge of

the wound (Krampert et al., 2004).

Membrane-type MMPs

Members of this class of MMPs have distinct structural

characteristics, but they are not secreted into the ECM, which

distinguishes them from all other MMPs. Located on plasma

membranes, membrane-type MMPs play an important role in

the activation or localization of other MMPs (Hernandez-

Barrantes et al., 2000). MMP-14 activity is crucial for

physiological and pathological processes. Downregulated

MMP-14 expression not only controls the activation of MMP-

2 and MMP-13 but also prevents the eventual direct degradation

of other ECM components (Pincus et al., 2010). In addition,

MMP-15 and MMP-16 are both capable of binding to the

gelatinases, but not as strongly as MMP-14.

Other MMPs

Other MMPs such as MMP-12 and MMP-7 have a role in

chronic wound pathogenesis. MMP-7 is responsible for stimulating

the process of re-epithelialization (Letra et al., 2013). MMP-12 is

induced byAgrin andmediates collectivemigration due to enhanced

local inflammation (Aristorena et al., 2019; Chakraborty et al., 2021).

Although chronic cutaneous wounds in humans have not been

extensively studied, these MMPs play a key part in wound healing

because of their ability to influence variety of cellular processes and

activate other MMPs.

The expression of MMPs during a normal wound are

accompanied by a release of growth factors from

inflammatory cells, resulting in limited and transient

inflammatory factor stimulation. The immune cells secrete

MMPs to remove local bacteria and degrade ECM from the

wound as part of an orderly inflammatory response. However, in

DFUs, recurrent tissue injury prolongs and exacerbates this

inflammatory state, resulting in a cascading effect between

inflammatory cytokines and macrophages in the wound.

Increased inflammatory cells secrete large amounts of

inflammatory cytokines, which directly stimulate excessive

MMP expression. In addition, high levels of TNF-α and IL-1

not only directly induce the secretion of MMPs, but also suppress

the formation of TIMPs. The upregulated MMPs degrade the

necessary wound-healing components, resulting in the

development of chronic wound healing. The “hidden damage”

to the skin that exists before wound formation may further

exacerbate the inflammatory response and slow wound

healing after wound formation. The overview of different

MMPs and their dysregulation in normal and DFUs wound is

schematically illustrated in Figure 2.
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Targeting MMPs inhibition in DFUs

To date, most of results indicated that overexpression of

MMPs associated with the chronic healing process in DFUs.

MMP inhibitors have thus been developed for the treatment of

DFUs. Most of the research for treating DFUs falls into the

following categories:

Small molecule inhibitors

Although MMPs exist in multiple forms (pro-MMPs,

active MMPs, and TIMP-MMPs) in vivo, only the

activated MMPs exert pharmacological activity. To

identify and quantify the active MMPs in DFUs, an

affinity resin was developed to extract the active MMPs

from DFUs. Using this method, they have identified active

MMP-8 and MMP-9 in DFUs. Next, they developed a specific

MMP-9 inhibitor, ND-336, which has Ki values of 150 nM

for MMP-9 and 7700 nM for MMP-8. This indicates that

50 times more selective for MMP-9 than it is for MMP-8. In

an in vivo animal study, the topical application of ND-336

sped up the recovery time of diabetic wounds. In situ

zymography studies have shown that ND-336 had a

strong inhibitory effect on MMP-9 activity while not

affecting MMP-8 activity (Gao et al., 2015). As racemic

ND-336 showed efficacy in diabetic wounds, they also

isolated the (R) and (S)-enantiomers. (R)-ND-336 is a

more potent MMP-9 inhibitor than its counterpart, (S)-

ND-336. In vivo, wounds treated with (R)-ND-336 showed

a full re-epithelialization and complete MMP-9 inhibition,

whereas partial inhibition was observed after (S)-ND-

336 treatment. Moreover, studies have shown that (R)-

ND-336 is more efficacious when compared to

becaplermin, which is the sole drug currently licensed by

the FDA for the management of DFUs (Nguyen et al., 2018;

Jones et al., 2019; Peng et al., 2020). All the results show that

(R)-ND-336 has great potential to become a candidate drug

for the treatment of DFUs.

Antibody inhibitors

Developing antibody drugs as MMP inhibitors can

significantly enhance the specificity and targeting of MMPs.

Numerous inhibitory antibodies against MMPs have been

developed, such as andecaliximab (GS-5745), a specific dual

inhibitory antibody against MMP-9 (Jones et al., 2019; Kaur

et al., 2020). It inhibits MMP-9 activity in two ways: directly, by

interfering with the active site of MMP-9, and indirectly, by

interfering with the MMP-3 zymogen, which is involved in the

activation of MMP-9 (Sela-Passwell et al., 2011; Appleby et al.,

2017). Recent research has reported that GS-5745 was well-

tolerated in phase I clinical trials (Bendell et al., 2015; Shah

et al., 2018). Clinical research has also shown that two additional

antibodies, SDS3 (Sela-Passwell et al., 2011) and REGA-3G12,

specifically block MMP-9 activity (Paemen et al., 1995; Hu et al.,

2004). But all these three antibodies are currently used only for

anti-tumor research, not wound healing. However, these gradual

in-depth studies on MMP-9 inhibitors show that these targeted

inhibitors have great research value and potential in DFUs

treatment (Hariono et al., 2018).

FIGURE 2
The graphical depiction of normal and chronic wound healing with dysregulated MMPs.
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RNA interference

The use of RNA interference (RNAi) to suppress the

production of a specific protein has shown great promise as

a method for treating a wide range of diseases. Therefore,

therapeutic approaches that interfere with the expression of

MMPs at the genetic level have significant potential in the

treatment of diabetic wounds (Wang et al., 2010). Diabetes

wounds treated by MMP-9-siRNA exhibit reduced MMP-9

levels. Wound healing is dramatically enhanced by its ability

to decrease MMP-9 gene expression after being absorbed by

fibroblasts (Li et al., 2014). In subsequent experiments,

however, it was discovered that siRNA caused liver and

kidney damage and a short duration of pharmacological

effect (Li et al., 2017). Despite showing great promise in the

treatment of DFUs, delivering small interfering RNA (siRNA)

safely and effectively remains a challenge (Srinivasachari et al.,

2008; Xu et al., 2009; Wang et al., 2010). Recently an effective

and safe siRNA delivery system, named β-CD-(D3)7, was

explored to deliver siRNA effectively in diabetic wounds.

When administered, β-CD-(D3)7/MMP-9 siRNA reduced

the expression of MMP-9, which in turn accelerated wound

healing without causing tissue accumulation or toxicity (Li

et al., 2017). Nevertheless, repeated dosing was needed for

long-term silence of MMP-9, which may be harmful to the

healing process. Furthermore, β-CD-(D3)7/siMMP-9 NPs can

enter the bloodstream and accumulate in the liver, where it has

the potential to cause liver toxicity. Herein, a hybrid hydrogel

dressing was designed to aid in the localization of siMMP-9

delivery while also extending its duration (Lan et al., 2021).

Temperature-sensitive controlled release of siMMP-9

entrapped in wound bed allowed targeted and sustained

administration in vivo, which silenced MMP-9 expression

and dramatically enhanced diabetic wound healing without

systemic toxicity.

MMP modulating dressings

It is normal practice to use wound dressings to provide a

moist wound environment, protect from bacterial infection,

remove exudate secretion, and promote wound healing in

DFUs (Hilton et al., 2004; Vowden and Vowden, 2017). A

dressing composition containing an MMP inhibitor has been

developed. When the dressing is applied to a wound, the MMP

inhibitor contacts the wound fluid to selectively inhibit one or

more MMPs in the wound bed without affecting the MMP levels

for normal wound healing (Rayment et al., 2010). A patented

wound dressing containing MMP in a barrier layer was designed

for DFUs. When in contact with a wound, the layer breaks down,

releasing the therapeutic compounds into the wound (Varma

et al., 2006). Although MMP inhibitors have been applied to

these wound dressings, it has been observed that these inhibitors

are generally nonspecific (Rayment et al., 2008). The

pharmacological effect of non-selective MMP inhibition is not

good as that of specific MMP inhibition (Agren et al., 2001). So

related studies on specific MMP inhibitors are still worthy of

further research and attention.

Conclusion and perspective

DFUs are the common cause of non-traumatic amputations

in developed countries. Until now, there is a lacking effective

medical treatment for this chronic wound. Understanding the

etiology of these chronic wounds will allow for more effective

treatment. Recently, numerous studies have shown that MMPs

are overexpressed in chronic wounds, and inhibiting MMPs

(especially MMP-9) activity as a potential treatment for DFUs

has also gained a lot of research interest. Even though there has

been a lot of progress and some promising candidate drugs have

emerged, there are still some issues. First, due to their

widespread involvement in normal wound healing and

physiological process, it is unclear if altering MMP

expression for DFUs treatment will also result in unintended

effects. Second, for the structural and morphological similarity

of MMP family members, it is challenging to target specific

MMPs, particularly when they belong to the same category

(Overall and Kleifeld, 2006; Amar et al., 2017). Although there

are a lot of related types of research on broad-spectrum MMP

inhibitors (MMPIs) (Gooyit et al., 2014; Levin et al., 2017),

more selective and specific MMP inhibitors are still needed.

Third, the MMP expression undergoes a dynamic change and

the amounts of MMPs at each stage of diabetic wound healing

are completely different. Can it be speculated that the

therapeutic effect of MMP inhibitors will also be greatly

different? Whether MMP inhibitors should be strictly

stratified before deciding whether to use them in clinical

application. Therefore, it is still required to have a

comprehensive understanding of the roles that MMPs play

in DFUs to find new MMP inhibitors and alternative

targeted MMP therapies.
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