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EagleC: A deep-learning framework for detecting a  
full range of structural variations from bulk and  
single-cell contact maps
Xiaotao Wang1, Yu Luan1, Feng Yue1,2*

The Hi-C technique has been shown to be a promising method to detect structural variations (SVs) in human genomes. 
However, algorithms that can use Hi-C data for a full-range SV detection have been severely lacking. Current methods 
can only identify interchromosomal translocations and long-range intrachromosomal SVs (>1 Mb) at less-than-optimal 
resolution. Therefore, we develop EagleC, a framework that combines deep-learning and ensemble-learning strate-
gies to predict a full range of SVs at high resolution. We show that EagleC can uniquely capture a set of fusion 
genes that are missed by whole-genome sequencing or nanopore. Furthermore, EagleC also effectively captures 
SVs in other chromatin interaction platforms, such as HiChIP, Chromatin interaction analysis with paired-end tag 
sequencing (ChIA-PET), and capture Hi-C. We apply EagleC in more than 100 cancer cell lines and primary tumors 
and identify a valuable set of high-quality SVs. Last, we demonstrate that EagleC can be applied to single-cell Hi-C 
and used to study the SV heterogeneity in primary tumors.

INTRODUCTION
Structural variations (SVs), including deletions, inversions, dupli-
cations, and translocations, can directly contribute to tumorigenesis 
and other diseases through multiple mechanisms. SVs can lead to 
the deletion of tumor suppressor genes or duplication of proto- 
oncogenes (1) or promote the formation of oncogenic fusion genes 
(2). More recently, it has been shown that SVs can bring distal 
enhancers to the proximity of proto-oncogenes and cause the 
up-regulation of oncogenic gene expression through a mechanism 
termed enhancer hijacking (3, 4). The discovery of recurrent SVs 
has greatly advanced our knowledge about tumorigenesis and led to 
effective targeted therapy (5).

Despite their importance, genome-wide detection of SVs remains 
a challenging problem. Traditionally, karyotyping has been the major 
method to detect various genetic disorders in the clinic; however, it 
is an inherently low-throughput and low-resolution method (6). 
Microarray has been used to identify gains and losses of genetic 
materials, but it has limitations in detecting copy number neutral 
events such as inversions and balanced translocations (7). More 
recently, short-read whole-genome sequencing (WGS) has been 
widely used to identify a variety of genomic variations due to their 
high resolution, high throughput, and simplicity (8–13). However, 
because of the mappability issue of short reads, it is difficult to de-
tect SVs at repetitive regions using WGS (11). The advent of long-
read sequencing such as PacBio and Nanopore has partly alleviated 
the mappability issue (14, 15). However, these technologies have a 
relatively high sequencing error rate and also need deep sequencing 
for SV detection (>20×) (16).

Recently, we and other groups showed that Hi-C, a technique that 
was originally proposed to study three-dimensional (3D) genomic 
architectures, can also be used for systematic SV detection with as 
little as 1× genome coverage (11, 17–20). As SVs induce de novo 

chromatin interactions across the breakpoints, when Hi-C reads are 
mapped to the reference genome, different types of SVs are charac-
terized by aberrant interaction blocks with different orientations. 
Identifying SVs is essentially the same as identifying and annotating 
such blocks on a Hi-C map. Compared to WGS and nanopore that 
require direct breakpoint spanning reads to detect SVs, such property 
of Hi-C substantially decreases the sequencing depths that are needed 
for SV detection and also gives Hi-C higher chances to detect SVs at 
repetitive regions, as long as the adjacent regions of breakpoints are 
mappable. So far, three methods have been proposed to predict SVs 
with Hi-C data. The Hi-C breakfinder that we codeveloped is the 
first algorithm of this kind, where we use an iterative approach to 
search for abnormal interaction blocks with significantly higher 
interaction frequencies compared with a background model (18). 
HiCtrans identifies translocation breakpoints by searching for 
signal changepoints on interchromosomal contact matrices of each 
chromosome pair (17). More recently, Wang et al. (19) proposed a 
new method called HiNT-TL for translocation detection, which is 
based on the identification of regions with both unusually high 
interaction frequencies and uneven distribution of interaction strengths.

However, all current methods have their limitations. HiCtrans 
and HiNT-TL cannot predict intrachromosomal SVs, which usually 
accounts for a large portion of all SVs in a cancer genome (13). 
Although Hi-C breakfinder can identify interchromosomal translo-
cations, it can only detect large intrachromosomal SVs with a size 
>1 Mb (Table 1). The challenge for short-range SV detection is that 
Hi-C maps typically contain features such as topologically associat-
ing domains (TADs) and chromatin loops (18), which are usually 
less than 1 Mb, and such patterns make the accurate detection of SV 
challenging. Furthermore, all three methods still have less-than- 
optimal resolution. Therefore, we develop EagleC, a framework that 
combines deep-learning and ensemble-learning strategies to predict a 
full range of SVs at high resolution. We show that EagleC outperforms 
existing methods in both precision and recall rates. Furthermore, we 
demonstrate that EagleC can be used as a general framework to predict 
SVs in many other 3C-based platforms, such as HiChIP, ChIA-PET, 
capture Hi-C, and even single-cell Hi-C (scHi-C). With the pretrained 
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models, we predicted SVs in over 100 cancer cell lines or primary tumors. 
Pan-cancer analysis of these datasets showed that the location and 
formation of SVs are closely associated with 3D chromatin architectures.

RESULTS
Overview of the EagleC framework
Identifying SVs from a Hi-C map is essentially a multilabel image 
classification problem in machine learning. There are multiple types 
of SVs, and each type is characterized by a unique pattern on a Hi-C 
contact map (figs. S1 to S4) (18). For example, we draw three con-
secutive fragments A, B, and C in fig. S1. A deletion of fragment B 
will result in the junction of the 3′-end of fragment A and the 5′-end 
of fragment C (left of fig. S1A). Because of the spatial proximity, 
there will be strong chromatin interaction signals between the 3′-
end of fragment A and the 5′-end of fragment C. However, when we 
map the Hi-C reads of the sample to the reference genome, we will 
see an abnormal increase in the interactions between fragment A 
and fragment C (middle of fig. S1A). As a result, in the submatrix 
centered at the breakpoints, there will be an increase in interactions 
in the upper-right quadrant. Similarly, tandem duplication sequen-
tially links the original DNA fragment and the duplicated fragment, 
resulting in strong interactions in the lower-left quadrant of the sub-
matrix (fig. S1B); inverted duplication causes aberrant signals either 
in the upper-left or lower-right quadrants (fig. S1, C and D), depending 
on the direction of the inverted DNA fragment. For inversions 
(fig. S1E) and reciprocal translocations (fig. S2), de novo inter-
actions are formed on the opposite sides of the breakpoints, result-
ing in a “butterfly shape” on the Hi-C map. In our framework, an 
SV with the “+−” label corresponds to the fusion of the 3′-end of a 
fragment to the 5′-end of another fragment, while the “++” label 
corresponds to the 3′-to-3′ fusion, “−+” corresponds to the 5′-to-3′ 
fusion, and “−−” corresponds to the 5′-to-5′ fusion.

Figure 1A describes the overall design of the EagleC framework. 
The positive training samples are defined as the Hi-C contact matri-
ces surrounding a set of high-confidence SVs, which were detected 
by both WGS and optical mapping in eight cancer cell lines (A549, 
Caki2, K562, LNCaP, NCI-H460, PANC-1, SK-N-MC, and T47D) 
(18). We found that the original samples demonstrate severely im-
balanced class distributions (Materials and Methods and table S1). 
To avoid the model biased toward any specific classes during the 
training, we proposed a data augmentation algorithm based on Poisson 
distributions to make sure each class has a similar number of sam-
ples (Materials and Methods). Furthermore, to make the model able 
to distinguish real SV signals from false-positive signals induced 

by normal 3D genomic features, we sampled similar numbers of 
intrachromosomal and interchromosomal submatrices from the 
Hi-C map of a normal cell line GM12878 (21) and labeled them as 
“intranegative” and “internegative,” respectively. These negative sam-
ples include matrices surrounding random pixels, chromatin loops, 
and the transition points of A/B compartments. We also included 
matrices from the cancer Hi-C data that are located in an SV block but 
not overlapping with the breakpoint as an additional negative dataset.

Because the strong diagonal Hi-C signals can confound the de-
tection of short-range SVs, in the preprocessing steps, EagleC corrects 
distance effects for intrachromosomal matrices by using the distance- 
averaged signals (fig. S3, A and B). To alleviate potential data noise, 
each input matrix is then convolved with a 2D Gaussian filter followed 
by min-max scaling.

The inputs to the convolutional neural network (CNN) are 21 × 21 
grayscale images, which go through two convolutional layers, each 
followed by a max-pooling layer. The probabilities of each label 
(++, +−, −+, −−, intranegative, and internegative) are calculated 
from two fully connected layers using the sigmoid activation. Before 
the output layer, we insert a dropout layer with a dropout probability 
of 0.5 to avoid overfitting.

One important component of the EagleC framework is that it 
performs an iterative learning procedure to gradually improve the 
model specificity. After each round of training, the model is used to 
perform a genome-wide prediction in GM12878 Hi-C. As GM12878 
is a karyotypically normal cell line, all the predictions will be con-
sidered as false positives and randomly selected as additional negative 
samples in the next round of training. Such processes are repeated 
until the convergence is observed.

To further optimize the sensitivity and specificity of the frame-
work, we perform an ensemble learning procedure. In total, 50 models 
are independently trained using the same iterative approach de-
scribed above, with each model randomly initialized with different 
set of training samples. When predicting SVs in a novel sample, the 
final probability scores are determined as the average across all 
50 models, and a pixel will be reported as an SV breakpoint if the 
probability of at least one positive label (++, +−, −+, and −−) is 
greater than a predefined cutoff (Materials and Methods).

We trained a series of EagleC models optimized for various se-
quencing depths using down-sampled versions of the training samples 
(Materials and Methods). To investigate the performance of EagleC, 
we predicted SVs (unless noted, all SVs reported in this study are at 
the 5-kb resolution) in other cancer Hi-C datasets that were not used in 
the training procedure (table S2). EagleC successfully predicted dif-
ferent types of SVs, including short-range SVs with breakpoint distance 

Table 1. Comparing methods for detecting SVs.  

Interchromosomal 
translocation

Intrachromosomal 
SVs (>1 Mb)

Intrachromosomal 
SVs (<1 Mb)

Applicable to 
other 3C-based 

techniques 
(ChIA-PET, HiChIP, 
capture Hi-C, and 

scHi-C)

Support 
nonhuman 

genome
Gene fusions

HiCtrans √ √

HiNT-TL √

Hi-C breakfinder √ √

EagleC √ √ √ √ √ √
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less than 1 Mb or even 100 kb (Fig. 1, B to D), large intrachromosomal 
SVs (Fig. 1E), reciprocal interchromosomal translocations (Fig. 1F), 
and nonreciprocal interchromosomal translocations (Fig. 1G).

EagleC outperforms existing methods in detecting  
SVs on Hi-C maps
We first visually inspected the predictions and found that nearly all 
blocks with abnormally high interaction frequencies were predicted 
as SVs, suggesting high sensitivity of the framework (Fig. 2A). We 
then examined closely individual loci and compared the predictions 

from EagleC and Hi-C breakfinder (18). In many cases, although 
EagleC and Hi-C breakfinder predicted the same SV blocks, the ex-
act coordinates of the predicted breakpoints were different, and the 
EagleC-predicted breakpoints were more likely to be validated by 
WGS (Fig. 2A, regions “A,” “C,” “D,” and “E”). Further, EagleC pre-
dicted more precise breakpoints at the 5-kb resolution than Hi-C 
breakfinder predictions, which are usually 100-kb resolution (block 
with a dashed line in regions “B” and “D” in Fig. 2A).

Next, we systematically evaluated the performance of EagleC by 
comparing it with all existing methods, HiCtrans (17), Hi-C breakfinder 
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Fig. 1. EagleC predicts a full range of high-resolution SVs from chromatin interaction data. (A) Workflow of the EagleC framework. (B to G) Examples showing dif-
ferent types of SVs predicted by EagleC. The black dashed circle indicates the SV breakpoint position in each case. The resolution of each Hi-C map is labeled within the 
parentheses. (B) A short-range (75 kb) heterozygous deletion predicted in the SK-N-AS cells. (C) A short-range (295 kb) duplication predicted in the SK-N-AS cells. (D) A 
short-range (90 kb) inversion predicted in the C4-2B cells. (E) A long-range (5.69 Mb) duplication predicted in the SW480 cells. (F) A reciprocal translocation predicted in 
the KBM7 cells. (G) A nonreciprocal translocation predicted in the HepG2 cells.



Wang, Sci. Adv. 8, eabn9215 (2022)     15 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 14

(18), and HiNT-TL (19) (Table 1). We used three breast cancer cell 
lines BT-474, HCC1954, and MCF7 as the benchmark datasets, as 
there are Hi-C, WGS, and nanopore data available in the same cell 
lines. Because HiCtrans and HiNT-TL can only detect interchromosomal 
translocations, we first focused on interchromosomal translocations 
alone. The reported results by each method differed greatly (fig. S5, 
A and B). First of all, different methods predicted a different num-
ber of translocation candidates. For example, in the MCF7 cell line, 
EagleC and Hi-C breakfinder predicted 154 and 116 translocations, 
respectively. HiCtrans reported the largest number of translocations 
(n = 520), while HiNT-TL detected the smallest number of trans-
locations (n = 28). In terms of the resolutions at which the trans-
locations were reported, EagleC predicted translocations at the 

highest resolution among all methods at 5 kb. The translocations 
reported by HiCtrans were at 10 or 20 kb; translocations reported 
by Hi-C breakfinder were at a mixture of 10-kb, 100-kb, and 1-Mb 
resolutions; and nearly all translocations reported by HiNT-TL were 
at the 100-kb resolution (fig. S5A). To further investigate the perform-
ance of each method, we compared the translocation predictions from 
each method with a reference translocation set defined by WGS and 
nanopore for each cell line (Materials and Methods). As shown in 
fig. S5B, EagleC outperforms all the other methods with both higher 
precision rates and higher recall rates in all three cell lines. Specifically, 
although HiCtrans detected three times as many interchromosomal 
translocations as EagleC, it recalled fewer validated SVs due to its 
redundant false-positive predictions within a single SV block (fig. S5C).
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Fig. 2. EagleC outperforms existing methods in both precision and recall. (A) (Left) Genome-wide Hi-C map and the predicted SVs (black circles) in BT-474. (Right) 
Enlarged Hi-C maps of the indicated SV regions. The SV breakpoints detected by different methods are highlighted using different marks on each map. (B) Number of 
SVs predicted by EagleC and Hi-C breakfinder in BT-474, HCC1954, and MCF7 cells with levels of validation by orthogonal methods. For Hi-C breakfinder, we only counted 
SVs reported at the 10-kb resolution. (C) Precision and recall rates of SVs that can only be predicted by EagleC, SVs that can only be predicted by Hi-C breakfinder, and SVs 
that can be predicted by both methods. (D) The number of SVs predicted by EagleC and Hi-C breakfinder in additional 26 cancer samples with both Hi-C and WGS data 
available. (E and F) Recall rates and precision rates of SVs predicted by EagleC and Hi-C breakfinder in 26 cancer samples. Each dot represents an individual sample. The 
P values were computed using the two-sided Wilcoxon signed-rank test. (G) Size distributions of intrachromosomal SVs detected by EagleC and Hi-C breakfinder. Data 
were merged from 29 cancer samples. (H) Number of different range of SVs predicted by EagleC and Hi-C breakfinder with validation ratios by WGS. Short SVs, intrachromosomal 
SVs with breakpoint distance less than 1 Mb; long SVs, intrachromosomal SVs with breakpoint distance greater than 1 Mb; TL, interchromosomal translocations.
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More in-depth analysis between EagleC and  
Hi-C breakfinder that includes both  
inter- and intrachromosomal SVs
Then, we performed more in-depth comparisons between EagleC 
and Hi-C breakfinder, as they are currently the only methods that 
can identify intrachromosomal SVs. Notably, EagleC detected 
2.4-fold (244 versus 100), 2.6-fold (410 versus 157), and 4.8-fold 
(244 versus 51) as many SVs (including interchromosomal trans-
locations and intrachromosomal SVs) as Hi-C breakfinder in BT-
474, HCC1954, and MCF7, respectively (Fig. 2B). At the same time, 
EagleC achieved notably higher precision rates than Hi-C breakfinder 
in these cell lines. When allowing 20-kb mismatches for either side 
of the breakpoints, 84.8, 76.3, and 73.8% of SVs predicted by EagleC 
in BT-474, HCC1954, and MCF7 can be validated by either WGS or 
nanopore, while corresponding rates for Hi-C breakfinder are only 
55.0, 55.4, and 54.9% (Fig. 2B and fig. S6, A to C). When we increased 
the allowed mismatch from 20  to 100 kb, the validation rates for 
EagleC nearly stayed the same, while the rates for Hi-C breakfinder 
increased by 11.0, 10.8, and 7.8% in the three cell lines, respectively, 
which suggests that Hi-C breakfinder failed to predict the exact break-
point positions within the SV block for a portion of SVs (Fig. 2A and 
figs. S6, A to C). In BT-474, 24.2% (59 of 244) of the EagleC-predicted 
SVs matched 59.0% (59 of 100) of the Hi-C breakfinder predictions. 
Of the 185 SVs that are unique to EagleC, 83.2% (154 of 185) can be 
validated by either WGS or nanopore, compared with 2.4% (1 of 41) 
for Hi-C breakfinder unique SVs (Fig. 2C). Similarly, in HCC1954 
and MCF7, 73.4 (232 of 316) and 71.0% (152 of 214) of EagleC-unique 
SVs can be validated, compared with 7.9 and 0.0% for SVs that are 
specific to Hi-C breakfinder. On average, EagleC-unique SVs have 
a 21.9-fold higher precision rate and a 61.0-fold higher recall rate 
than Hi-C breakfinder unique SVs in these three cell lines (Fig. 2C).

Furthermore, we evaluated the performance of EagleC and Hi-C 
breakfinder at various sequencing depths by down-sampling the 
original BT-474 and HCC1954 Hi-C data to nine different depths 
(ranging from 5 to 175 million contact pairs) (fig. S6D). Notably, 
EagleC achieved obviously higher precision and recall rates than Hi-C 
breakfinder at all sequencing depths. In addition, while the recall rates 
for Hi-C breakfinder reached a plateau at the depth with around 
75 million contact pairs, the rates for EagleC kept increasing along 
with higher sequencing depths, which suggests that the power of 
Hi-C in SV detection might have been underestimated by previous 
studies. To evaluate the impact of tumor heterogeneity on SV pre-
diction, we simulated a series of Hi-C datasets by mixing the BT-
474/HCC1954 Hi-C with HMEC (human mammary epithelial cells, 
a normal breast cell line) Hi-C at various fractions while keeping the 
total sequencing depth at around 200 million contact pairs. Similarly, 
we observed that EagleC predicted much more SVs with higher accu-
racy than Hi-C breakfinder at all tumor heterogeneity levels (fig. S6E).

We next extended the analysis to 26 additional cancer cell lines 
or patient samples with both Hi-C and WGS data available (table S2). 
Again, we observed that compared with Hi-C breakfinder, EagleC 
achieved significantly higher recall rates and precision rates in all 
the 26 cancer samples (Fig. 2, D to F, and fig. S6F). Because of the 
inherent limitations of the algorithm, Hi-C breakfinder can only detect 
large intrachromosomal SVs greater than 1 Mb. However, as shown 
in Fig. 2G, 39.5% of intrachromosomal SVs predicted by EagleC 
are short-range SVs, with a minimum size of 35 kb. To our surprise, 
although SVs at this range have been thought hard to be distin-
guished from other Hi-C contact patterns, they were predicted 

with even higher accuracy than long-range SVs and translocations 
(Fig. 2H).

EagleC detects novel fusion genes in cancer
Because we noticed that a sizable portion of EagleC-predicted SVs 
were missed by both short-read WGS and nanopore (Fig. 2B), we 
investigated whether such detection can be supported by other evi-
dence. As the RNA sequencing (RNA-seq) data are available for 
these three cell lines, we predicted fusion genes with the Arriba soft-
ware (22). As shown in Fig. 3A, EagleC detected breakpoints inside 
the ATXN7 and BCAS3 genes in MCF7, while the arriba software 
also predicted the fusion of these two genes (Fig. 3A, right). We showed 
two more such examples in Fig. 3 (B and C), demonstrating that 
because of the high-resolution nature of EagleC, it can uniquely pre-
dict fusion genes that are missed by WGS and nanopore. We also 
wanted to point out that the sequencing depth of Hi-C data in these 
three cell lines is much lower (BT-474, 17×; HCC1954, 11×; and MCF7, 
16×) than the WGS (BT-474, 44×; HCC1954, 38×; and MCF7, 38×) 
and nanopore (BT-474, 31×; HCC1954, 49×; and MCF7, 26×), sug-
gesting that Hi-C can detect a unique set of SVs even with low 
sequencing depths. Last, we noticed that genes involved in these 
fusion events were significantly overexpressed in cancer cells, com-
pared with their expression levels in nonmalignant cell lines with-
out the fusion (Fig. 3D).

EagleC can accurately predict SVs using other  
3C-based techniques
In addition to Hi-C, there are several other 3C-derived techniques. 
Among them, pulldown-based 3C assays, including Chromatin inter-
action analysis with paired-end tag sequencing (ChIA-PET) (23), 
HiChIP (24), Proximity Ligation-Assisted ChIP-seq (PLAC-Seq) (25), 
and Capture Hi-C (26), are gaining more and more interests because 
of their efficiency in detecting genome-wide chromatin interactions 
mediated by a protein or a set of genes of interest. However, the poten-
tial of these techniques in SV detection has never been explored by 
previous studies (Table 1). We hypothesized that the rules we learned for 
predicting SVs on Hi-C maps are common among all 3C-based plat-
forms. To validate this hypothesis, we focused on the breast cancer cell 
line MCF7, in which there are WGS, nanopore, Hi-C, CTCF ChIA-PET, 
and Pol2 ChIA-PET data available (tables S2 and S3). We directly 
applied the EagleC models trained on Hi-C data to CTCF ChIA-PET 
and Pol2 ChIA-PET. Overall, EagleC predicted a similar number of 
SVs in Hi-C, CTCF ChIA-PET, and Pol2 ChIA-PET, and there is a 
large overlap between the three datasets (Fig. 4, A and B). For instance, 
EagleC predicted 226 SVs in CTCF ChIA-PET, 66.4% of which were 
predicted in Hi-C as well. Similarly, 62.8% (123 of 196) of SVs predicted 
in Pol2 ChIA-PET matched 50.4% (123 of 244) of predictions from 
Hi-C. We found that EagleC achieved comparable precision rates in 
both ChIA-PET datasets (CTCF ChIA-PET, 65.5%; and Pol2 ChIA-PET, 
68.2%) compared to Hi-C (73.8%) (Fig. 4C). Moreover, we observed 
that EagleC-predicted SVs have significantly higher recall rates and 
precision rates than Hi-C breakfinder in all the 10 HiChIP/ChIA-PET 
datasets with matched WGS data (Fig. 4, D to F, and table S3).

To investigate whether EagleC models are also transferable to 
other 3C-based platforms, we collected nine capture Hi-C datasets 
in mice, with each dataset containing one and only one known SV: 
(i) a series of duplications ranging from 420 kb to 1.74 Mb that were 
originally used to study the impact of duplications on TAD struc-
tures (fig. S7A) (27); (ii) a 115-kb inversion in mouse forelimb at 
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embryonic day 11.5 (E11.5) (fig. S7B) (28); (iii) a 1.14-Mb inversion in 
mouse limb buds at E12.5 (fig. S7C) (29); and (iv) a series of inversions 
ranging from 620 kb to 1.10 Mb, which have an invariable downstream 
breakpoint and a variable upstream breakpoint (fig. S7D) (30). We found 
that EagleC was able to predict the known SVs in all these datasets. 
No other pixels were predicted as SVs, suggesting both high sensitivity 
and high specificity of EagleC in predicting SVs on capture Hi-C maps.

Detection of SVs in 105 cancer samples
After we have validated our framework in various 3C-based platforms, 
we applied the trained models to 91 Hi-C datasets and 25 HiChIP/
ChIA-PET datasets from 105 cancer cell lines or primary tumors 
(tables S2 and S3). If multiple datasets are available in the same sam-
ple, we combined their results to achieve a more comprehensive set 
of SV annotations. In total, we predicted 5620 SVs across all the samples, 
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Fig. 3. Fusion genes uniquely detected by EagleC are overexpressed in cancer cells. In this analysis, we only included fusion events that were detected by EagleC but 
missed by both WGS and nanopore. (A to C) Examples of novel gene fusions detected by EagleC (left) and the supporting evidence from RNA-seq data (right). The fusion 
gene partners, their orientations, and the retained exons in the fusion transcripts were detected and plotted using the arriba software. (D) Normalized expression signals 
for novel fusion genes detected by EagleC in different breast cancer cell lines versus two nonmalignant breast cell lines (HME1 and MCF10A). TPM, transcripts per kilobase 
million. The P values were computed using the two-sided Wilcoxon signed-rank test. In each boxplot, the center line indicates the median, the box limits represent the 
upper and lower quartiles, and the box whiskers indicate the 1.5× interquartile range.



Wang, Sci. Adv. 8, eabn9215 (2022)     15 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 14

with the number in each sample ranging from 2 to 410 (Fig. 5A and 
table S4). The highest numbers of SVs are observed in breast cancer 
cell lines, consistent with previous findings that breast cancer cells 
frequently contain genomic instability driven chromosomal varia-
tions (31). Combining data from all samples, 30.9% of the predicted 
SVs are short-range SVs (<1 Mb), 35.7% are long-range SVs, and 
33.4% are interchromosomal translocations.

Next, we investigated how 3D genome architectures can influence 
the location and formation of SVs. As genomic variations such as 
SVs and copy number variations (CNVs) can confound the inter-
pretation of contact maps in cancer, we computed 3D genome fea-
tures including A/B compartments and TADs for different cancer 
types using Hi-C data in normal cells/tissues with similar cell of 
origin (table S5). It has been widely known that the genome can be 

partitioned into two compartments, with the A compartment asso-
ciated with open chromatin, and the B compartment associated with 
closed chromatin, and chromatin interactions within the same com-
partments (A-A/B-B) are stronger than interactions between differ-
ent compartments (A-B) (32). We hypothesized that the preexisting 
chromatin interactions between distal compartments would increase 
the probability of SV formation between these compartments. To 
this end, we quantified the proportions of SVs that occurred within 
the same compartments (A-A/B-B) and between different compart-
ments (A-B). As a control, we randomly shuffled the SV breakpoints 
in the mappable genome regions 1000 times for each cancer sample, 
controlling for the ratio of interchromosomal versus intrachromo-
somal SVs and the sizes of the intrachromosomal SVs. Compared 
with random controls, SVs are preferentially formed between A-A 

CTCF ChIA-PET

Pol2 ChIA-PET

Hi-C

MCF7B C

A

MCF7 Hi-C MCF7 CTCF ChIA-PET MCF7 Pol2 ChIA-PET

D E F

Fig. 4. EagleC accurately predicts SVs on HiChIP and ChIA-PET contact maps. (A) A heterozygous deletion (chr1, 181,695,000 to 182,405,000) on chromosome 1 is 
correctly predicted by EagleC on Hi-C, CTCF ChIA-PET, and Pol2 ChIA-PET contact maps of MCF7 cells. The same copy number profile calculated from WGS is shown below 
each contact map. (B) Venn diagram of SVs predicted by EagleC on different contact maps of MCF7 cells. (C) Number of SVs predicted by Hi-C breakfinder and EagleC on 
different contact maps of MCF7 cells with levels of validation by orthogonal methods. The ratio of SVs that can be validated by orthogonal methods is indicated above 
each bar. (D and E) Performance of EagleC and Hi-C breakfinder on 10 HiChIP/ChIA-PET contact maps in cancer samples. Each dot represents an individual sample. The 
P values were computed using the two-sided Wilcoxon signed-rank test. (F) Differences of precision rates and recall rates between EagleC-predicted and Hi-C breakfinder–
predicted SVs on 10 HiChIP/ChIA-PET datasets in cancer.
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compartments rather than B-B or A-B compartments (Fig. 5B), and 
such patterns are largely conserved for different cancer types and 
different ranges of SVs (figs. S8 and S9).

At the megabase scale, it has been shown that mammalian ge-
nomes are organized into TADs (33). TAD boundaries, which are 
enriched for CTCF binding sites, provide an insulated environment 
for proper gene regulation. In comparison to an expected distribution 
derived from randomly shuffled SVs, we found that SV breakpoints 
are located significantly closer to TAD boundaries, consistent with pre-
vious findings that DNA topoisomerase II beta (TOP2B)-mediated 

DNA double-strand breaks are enriched at anchors of chromatin 
loops (Fig. 5C and figs. S8 and S9) (34). Overall, around 10% of SVs 
are formed between TAD boundaries, 37.5% are formed between a 
TAD boundary and an intra-TAD region, and 52.5% are formed be-
tween intra-TAD regions (Fig. 5D and figs. S8 and S9). Moreover, 
we found that transcription start sites (TSSs) of cancer-related genes 
are specifically enriched at breakpoint-associated TAD boundaries 
(Fig. 5E), suggesting that the disruption of TAD boundaries by 
genomic rearrangements might be an important mechanism for 
oncogene dysregulation and tumorigenesis.
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Fig. 5. Pan-cancer analysis of SVs in 105 cancer cell lines or patient samples. (A) Number of short-range intrachromosomal SVs, long-range intrachromosomal SVs, 
and interchromosomal translocations predicted in each sample. The pie chart shows the percentages of different SV categories based on the data combined from all 
samples. (B) SVs are significantly enriched in A-to-A and depleted in B-to-B compartments compared to randomly shuffled controls. The P values were calculated using 
two-sided Z test. (C) SV breakpoints occur significantly closer to TAD boundaries compared to random shuffled controls. The P values were calculated using two-sided 
Z test. (D) Percentages of SVs with breakpoints occurring between TAD boundaries, between a TAD boundary and intra-TAD regions, and between intra-TAD regions. 
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To further explore the value of our SV annotations, we identified 
genes that are recurrently affected by short-range SVs in different 
samples. As expected, we found that the majority of deleted genes 
are tumor suppressor genes (Fig. 5F), such as CDKN2A/2B (35), WWOX 
(36), CHFR (37), and MSH2 (38) genes. On the other hand, a lot of 
genes within the duplicated regions are oncogenes (Fig. 5G), such as 
MYC, which has been reported to be associated with cell prolifer-
ation in multiple cancer types (39), and the CD44 gene, which is a 
common biomarker of cancer stem cells and encodes a cell-surface 
glycoprotein involved in tumor initiation and progression (40).

EagleC predicts known interchromosomal  
translocations in single cells
To make EagleC work for scHi-C with limited contact information 
per cell, we down-sampled contact maps of the same eight cancer 
cell lines and GM12878 cells to comparable sequencing depths, and 
retrained the models at the 500-kb resolution (Materials and Methods). 
Then, we tested EagleC on published scHi-C datasets in HAP1 and 
K562 (41), both of which are chronic myeloid leukemia cell lines. 

HAP1 cells contain a reciprocal translocation between chromosome 9 
and chromosome 22 (42), while K562 cells contain a nonreciprocal 
translocation between chromosome 9 and chromosome 22 (43). The 
HAP1 dataset contains 256 single cells, with a median of 18,793 con-
tacts per cell, while the K562 dataset contains 337 cells, with a median 
of merely 3974 contacts per cell (Fig. 6A and fig. S10A). Notably, we 
found that even with these extremely sparse contact matrices, EagleC 
was able to predict the known chr9-chr22 translocations in single 
cells (Fig. 6, B and C, and fig. S10, B and C).

To systematically investigate the lower limit of contact number 
for accurately predicting SVs in single cells, we ranked all the 256 
HAP1 cells by their sequencing depths and generated a series of con-
tact matrices (contact pairs ranging from 148,635 to 4.05 million) 
by pooling up to 99 deepest single cells (Fig. 6D). As expected, the 
number of predicted SVs decreases along with the increasing num-
ber of cells (Fig. 6E). By using SVs predicted from the merged Hi-C 
map as the gold standard SV set, we found that the F1 scores increased 
with the cell number and reached a plateau of 1 when the cell number 
reached 25 (1.68 million contact pairs) (Fig. 6F). For K562 cells, we 
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performed a similar analysis by pooling up to 300 deepest K562 single 
cells, but this time, we counted interchromosomal translocations and 
intrachromosomal SVs separately (fig. S10, D to H). Again, by using 
SVs predicted from the merged Hi-C map of all 337 K562 single cells 
as the gold standard, we observed that the F1 scores for both intra-
chromosomal SVs and interchromosomal translocations increased 
with the cell number. However, predicting intrachromosomal SVs 
needed a higher number of usable reads from more cells to achieve 
a reasonable performance (fig. S10F).

In conclusion, EagleC can identify both interchromosomal trans-
locations and intrachromosomal SVs in scHi-C data. However, because 
of insufficient usable reads per cell, pooling contacts from multiple 
cells can help achieve the most accurate predictions at current stages.

DISCUSSION
Although several methods have been developed to detect SVs using 
Hi-C data, the power of Hi-C in detecting short-range SVs with break-
point distance less than 1 Mb has not been achieved, mainly due to 
the challenge of distinguishing SV signals from other chromatin 
interaction signals within this range. Here, by taking the advantage 
of CNNs in image recognition and ensemble learning in avoiding the 
overfitting problem, we developed EagleC to fill this important gap. 
For individual models, we applied an iterative training approach to 
gradually improve their specificity by incorporating negative sam-
ples from a normal cell line. We showed that EagleC not only pre-
dicted unique short-range SVs but also greatly improved the overall 
prediction power over existing methods. We demonstrated the fea-
sibility of using Hi-C to detect fusion genes, some of which were 
missed by both WGS and nanopore. Although our current frame-
work cannot achieve the base-pair resolution, we observed that Hi-C 
has unique ability in detecting fusion points within introns compared 
with RNA-seq (Fig. 3, A and B). Moreover, EagleC can serve as a 
general model to predict SVs using other 3C-based contact maps 
including ChIA-PET, HiChIP/PLAC-Seq, capture Hi-C, and even 
scHi-C. With unique properties of different platforms in enriching 
different set of chromatin interactions, we envision that the applica-
tion of EagleC in these platforms will boost SV-related discoveries, 
such as enhancer hijacking (4). Furthermore, by applying EagleC to 
116 Hi-C/HiChIP/ChIA-PET datasets, we predicted SVs in 105 cancer 
samples and found the distributions of SVs on the genome are closely 
associated with 3D chromatin architectures.

We note that existing methods such as Hi-C breakfinder (18) and 
HiNT-TL (19) can only be applied to human samples (Table 1), as 
they rely on the identification of interaction blocks that deviate from 
the expected interaction frequencies, which were only precalculated 
for human genomes. In comparison, the contact patterns learned by 
EagleC are genome agnostic and can be used to predict SVs or judge 
the accuracy of genome assemblies in any species (fig. S7) (44). 
Because the data we collected in this study had various sequencing 
depths and quality, we limited our analyses at the 5-kb resolution 
and predicted SVs with a minimum size of 35 kb. However, our frame-
work should be able to predict SVs at higher resolutions (1 kb) when 
sequencing depths are sufficient.

Recent progress in single-cell sequencing techniques has enabled 
the studies of molecular changes and evolutionary trajectories during 
cancer development. In this course, multiple algorithms have been 
developed for identifying single-nucleotide variants (SNVs) and CNVs 
in single cells (45–47). However, predicting SVs at the single-cell 

level is still relatively unexplored. Here, by applying EagleC to scHi-C 
datasets in cancer cell lines (41), we demonstrated that the lower limit 
of contact number for EagleC to accurately predict SVs is between 1 
and 2 million usable reads (Fig. 6F and fig. S10F). It has been shown 
that several biotin-free scHi-C protocols, such as Dip-C (48), can 
achieve such level of sequencing depths per cell. On the other hand, 
single-nucleus methyl-3C sequencing, another method without biotin 
pulldown of ligation junctions, can simultaneously measure chro-
matin contacts and DNA methylation levels in the same cells (49). 
Combining these technologies and EagleC in primary samples will 
enable the study of SV heterogeneity and potentially identify SVs 
that are critical for cancer studies.

MATERIALS AND METHODS
Hi-C data processing
For Hi-C/HiChIP/ChIA-PET datasets, if the data had been mapped 
to hg38 and processed into contact matrices at multiple resolutions, 
we directly downloaded and used the processed contact matrices in 
our study; if only raw sequencing data were available, we processed 
the data using the runHiC Python package (https://pypi.org/project/
runHiC/), which is based on the 4DN Hi-C data processing pipeline; 
otherwise, if the data were originally mapped to hg19 and raw se-
quencing data were not available, then we converted the coordinates 
to hg38 using pairLiftOver (https://pypi.org/project/pairLiftOver/; 
see description below). For Hi-C datasets, we used the CNV-normalized 
matrices calculated by our recently developed toolkit NeoLoopFinder 
(4) as input for EagleC. For HiChIP and ChIA-PET datasets, we used 
the iterative correction and eigenvector decomposition (ICE)- 
normalized matrices as input for EagleC (50).

For other Hi-C–based SV detection methods, we installed and 
ran Hi-C breakfinder following https://github.com/dixonlab/hic_
breakfinder. We installed and ran HiNT-TL (v2.2.8) following 
the official guidelines at https://github.com/parklab/HiNT. We 
downloaded, installed, and ran HiCtrans (hictrans.v3.R) following 
https://github.com/ay-lab/HiCtrans.

pairLiftOver
To facilitate the processing of Hi-C/HiChIP data that were mapped 
to a different reference genome (hg19) and did not have raw sequencing 
data available, we developed a command line tool called pairLiftOver 
to convert the 2D genomic coordinates of chromatin contacts between 
assemblies. pairLiftOver is based on the UCSC chain files (https://
genome.ucsc.edu/goldenPath/help/chain.html), which describes pair-
wise alignment between two assemblies. The input to pairLiftOver 
can be two kinds of pairs files: (i) the pairs format defined by 4DN 
DCIC (https://github.com/4dn-dcic) and (ii) allValidPairs defined 
by HiC-Pro (https://nservant.github.io/HiC-Pro/RESULTS.html). 
Both formats define contact pairs in plain text, with each row repre-
senting 2D coordinates of a single pair. pairLiftOver iterates each 
row of a pairs file and converts the coordinates of both sides using 
the pyliftover package (https://github.com/konstantint/pyliftover). 
A pair is retained only if both sides can be uniquely mapped to the 
target genome. For each row, only columns pertaining to genomic 
coordinates (columns 2 to 5 for 4DN pairs; columns 2 and 3 and 
columns 5 and 6 for allValidPairs) are converted and all other col-
umns remain unchanged. The input pairs file can be plain text file, 
gzip/bgzip compressed file (.gz), or lz4 compressed file (.lz4). By 
default, pairLiftOver will output a sorted pairs file in the standard 
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4DN pairs format (https://github.com/4dn-dcic/pairix), containing 
seven columns: “readID,” “chr1,” “pos1,” “chr2,” “pos2,” “strand1,” 
and “strand2.” However, users can also choose to output a matrix 
file in “.mcool” (50) or “.hic” (51) format by setting the parameter 
“--output-format.”

scHi-C data processing
The FASTQ files of the scHi-C data were downloaded from GSE84920. 
The cellular demultiplexing was performed by following the pipe-
line described in the original paper (41), and cells with a low number 
of reads were filtered out. Then, the demultiplexed reads were aligned 
to hg19 using BWA-MEM (52) with the parameter “-SP5M.” The 
BAM files were then parsed into the 4DN pairs format, and the poly-
merase chain reaction duplications were removed by using pairtools 
(https://github.com/open2c/pairtools). Only contact pairs with UU/
UR/RU flags in the pairs file and with both sides mapped to different 
restriction fragments were kept for further analysis. Last, we generated 
contact matrices at the 500-kb resolution by using the cooler Python 
package (50).

WGS and nanopore data processing
For WGS, the paired-end reads were first mapped to hg38 by BWA-
MEM (v0.7.17), and duplicate reads were removed by Picard (v2.6.0) 
(https://github.com/broadinstitute/picard). Then, we used two methods 
to detect SVs from the same BAM files: (i) We ran Delly (v0.8.7) 
with parameters “-t ALL -q 20 -s 15” (53), and (ii) we ran smoove 
(v0.2.6) (https://github.com/brentp/smoove) with default parameters, 
which is an optimized pipeline based on lumpy (54). When we evaluated 
the precision rate for SV predictions from Hi-C (Figs. 2, D, F, and H, 
and 4, E and F; and fig. S6F), the union of SVs detected by delly and 
smoove was used as the reference SV set; when we evaluated the 
recall rate (Figs. 2E and 4, D and F; and fig. S6F), the intersect of 
delly and smoove was used as the reference SV set. We also inferred 
copy number profiles from WGS using Control-FREEC (v11.6) (55). 
Multiple ploidy values (“ploidy  =  1,2,3,4”) were specified in the 
configuration file to enable the program to automatically select the 
one that explains the most observed copy number alterations.

For nanopore, we applied three methods for SV detection: sniffles 
(56), Picky (57), and svim (58). To run sniffles (v1.0.12) and svim 
(1.4.2), the reads were aligned to hg38 using minimap2 (v2.20) (59) 
with parameters “-ax map-ont -L,” and after we have obtained the 
alignments in BAM format, we ran both methods with default pa-
rameters. For Picky, we used LAST (v1256) to align reads. To speed 
up the calculation, we followed the official pipeline to split the raw 
FASTQ files into multiple chunks, with each chunk containing 
800,000 reads (https://github.com/TheJacksonLaboratory/Picky/wiki/
Cluster-Support). We then ran Picky on these chunk files separately 
and combined results from all chunks. To evaluate the precision 
rates in Figs. 2 (B and C) and 4C and fig. S6 (A to E), the union of 
WGS-detected SVs and nanopore-detected SVs was used as the ref-
erence SV set, where WGS SVs were defined as the union of SVs from 
delly and smoove, and nanopore SVs were defined as the union of 
SVs from svim, sniffles, and Picky. To evaluate the recall rates in 
Fig. 2C and fig. S6 (D and E), the intersect of WGS-detected SVs 
and nanopore-detected SVs was used as the reference SV set.

RNA-seq data processing
The RNA-seq data for BT-474, HCC1954, MCF7, HME1, and 
MCF10A cell lines were downloaded from GSE152908. The raw 

FASTQ files were first processed using fastp (v0.20.1) with parameters 
“--detect_adapter_for_pe --trim_poly_x --correction.” The trimmed 
reads were then processed using the ENCODE long-read RNA-seq 
pipeline (https://github.com/ENCODE-DCC/long-rna-seq-pipeline) 
with default parameters to calculate both the genome-wide plus and 
minus strand signal tracks and gene quantifications.

The gene fusions were detected using Arriba (v2.2.1) (22) with 
suggested parameters using chimeric alignments outputted by STAR 
(v2.7.10a) as input (https://arriba.readthedocs.io/en/latest/workflow/).

Down-sample Hi-C contact maps to a specified 
sequencing depth
Our down-sampling procedure assumes that the number of contacts 
between two genomic regions follows a binomial distribution. Sup-
pose there are totally Ntotal contact pairs in the original matrix M, 
and we want to generate a down-sampled matrix M′ with around 
Nsample contact pairs, i.e., with a down-sample rate of  = Nsample/Ntotal, 
Nsample < Ntotal. To this end, for each nonzero pixel in M, we desig-
nate the corresponding contact frequency in M′ a random integer 
number generated from a binomial distribution with parameters Mij 
and , where Mij is the contact count of the 100% Hi-C matrix be-
tween bin i and bin j. The same algorithm was also used when we 
mixed BT-474/HCC1954 Hi-C with HMEC Hi-C at different fractions.

Collection of training samples and data augmentation
In our previous work (18), we have compiled comprehensive SV lists 
for eight cancer lines (A549, Caki2, K562, LNCaP, NCI-H460, PANC-1, 
SK-N-MC, and T47D) from multiple experimental platforms. To create 
a high-quality positive training set for EagleC, we manually curated 
a set of high-confidence SVs that can be detected by both WGS and 
optical mapping, and have Hi-C signals surrounding the breakpoints. 
In total, we obtained 243 such SVs in eight cell lines. We noticed 
that this original SV set demonstrated severely imbalanced distribu-
tions in two aspects: (i) the numbers of SVs with different orienta-
tions (++, 37; +−, 96; −+, 61; −−, 29; ++/−−, 15; +−/−+, 5) and 
(ii) the numbers of SVs at different ranges (short-range SVs, 67; and 
long-range SVs and translocations, 176). To avoid any biases intro-
duced by such imbalance during the training, and to boost the num-
ber of samples, we proposed a data augmentation algorithm as follows: 
Given a submatrix Mij with a size of 21 × 21, where each entry rep-
resents the raw contact frequency between bin i and bin j, we can 
generate a matrix   M  ij  ′    of the same size, where the value of each en-
try follows a Poisson distribution with  = Mij. By using this algo-
rithm as the core, we increased the positive training set to ~3000 
samples for each individual model of the EagleC framework and made 
sure that these samples had balanced distributions in both different 
SV orientations and different genomic ranges.

For negative training samples, the chromatin loops in GM12878 
were downloaded from a previous study (21) with the coordinates 
converted from hg19 to hg38 using LiftOver (60), and A/B compart-
ments were identified using cooltools (v0.3.2, https://github.com/
open2c/cooltools) at the 10-kb resolution.

Implementation of the EagleC framework
EagleC is an ensemble-learning framework that makes predictions 
based on 50 different models and uses CNN as the individual model. 
Each CNN model takes 21 × 21 grayscale images as input. Sequen-
tially, the CNN architecture includes the following components: 
(i) convolution with 32 filters of a kernel size 3 × 3 and stride size 1, 
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https://arriba.readthedocs.io/en/latest/workflow/
https://github.com/open2c/cooltools
https://github.com/open2c/cooltools
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followed by the ReLU activation and a 2 × 2 max pooling; (ii) con-
volution with 64 filters of a kernel size 3 × 3 and stride size 1, fol-
lowed by the ReLU activation and a 2 × 2 max pooling; and (iii) two 
fully connected layers with 512 hidden units. The first fully connected 
layer is followed by the ReLU activation and a dropout layer with a 
dropout probability of 0.5 to avoid overfitting, and the second fully 
connected layer acts as the final sigmoid output layer, which com-
putes probability scores for each of the six labels: ++, +−, −+, −−, 
intranegative, and internegative. Each individual model is randomly 
initialized with a different set of training samples and trained using 
an iterative approach (Fig. 1A). During each round of training, the 
model is optimized against the accuracy using the Adam algorithm. 
We built the whole framework in Python and the neural network 
part was implemented using the TensorFlow Keras API (v2.3.0).

Computationally, it is impractical to perform predictions for the 
submatrix surrounding every pixel of a genome-wide contact map 
at high resolutions. To speed up the calculation, we perform several 
prefiltering procedures based on our prior knowledge that SVs usually 
induce abnormal signals with both high intensity and high density: 
(i) We filter out pixels where there are fewer than five nonzero values 
within their 21 × 21 window, and (ii) for intrachromosomal maps, 
we only consider pixels within the 3 × 3 window of significant inter-
actions. Here, the significant interactions are identified using a model 
that accounts for the distance-dependent decay of interaction fre-
quencies. Specifically, the expected interaction frequency at given 
genomic distance k is calculated as follows

    E k  *   =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩
    

  1 ─ n − k     ∑ 
∣i−j∣=k

     M ij  *  , k < 100
   

  1 ─ n − 100     ∑ 
∣i−j∣=100

     M ij  *  , k ≥ 100
    

where   M ij  *    is a CNV-normalized or ICE-normalized intrachromo-
somal contact matrix with a size of n × n. Note that all pixels with 
genomic distance greater than 100 bins at a given resolution will 
have the same expected background. Then, the P value for each ob-
served interaction frequency Mij is calculated on the basis of the 
Poisson process with expected value     ij   =  E ∣i−j∣  *  /( W  i   ×  W  j  ) , where 
Wi is the bias vector extracted either from the “weight” (50) (in case 
of ICE normalization) or “sweight” (4) (in case of CNV normaliza-
tion) column of the “.cool” file. To reduce potential false negatives, 
we apply a loose P value cutoff of 0.05 to include as many pixels as 
possible. In addition to the filtering procedures, different intrachro-
mosomal and interchromosomal matrices can be automatically 
processed in parallel. All that users need to do is to submit the same 
command for a certain number of times. According to our test on a 
computational cluster [CPU information: Intel(R) Xeon(R) Gold 
6230 CPU @ 2.10GHz], with 16 parallelized jobs, the program can 
be generally finished within 3 hours for a dataset with ~200 million 
contact pairs, which is comparable to or even faster than existing 
methods (table S6).

The final probability scores for each pixel are calculated by averaging 
the values across all 50 models. A pixel is identified as a candidate 
SV breakpoint if the probability of at least one positive label (++, 
+−, −+, and −−) is greater than a predefined cutoff (we set different 
cutoffs for different resolutions; see details below). We perform 
DBSCAN to identify any local clusters of highly scored pixels, and 
within each cluster, the pixel with the highest probability score will 
be reported in the final SV list.

To optimize the prediction performance for various sequencing 
depths, we down-sampled contact matrices of training samples to a 
series of sequencing depths and independently trained EagleC 
models for each depth. Specifically, we trained models for six levels 
of sequencing depths, including 300-800 million (M), 200-300M, 
100-200M, 50-100M, 10-50M, and 5-10M contact pairs. In predic-
tion, the most appropriate models were selected according to the 
number of contacts in the target contact map; for example, SVs in 
BT-474 and HCC1954 were predicted using the “100-200M” models 
because the Hi-C maps in these two cell lines contain 192M and 188M 
contact pairs, respectively.

Combining SV predictions from multiple resolutions
To optimize the performance of our SV prediction pipeline in both 
specificity and sensitivity, we propose a strategy that combines pre-
dictions from multiple resolutions including 5, 10, and 50 kb. Basi-
cally, high-resolution contact matrices (5 or 10 kb) usually achieve 
higher accuracy and have unique advantages in predicting short-
range SVs, while low-resolution contact matrices at 50 kb can com-
plement the predictions when sequencing depths are not sufficient 
to cover the real SV breakpoints at high resolutions. In our pipe-
line, we first predict SVs at 5-, 10-, and 50-kb resolutions separately. 
The default probability cutoffs are empirically set to 0.8, 0.8, and 
0.99999 for 5, 10, and 50 kb, respectively. However, according to 
our test against the benchmark datasets used in this study, EagleC 
is pretty robust to different cutoff values, but generally tuning 
down the cutoffs detects more SVs with slightly lower accuracy, 
while tuning up the cutoffs detects fewer SVs with slightly higher 
accuracy (fig. S11). For 10- and 50-kb predictions, we further 
search for the most probable breakpoint coordinates within a local 
region on 5-kb contact maps so that all the reported SVs will have 
the 5-kb resolution. After we have obtained SV predictions from 
individual resolutions, we merge the SV coordinates from differ-
ent resolutions together and only report nonredundant SVs for 
each sample.

Application of EagleC to scHi-C
We made the following modifications when we applied EagleC to 
scHi-C: (i) All the training and predicting steps were based on con-
tact matrices at the 500-kb resolution; (ii) raw contact signals were 
used instead of ICE/CNV-normalized signals; (iii) the models were 
trained for eight levels of sequencing depths with lower number of 
contacts, including 10-20M, 5-10M, 3-5M, 1-3M, 750K-1M, 500-750K, 
250-500K, and 100-250K contact pairs; and (iv) in prediction, the 
probability cutoff was set to 0.95.

Annotations of duplications and deletions
We defined duplications and deletions by using both the orientation 
information of SV breakpoints and copy number profiles. Specifi-
cally, duplications were defined as intrachromosomal SVs with −+, 
++, or −− orientations, and the genomic interval between break-
points had a copy number ratio larger than 1.5, while deletions were 
defined as intrachromosomal SVs with the +− orientation, and 
the genomic interval had a copy number ratio smaller than 0.3. 
Copy number profiles calculated from WGS were used if WGS was 
available; otherwise, we used copy number profiles inferred from 
Hi-C in this calculation (4). In addition, in Fig. 5 (F and G), we only 
considered short-range SVs with a breakpoint distance of less 
than 1 Mb.



Wang, Sci. Adv. 8, eabn9215 (2022)     15 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 14

Identification of compartments and TADs
We identified A/B compartments and TADs on Hi-C contact maps 
of several normal cell lines or tissues (table S5) to investigate the 
associations between 3D genomic architectures and SV formation. 
The A/B compartments were identified using cooltools (v0.3.2). Briefly, 
the eigenvalue decomposition was performed on the 100-kb intra-
chromosomal contact maps, and the first eigenvector (PC1) was used 
to capture the “plaid” contact pattern. The original PC1 was oriented 
according to gene densities (Ensembl 93) so that positive values cor-
respond to active genomic regions (A compartment) and negative 
values correspond to inactive regions (B compartment). For TADs, 
we ran HiTAD at the 25-kb resolution and defined TADs as the 
bottom-level domains returned by HiTAD (61).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn9215

View/request a protocol for this paper from Bio-protocol.
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