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Abstract
Using computer simulation we investigated whether machine learning (ML) analysis of selected ICU monitoring data can 
quantify pulmonary gas exchange in multi-compartment format. A 21 compartment ventilation/perfusion (V/Q) model of 
pulmonary blood flow processed 34,551 combinations of cardiac output, hemoglobin concentration, standard P50, base 
excess, VO2 and VCO2 plus three model-defining parameters: shunt, log SD and mean V/Q. From these inputs the model 
produced paired arterial blood gases, first with the inspired O2 fraction (FiO2) adjusted to arterial saturation (SaO2) = 0.90, 
and second with FiO2 increased by 0.1. ‘Stacked regressor’ ML ensembles were trained/validated on 90% of this dataset. 
The remainder with shunt, log SD, and mean ‘held back’ formed the test-set. ‘Two-Point’ ML estimates of shunt, log SD 
and mean utilized data from both FiO2 settings. ‘Single-Point’ estimates used only data from SaO2 = 0.90. From 3454 test 
gas exchange scenarios, two-point shunt, log SD and mean estimates produced linear regression models versus true values 
with slopes ~ 1.00, intercepts ~ 0.00 and R2 ~ 1.00. Kernel density and Bland–Altman plots confirmed close agreement. 
Single-point estimates were less accurate: R2 = 0.77–0.89, slope = 0.991–0.993, intercept = 0.009–0.334. ML applications 
using blood gas, indirect calorimetry, and cardiac output data can quantify pulmonary gas exchange in terms describing a 
20 compartment V/Q model of pulmonary blood flow. High fidelity reports require data from two FiO2 settings.
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1  Introduction

More than 50 years ago John West published his landmark 
model of pulmonary gas exchange [1], building on the work 
of predecessors [2]. The model is characterised by volumes 
of inspired gas (V) and mixed venous blood (Q) equilibrat-
ing in 10 to 100 virtual lung compartments governed by log 
normal distributions of alveolar ventilation and pulmonary 

capillary blood flow across compartmental V/Q ratios [1, 
3, 4].

The multiple inert gas technique (MIGET), an investiga-
tive tool based on West’s model [5, 6], has provided mecha-
nistic detail on impaired gas exchange. MIGET evaluations 
are technically challenging procedures in which six inert 
gases spanning a range of solubilities are infused in saline 
until equilibration. Plots of pulmonary retention and excre-
tion versus gas solubility are constructed from gas chroma-
tographic measurements and ‘transformed’ respectively into 
distributions of blood flow and ventilation against a loga-
rithmic scale of V/Q ratios spread across 50 compartments 
[5, 7].

MIGET has identified shunt (V/Q = 0) as the dominant 
cause of hypoxaemia in the acute respiratory distress syn-
drome (ARDS) and lobar pneumonia, whereas in chronic 
obstructive pulmonary disease (COPD) and in some patients 
with COVID-19 pneumonia hypoxaemia is primarily from 
mixed venous equilibration in low V/Q compartments 
[8–10]. Bimodal distributions have been observed in patients 
with COPD, asthma [3] and ARDS [11].
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Despite its ‘gold standard’ status, the complexity of 
MIGET has obliged clinicians to track pulmonary gas 
exchange via alternative indices, usually those categorized 
as ‘tension’ or ‘content’-based [12]. Venous admixture (VA) 
is the classic content-based index [13], while tension-based 
indices include the A–a gradient, used in APACHE risk 
algorithms [14], and the ratio between the arterial oxygen 
tension and the inspired oxygen fraction (PaO2/FiO2 ratio 
or PF ratio), important in ARDS diagnosis and stratifica-
tion [15].

These indices show significant signal variability [16], but 
their greatest drawback is the limited information provided 
on the underlying pulmonary pathophysiology. The VA 
approach of Riley and Cournand [13, 17] is more informa-
tive on this aspect, but hampered by inherent over-simpli-
fication. This is because VA (V/Q = 0) is one of just two 
perfused compartments (V/Q = 0 and 1). All oxygen transfer 
deficits are corralled within VA, in other words as true shunt, 
leaving no ability to tease out contributions from low V/Q 
compartments. For clinicians this can be a crucial distinc-
tion, for example in managing COVID-19 pneumonia (see 
“Discussion” section) [10]. Similarly, the effects of high V/Q 
are incorporated in a single dead space estimate (V/Q = ∞). 
As a final drawback, accurate VA calculations require mixed 
venous blood for analysis [12].

In part to address these shortcomings, scaled back 
variations on the MIGET framework have been proposed 
[18–21]. Prominent among these is the automatic lung 
parameter estimator (ALPE) [18], described as a ‘simple 
bedside alternative to MIGET’. ALPE has been shown to 
match complex MIGET calculations in experimental lung 
injury [22, 23], and is now finding application in clinical 
research [24] and as the key component of a commercial 
package (www.​merma​idcare.​com) designed for monitoring 
and decision support.

Like MIGET, shunt is given conventionally in ALPE 
assessments as percentage of cardiac output. However, 
unlike MIGET, ALPE models ‘low’ and ‘high’ V/Q mis-
match as partial pressure differentials (to be distinguished 
from diffusion limitation) across imposed ‘partitions’ 
between blood and alveolar gas. Specifically, ‘low’ V/Q 
mismatch is represented by the fall in PO2 from alveolar gas 
to pulmonary end-capillary blood, and ‘high’ V/Q mismatch 
as the rise in PCO2 across the same interface.

We suggest that machine learning (ML) could add value 
in this ‘scaled back MIGET’ space [25, 26]. With data 
inputs close to those used by ALPE it should be possible 
for trained ML applications to generate detailed pulmonary 
assessments. These could take the form of a shunt estimate 
plus separate parameters defining log normal distributions 
of blood flow across compartmental V/Q ratios. Critical care 
physicians would then be provided with prompt actionable 
diagnostic information presented in a familiar format. Added 

bonuses could include shorter measurement intervals with a 
reduced requirement for FiO2 ‘switching’ (at present ALPE 
requires up to four FiO2 ‘switches’).

To investigate this possibility, we tested the following 
hypotheses in silico:

(1)	 Trained ML applications using data normally sourced 
from blood gas analysis, indirect calorimetry, and car-
diac output measurements can quantify pulmonary gas 
exchange in terms describing a multi-compartment V/Q 
model of pulmonary blood flow.

(2)	 Consistent ML reports require measurement data at no 
more than two FiO2 settings.

2 � Materials and methods

To test the above hypotheses, we exposed selected ML 
applications to simulated clinical monitoring data routinely 
available from blood gas analysis, indirect calorimetry, and 
cardiac output measurements. Scenarios were constructed 
with these data to represent a diverse mix of O2 consumption 
(VO2) and delivery, CO2 production (VCO2) and transport, 
hemoglobin-oxygen affinity, and respiratory and metabolic 
acid–base status. Paired blood gases were generated in each 
simulation by a 21-compartment model of pulmonary blood 
flow governed by three input values: shunt percentage, log 
standard deviation (log SD) and distributional mean (Fig. 1, 
for more model detail and core equations, see Supplemen-
tary Material).

Fig. 1   Graphical illustration of modelled blood flow through 20 
gas exchanging compartments plus a single shunt compartment 
(V/Q = 0). Shunt is set at 10% of total pulmonary blood flow. Note 
the log normal distribution of the non-shunt pulmonary blood flow 
according to compartment V/Q ratios. In this example log SD = 2.0 
and flow distributional V/Q mean = 0.35

http://www.mermaidcare.com
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To make the evaluation, ML applications trained on this 
material were challenged with simulated monitoring data 
from ‘unseen’ test scenarios, the goal in each case being to 
back-generate the three governing model parameters of pul-
monary blood flow distribution (shunt, log SD and mean). 
These estimates were then compared with ‘true’ model input 
values for the same scenarios.

Steps in this process were as follows:

(1)	 Arterial blood gases were produced by the lung model 
at two structured settings of inspired oxygen fraction 
(FiO2) (see below) in response to unique input combi-
nations of the three parameters defining model pulmo-
nary blood flow distribution (shunt, log SD and mean, 
Table 1) plus one value from each of six monitoring 
categories (Table 2) available from blood gas analysis, 
indirect calorimetry, and cardiac output measurements.

(2)	 Using a Python program, 34,551 unique input combina-
tions were built around a core set of 7500.

(3)	 Model calculations were run from VBA sub-routines 
(Excel, Microsoft, Redmond, WA) until stable outputs 
were achieved for pH, PCO2, PO2 and Hb saturation in 
arterial and mixed venous blood and in the pulmonary 
end-capillary blood of each of the 20 non-shunt com-
partments.

(4)	 For each input combination, the FiO2 generating 
an arterial oxygen saturation (SaO2) of 0.90 was 
determined by iteration, ensuring that in each case 
0.21 ≤ FiO2 ≤ 0.90.

(5)	 On attainment of SaO2 = 0.90, values were logged for 
FiO2, arterial pH, arterial PO2 (PaO2), arterial PCO2 
(PaCO2), calculated PF ratio and calculated venous 
admixture (VA).

(6)	 For the second calculation the FiO2 was increased by 
0.1 and the model run again.

(7)	 Values for SaO2 and calculations of VA, and PF ratios 
were logged at this higher FiO2.

(8)	 With data from SaO2 = 0.90 as baseline, changes at the 
higher FiO2 in SaO2 (Dsat), VA (DVA) and PF ratios 
(DPF) were calculated and logged.

(9)	 This sequence performed 34,551 times generated the 
final dataset.

2.1 � ML analysis of completed dataset

(1)	 After pre-processing to reduce redundancies, data rows 
were formatted as in Table 3 and subjected to randomi-
zation.

(2)	 The randomized dataset was partitioned into sequential 
split fractions (70%:20%:10%) for ML training, valida-
tion and testing respectively.

(3)	 The test fraction was subjected to trained ML analysis 
with columns containing the model-defining values of 
pulmonary blood flow (shunt, log SD and mean) ‘held 
back’ to allow blinded estimates.

(4)	 Two categories of ML estimates were performed:
(a)	 ‘Single-Point’ estimates were derived by ML 

analysis of 10 variables confined to model input 
and output logs for SaO2 = 0.90. Input variables 
were ‘CO2load’, ‘O2pull’, standard P50 (P50st) 
[27], base excess, BE [28], and blood haemoglobin 
concentration (Hb). Output variables were FiO2, 
arterial pH, PaCO2, PaO2, and VA (Table 3).

(b)	 ‘Two-Point’ estimates were derived after inclusion of 
three additional variables consisting of DVA, Dsat and 
DPF (Table 3), all obtained from model output logs 
following the 0.10 FiO2 increment.

2.2 � ML methodology

We used open-source ML algorithms implementing linear 
regression techniques [Supplementary Material Table 1(s)]. 
It became evident during the validation process that multiple 
simultaneous models in a ‘stacked’ or ‘ensemble’ configura-
tion outperformed any single model. The stacking process 
used simple linear regression at the output layer to combine 
the contributions from individual models.

Table 1   Model defining 
parameters

V volume of inspired gas, Q 
volume of mixed venous blood, 
SD standard deviation

Variable Range

Shunt (% of pul-
monary blood 
flow)

5.5 to 36.6

Log SD 0.27 to 2.20
Mean V/Q 0.089 to 1.7

Table 2   Monitoring inputs with ranges

VCO2 total carbon dioxide production rate, VO2 total oxygen con-
sumption rate, P50st standard P50, CO cardiac output

Variable Range

VCO2 (mL/min) 190 to 225
VO2 (mL/min) 189 to 375
Hemoglobin (G/dL) 6.0 to 17.5
P50st (mmHg) 20.0 to 32.8
Base excess (mEq/L)  − 9 to + 10
CO (L/min) 4.2 to 6.5
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Model stacks were tested using ‘StackingRegressor’ from 
the ‘sklearn’ Python library (https://​scikit-​learn.​org/​stable/). 
Models were trained using correlation (‘R’ and ‘R2), mean 
absolute error (‘MAE’) and by comparing the slope and dis-
tance from zero intersection of the line of best fit.

See ‘Supplementary Material’ for more detail of ML 
methodologies employed.

2.3 � Statistical analysis

Prior to analysis, the comparison data were checked for com-
pleteness, accuracy, and consistency.

Two-way (univariate) comparisons were made using 
standard linear regression. Post-estimation diagnostics 
were run on all models. Due to the large size of the dataset, 
these included checking model residuals for normality, using 
both the Kolmogorov–Smirnov test and a normal probabil-
ity plot and heteroskedasticity, using the Breusch–Pagan 
and Cook–Weisberg tests. For each predictor, the regres-
sion slope (β) and its p-value were tabulated along with the 
equation intercept and the overall R2 value.

Kernel density plots and graphical Bland and Altman 
analyses [29] were constructed to enable visual compari-
sons of single-point and two-point results for each variable 
(shunt, log SD, and mean estimates) versus the true values.

STATA​TM (v17.0) was used for all analyses with the level 
of significance set throughout at α < 0.05.

3 � Results

From the final dataset of 34,551 data rows, 31,097 rows were 
allocated for ML training and validation and the remaining 
3454 rows for testing.

From the 3454-row test-set, kernel density and Bland and 
Altman plots of single-point and two-point estimates by ML 
versus true values of shunt, log SD and mean are set out in 
Figs. 2, 3, 4, 5, 6 and 7. All distributions are non-normal. 
Corresponding regression data are reported in Table 4, and 
Bland and Altman data in Table 5.

3.1 � Two‑point estimates

Two-point estimates of shunt, log SD and mean produced 
regression models with almost identical results (Table 4), 
with β ~ 1.00, intercept ~ 0.00 and R2 ~ 1.00 for each of the 
test-set variables. The kernel density and Bland and Altman 
plots confirmed close agreement with true values (Figs. 3, 
5, 7; Table 5).

3.2 � Single‑point estimates

From Figs. 2, 4 and 6 and Tables 4 and 5, single-point 
estimates showed close concordance but less consist-
ent reflections of true values. Ranges from the regres-
sion models of the three estimate categories versus true 
values were R2 = 0.77–0.89, β = 0.991–0.993, and inter-
cepts = 0.009–0.334 (Table 4).

4 � Discussion

Using computer simulation, we found that blinded ML 
analysis of monitoring data replicating diverse gas 
exchange scenarios, including blood gases generated by 
a 21-compartment V/Q model of pulmonary blood flow, 
could back-generate the model’s governing parameters. 
This was achieved with ‘stacked regressor’ ML ensembles 
trained and tested on blood gas, indirect calorimetry, and 

Table 3   Example of pre-processed data for ML training

CO2load VCO2/CO, O2pull VO2/CO, VA venous admixture (%), BE base excess (mEq/L), Hb blood hemoglobin concentration (G/dL), DVA 
delta venous admixture (%), Dsat delta arterial saturation, DPF delta PF ratio

Shunt Log SD Mean FiO2 CO2load O2pull pH PaCO2 PaO2 P50st VA BE Hb DVA Dsat DPF

24 2 0.8 0.69 42.9 55.0 7.55 24.9 48.5 26.0 32.6 0.0 10.8  − 1.2 0.02  − 1.87
24 2 0.6 0.77 42.9 55.0 7.46 33.1 53.2 26.0 33.6 0.0 10.8  − 1.2 0.02  − 0.86
24 2 0.7 0.72 42.9 55.0 7.51 28.4 50.5 26.0 33.1 0.0 10.8  − 1.2 0.02  − 1.45
20 2 0.3 0.88 42.9 55.0 7.39 59.0 69 31.0 34.4 8.0 10.8  − 1.9 0.03 2.55
15 2 0.3 0.75 42.9 55.0 7.4 52.7 68 31.0 32.3 6.0 10.8  − 1.9 0.03 0.69
24 2 0.6 0.76 42.9 55.0 7.46 33.1 53.1 26.0 33.6 0.0 10.8  − 1.2 0.02  − 0.90
20 2 0.3 0.87 42.9 55.0 7.39 59.0 59.2 26.6 34.5 8.0 10.8  − 1.9 0.03 2.11
20 2 0.3 0.87 42.9 55.0 7.39 58.9 48.9 22.0 34.6 8.0 10.8  − 1.9 0.03 1.70
15 2 0.3 0.74 42.9 55.0 7.4 52.6 58.3 26.6 32.4 6.0 10.8  − 1.9 0.03 0.45
15 2 0.3 0.73 42.9 55.0 7.4 52.6 46 21.0 32.5 6.0 10.8  − 1.8 0.03 0.22

https://scikit-learn.org/stable/
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cardiac output data over a broad spectrum of gas exchange 
equilibria. In each simulation ML accurately delineated 
pulmonary blood flow as shunt percentage plus the key 
descriptors (log SD and mean) of log normal flow distribu-
tions to gas exchanging compartments according to their 
V/Q ratios. This is essentially pulmonary blood flow in 
MIGET format.

Measurements adopted for the simulation are avail-
able from current ICU monitoring devices [30]. Point of 
care blood gas analysis has been routine in ICU practice 
for decades. Indirect calorimetry is now recommended as 

a nutritional guide for critically ill mechanically ventilated 
patients [31–33]. Low invasive cardiac output monitoring, 
although not without problems [34–36], is mainstream in 
contemporary ICUs. The application of artificial intelligence 
in critical illness monitoring and decision support is itself 
no longer a novel concept [26].

The dataset to train, validate and test the ML applica-
tions was derived from systematically varied input com-
binations of the three model defining parameters (shunt, 
log SD, and mean, Table 1), linked to four direct meas-
urements (cardiac output, VO2, VCO2, and Hb; Table 2) 

Fig. 2   Shunt (single-point). Two subplots are illustrated. The Bland–
Altman (BA) plot illustrates the 3454 points. For clarity, each point 
is horizontally jittered by ± 1% of the value of the independent vari-
able. Horizontal plot lines indicate the median and 95% confidence 
interval for the difference (enumerated in Table 5). The kernel density 
estimate (KDE) plot illustrates the distribution of observations for the 

independent variable. The solid line is the true value of the variable 
with the dashed line indicating the modeled variable. Each subplot 
shares the same X-axis scale. Both X-axis units and the Y-axis units 
in the BA plot are defined by the independent variable. The Y-axis in 
the KDE plot is dimensionless

Fig. 3   Shunt (two-point). Description as for Fig. 2
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and two calculated parameters (BE, P50st; Table 2). To 
complete each scenario the model generated paired sets 
of arterial blood gases in response to these inputs at two 
structured FiO2 settings. The final dataset represented 
approximately 35,000 unique scenarios covering a diverse 
mix of O2 delivery and consumption, CO2 production and 
transport, hemoglobin-oxygen affinity, and respiratory and 
metabolic acid–base status.

ML was then able to back-generate the model-defin-
ing parameters of 3454 test scenarios in blinded fashion 
using only the blood gas measurements along with inher-
ent derived values (BE, P50st, VA, PF ratios) plus cardiac 
output, VO2, VCO2, and the baseline FiO2. ML estimates 
from single-point data (recorded at baseline SaO2 = 0.90) 
showed sufficient concordance with true values to reflect 

trends in all three key model parameters. However, a second 
equilibration introduced a dynamic component, captured by 
ML via changes in VA (DVA), PF ratios (DPF) and satura-
tion (Dsat). This two-point approach enabled high fidelity 
identification of all three key model descriptors (Figs. 3, 5, 
7; Tables 4, 5).

The simulation was designed to emulate a practical two-
step procedure in which arterial blood gas analysis with oxi-
metry is performed with the FiO2 adjusted for SaO2 = 0.90 
(using SpO2 as initial guide). This is followed by a second 
set of blood gases after increasing the FiO2 by 0.10. During 
this process, once only measurements of cardiac output, VO2 
and VCO2 are also recorded. ML then quantifies the defin-
ing parameters of the diagnostic model(s) of choice from 
relationships embedded in the data.

Fig. 4   Mean (single-point). Description as for Fig. 2

Fig. 5   Mean (two-point). Description as for Fig. 2
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It should be possible to train ML applications in other 
diagnostic models such as the ALPE system, which like the 
approach considered here devolves to three key parameters 
[18, 37], in that case shunt and partial pressure gradients 
across modelled blood/gas ‘partitions’ representing ‘high 
V/Q’ and ‘low V/Q’ mismatch. It is also conceivable that 

larger training datasets with wider input ranges could enable 
accurate single-point ML reports from data ‘snapshots’ col-
lected at any working FiO2. One further possibility for future 
investigation is that training sets formatted to target specific 
model variants, for example bimodal flow distributions [38], 
could extend ML reporting to these complexities.

Fig. 6   Log SD (single-point). Description as for Fig. 2

Fig. 7   Log SD (two-point). Description as for Fig. 2

Table 4   Linear regression 
analysis: single-point and two-
point estimates of shunt, log 
SD and mean versus true input 
values

Shunt Log SD Mean

Single-point R2 = 0.77
β =  + 0.991 (p < 0.001)
Constant =  + 0.334

R2 = 0.87
β =  + 0.993 (p < 0.001)
Constant =  + 0.047

R2 = 0.89
β =  + 0.993 (p < 0.001)
Constant =  + 0.009

Two-point R2 > 0.99
β =  + 1.001 (p < 0.001)
Constant =  − 0.038

R2 > 0.99
β =  + 1.000 (p < 0.001)
Constant =  − 0.001

R2 > 0.99
β =  + 1.001 (p < 0.001)
Constant =  − 0.001
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Informative ‘on the spot’ gas exchange evaluations 
can facilitate management decisions, as mentioned in the 
Introduction. A contemporary example might be a venti-
lated patient with pneumonia and hypoxemia with a PF 
ratio < 100. To decide on a safe course of action clinicians 
should be able to distinguish between two extremes of lung 
pathophysiology. At one extreme the disturbed oxygenation 
represents a large right to left shunt in the context of low 
pulmonary gas volumes, typical of recruitable ARDS. At 
the other pulmonary gas volumes are normal and shunt is 
minimal, the hypoxemia arising instead from widespread 
low V/Q ratios due to maldistributed lung perfusion, a situ-
ation more characteristic of COVID-19 with multiple pul-
monary vascular thrombi. In the latter circumstance, recruit-
ment maneuvers and major manipulations of positive end 
expiratory pressure (PEEP) would be contraindicated [10, 
38]. Varying combinations of the two extremes complete 
the spectrum of possibilities.

Based on our simulation, ML evaluations could make 
these distinctions rapidly without a need for specialized 
imaging. Equivalent diagnostic assessment by the current 
ALPE system would take 10 to 15 min, involve up to four 
FiO2 ‘switches’, and report VQ mismatch as partial pressure 
gradients [24, 37].

4.1 � Some caveats

The model of pulmonary blood flow used to generate the 
blood gases follows the basic West model format. Several 
modifications and simplifications were employed. These are 
detailed in the Supplementary Material.

The simulation assumes error-free measurements, 
whereas some degree of error is intrinsic to measurements of 
cardiac output [36], indirect calorimetry [39], and the meas-
ured and derived elements of blood gas analysis [12]. Indi-
rect calorimetry has increased error potential at FiO2 ≥ 0.7 
or PEEP > 12, both encountered in severe respiratory failure 

[39]. Other risk factors include circuit leaks, bronchopleural 
fistulae, and possibly extracorporeal circulations.

We have not attempted a sensitivity analysis. However, 
it is noteworthy that ALPE, an advanced system now in 
service, is subject to similar error susceptibilities. ALPE 
evaluations require a single arterial blood gas analysis and 
one cardiac output measurement or estimate, along with 
measurements at three to five different FiO2 settings of 
VO2, VCO2, arterial oxygen saturation by pulse oximetry 
(SpO2), and end-tidal O2 and CO2 fractions [24]. Despite 
measurement intervals of 10–15 min with up to four FiO2 
‘switches’, any signal distortion from absorption atelecta-
sis [40] and altered hypoxic pulmonary vasoconstriction 
[41] is regarded as minor [37].

Further, the MIGET gold-standard itself relies on a 
series of measurements and techniques all prone to error, 
including but not limited to cardiac output and minute 
ventilation measurements, collection of mixed expired gas 
without condensation-induced loss of dissolved gases, and 
gas chromatographic concentration measurements of six 
inert gases in both mixed expired gas and the gas phases 
above blood samples [4].

The low baseline arterial saturation (SaO2 = 0.90) was 
selected to allow a subsequent 0.10 FiO2 step-up within 
the bounds of FiO2 ≤ 1.00. Although SaO2 = 0.90 is at the 
hypoxemia threshold [12], it is considered adequate for tis-
sue oxygenation in the absence of anemia and low cardiac 
output, albeit with limited supportive evidence [42]. Of 
historical interest, older versions of the automated ALPE 
system could manipulate baseline SaO2 to values as low 
as 0.85, if necessary using FiO2 < 0.21 [18].

Dataset shunt, log SD and mean values retained uneven 
distributions across their respective ranges, as illustrated 
by the test-set kernel density plots (Figs. 2, 3, 4, 5, 6, 7). 
Greater training set uniformity may have produced more 
consistent single-point estimations. Barriers to uniformity 
included the automatic rejection of input combinations in 
which SaO2 ≠ 0.90 when FiO2 ≥ 0.21 ≤ 0.90.

5 � Conclusions

We conclude based on computer simulations of diverse 
gas exchange scenarios that trained ML applications using 
data sourced from blood gas analysis, indirect calorimetry, 
and cardiac output measurements can quantify pulmonary 
gas exchange in terms used to describe multi-compartment 
V/Q models of pulmonary blood flow. High fidelity ML 
reports require measurement data at no more than two 
FiO2 settings, subject to measurement accuracy.

Table 5   Results for Bland–Altman plots

95% CI estimates were calculated as the 2.5 and 97.5 percentiles 
around the median [43]

Median 95% CI

Single-point
 Shunt  − 0.21  − 6.42, + 7.97
 Mean 0.00  − 0.21, + 0.21
 SD 0.00  − 0.40, + 0.39

Two-point
 Shunt  + 0.01  − 0.84, + 0.93
 Mean 0.00  − 0.02, + 0.02
 SD 0.00  − 0.04, + 0.04
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