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Abstract: The Chinese soft-shelled (Pelodiscus sinensis) turtle exhibits obvious sex dimorphism, which
leads to the higher economic and nutritional value of male individuals. Exogenous hormones can
cause the transformation from male to female phenotype during gonadal differentiation. However,
the molecular mechanism related to the sexual reversal process is unclear. In this study, we compared
the difference between the small RNAs of male, female, and pseudo-female turtles by small RNA-seq
to understand the sexual reversal process of Chinese soft-shelled turtles. A certain dose of estrogen
can cause the transformation of Chinese soft-shelled turtles from male to female, which are called
pseudo-female individuals. The result of small RNA-seq has revealed that the characteristics of
pseudo-females are very similar to females, but are strikingly different from males. The number
of the microRNAs (miRNAs) of male individuals was significantly less than the number of female
individuals or pseudo-female individuals, while the expression level of miRNAs of male individuals
were significantly higher than the other two types. Furthermore, we found 533 differentially expressed
miRNAs, including 173 up-regulated miRNAs and 360 down-regulated miRNAs, in the process of
transformation from male to female phenotype. Cluster analysis of the total 602 differential miRNAs
among females, males, and pseudo-females showed that miRNAs played a crucial role during the
sexual differentiation. Among these differential miRNAs, we found 12 miRNAs related to gonadal
development and verified their expression by qPCR. The TR-qPCR results confirmed the differential
expression of 6 of the 12 miRNAs: miR-26a-5p, miR-212-5p, miR-202-5p, miR-301a, miR-181b-3p
and miR-96-5p were involved in sexual reversal process, which was consistent with the results of
omics. Using these six miRNAs and some of their target genes, we constructed a network diagram
related to gonadal development. We suggest that these miRNAs may play an important role in the
process of effective sex reversal, which would contribute to the breeding of all male strains of Chinese
soft-shelled turtles.

Keywords: sex reversal; Chinese soft-shelled turtle; Pelodiscus sinensis; small RNA; microRNA

1. Introduction

The Chinese soft-shelled turtle, Pelodiscus sinensis, is an economically important
aquatic species. The turtles are highly exploited in traditional Chinese medicine (TCM), but
excessive wildlife exploitation may lead to biodiversity loss [1,2]. The development of arti-
ficial culture Chinese soft-shelled turtles may contribute to the conservation of biodiversity,
which is the most important resource for humankind. For this to happen, it is necessary to
prevent the escape/release of farm animals into the wild, thus preserving both Pelodiscus
species and their distinct genetic lineages [3]. The male individuals of Chinese soft-shelled
turtles have obvious advantages over female individuals in some growth characteristics,
such as a larger body size, faster growth, a thicker and wider calipash, and less body
fat [4], which is one of the most widespread phenomena in biology [5]. The tail of the
male turtles exceeds the calipash, but the tail of the female does not, which is a common
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way to identify male and female Chinese soft-shelled turtles in production. A significant
difference between male and female Chinese soft-shelled turtles is their exhibited sexual
dimorphism [6]. Therefore, the male individuals have a higher economic value compared
to the female individuals.

Sexual differentiation and differences in vertebrates have always attracted much
attention [7]. The process of sex differentiation is regulated by multiple genes and mediated
by related hormones, thereby inducing individual gonads to develop toward the testis
or ovaries [8,9]. Many animals, including many aquatic animals, show obvious sexual
dimorphism [10]. In some fish, such as Nile tilapia (Oreochromis niloticus), the males have a
significantly faster growth rate than females, while female flounders (Paralichthys olivaceus)
have a significantly larger size and growth than males. These obvious gender dimorphisms
also provide new ideas for aquatic breeding.

The type of sex determination mechanism for the Chinese soft-shelled turtle is geno-
typic sex determination (GSD), not temperature-dependent sex determination (TSD), with
the micro-sex chromosomes of the female heterogametic (ZZ/ZW) system [11]. The gonad
differentiation of Chinese soft-shelled turtles begin at the 12th day and end at 22th day
with 30 ◦C incubation [12]. Some gender-specific genes in Chinese soft-shelled turtles
showed obvious effects in sex determination and gonadal differentiation, such as Dmrt1,
Sox9, Cyp19a, and other sex-related genes [13,14].

The exogenous hormone estradiol can lead to the sex reversion of the male individ-
uals of Chinese soft-shelled turtles into a pseudo-female individual (∆ZZ) with a female
phenotype and a male genotype [14,15]. After the pseudo-female is sexually mature, it
can be crossed with the male (ZZ) to obtain all male offspring. Therefore, the research of
male to female sex reversal is the basis of all male breeding of Chinese soft-shelled turtles,
and it is also important to understand the molecular mechanism of this process. However,
the molecular mechanism of the sexual transformation of the Chinese soft-shelled turtle is
still unclear.

Small RNAs play a significant role in various steps of fertilization, sex differentiation,
gametogenesis, and embryogenesis in mammalian, especially microRNAs (miRNAs) [16–19].
MiRNAs are kind of small, highly conserved, non-coding RNAs, 18–26 nucleotides in length,
and involved in the post-transcriptional regulation of the related genes [20–22]. Studies
have shown that miRNAs regulate one-third of human genes [23] and abnormal miRNA
profiles regulate tumor phenotypes through inhibiting their target genes [24]. Mechanisms
for the miRNA-mediated downregulation of gene expression involve some combination of
translational repression, mRNA deadenylation, decapping, 5′-to-3′ mRNA degradation,
and alteration of mRNA stability [25,26].

MiRNAs as novel and highly conserved small RNAs play a vital role in sex determi-
nation and gonadal differentiation [27,28]. In the present research, various miRNAs have
an effect during different developmental stages of gonads in teleosts [29]. With regard to
gametes, let-7a-1-5p, let-7c-5p and miR-92b-3p expression was higher in spermatozoa, and
miR-21-5p and miR-430b-3p expression was higher in oocytes [30]. MiR-141 and miR-429
have been implicated in testicular development and spermatogenesis [31]. However, the
molecular mechanism of miRNAs on gonadal differentiation in Chinese soft-shelled turtles
remains unclear.

The aim of the present study was to explore the relationship between small RNAs and
males, females, and pseudo-females, to provide a new insight for the sex differentiation
of Chinese soft-shelled turtles. In addition, investigating the role of miRNAs in Chinese
soft-shelled turtles contributes towards improvement in breeding techniques for the holistic
development of the aquaculture sector.

2. Materials and Methods
2.1. Maintenance of Chinese Soft-Shelled Turtles

Chinese soft-shelled turtles were provided by Anhui Xijia Agricultural Development
Co. Ltd. (Bengbu, China). The fertilized eggs of P. sinensis were incubated in an egg
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incubator at 30 ± 0.5 ◦C, with the humidity maintained at 80–85%. The animal pole of eggs
should point up and keep the humidity during hatch period, which lasts about 45 days [3].
The newly hatched turtles were kept in a 30 ± 0.5 ◦C greenhouse with commercial feeds
(Jinjia, China) three times a day; the stocking density of juvenile turtles is about 100/m2.

2.2. Estradiol Treatment of Chinese Soft-Shelled Turtles

The fertilized eggs were incubated in the constant temperature humidity incubator at
30 ± 0.5 ◦C and 80–85% humidity for 15 days. We diluted estradiol (E2) with ethanol into a
reagent of 10 mg/mL, dipped a cotton swab into a small amount of hydrochloric acid (HCl),
and gently smeared it on the soft-shelled turtle fertilized eggs to make the eggshell soft. A
micro-syringe was used to inject 5 µL of 10 mg/mL E2 into the soft-shelled turtle fertilized
eggs. After 1 year of cultivation, the biological sex of the Chinese soft-shelled turtle was
detected by the phenotype, and the genetic sex was analyzed by PCR with sex-specific
primers (4085-f/r, col-f/r) (Table 1) [4].

Table 1. The primers used for amplification of sex specific markers and RT-qPCR of selected miRNAs.

ID Primer Sequence (5′-3′)

miR-26a-5p Forward GCGCGCTTCAAGTAATCCAGGA
Reverse GCAGGGTCCGAGGTATTC

RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCCTA

miR-212-5p Forward GCGCACCTTGGCTCTAGACTG
Reverse GCAGGGTCCGAGGTATTC

RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTAAG

miR-202-3p Forward GCGCGCAGAGGTGTAGAGCATG
Reverse GCAGGGTCCGAGGTATTC

RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTTTTCC

miR-301a Forward GCGCGCCAGTGCAATAGTATTG
Reverse GCAGGGTCCGAGGTATTC

RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTTTGA

miR-202-5p Forward GCGCGCTTCCTATGCATATACC
Reverse GCAGGGTCCGAGGTATTC

RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCAAAGA

miR-96-5p Forward GCGCGCTTTGGCACTAGCACATT
Reverse GCAGGGTCCGAGGTATTC

RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCAAA

miR-181b Forward GCGCGCCTCACTGATCAATGAA
Reverse GCAGGGTCCGAGGTATTC

RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTTTGCA

U6 Forward CTCGCTTCGGCAGCACA
Reverse AACGCTTCACGAATTTGCGT

RT1 GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACACTGCTG

4085 Forward GTTTGAAGTGCTGCTGGGAAG
Reverse TTCCCCGTATAAAGCCAGGG

actin Forward GTGTATGCAACTCTTCCCTCTCCTATTC
Reverse AGCTTCCATTCGGTCTTGTCCTG

RT1: reverse transcription.

2.3. Sample Collection and RNA Extraction

According to different genders, the differentially treated animals were divided into
three groups (each group contained 6 animals): males, females, and pseudo-females. In
order to obtain more differential miRNAs to investigate the molecular basis of sex reversal,
the hypothalamus pituitary–gonad axis (HPGA) and brain pituitary–gonad axis were
considered. Then, 5 tissues (i.e., heart, liver, muscle, gonad, and brain) were collected



Genes 2021, 12, 1696 4 of 15

for RNA extraction. Total RNAs for subsequent analysis were extracted with the TRIzol
reagent (15,596,026, Invitrogen, shanghai, China). RNA degradation and contamination
was monitored on 1% agarose gels. RNA purity was checked using the NanoPhotometer®

spectrophotometer (IMPLEN, San Diego, CA, USA). RQ1 RNase-Free DNase (M6101,
Promega, Madison, WI, USA) was used to remove the DNA of RNA samples and stopped
the reaction with stop solution at 65 ◦C for 10 min. rRNA accounts for about 82% of the total
RNA, but it provides very little biological information, therefore it needs to be removed
before sequencing. The rRNA is removed by non-denaturing PAGE gel, which can separate
nucleic acid sequences of different lengths. The length of rRNA is much larger than small
RNA. Therefore, rRNA can be separated by recovering 18–40 bp fragments. The RNAs of
5 tissues for each sample were pooled together for small RNA sequencing analysis.

2.4. Library Preparation for Small RNA

A total of 3 µg RNA per sample was used as input material. Small RNA library was
performed using NEBNext® Multiplex Small RNA Library Prep Set for Illumina® (NEB,
New York, NY, USA) following manufacturer’s recommendations, and index codes were
added to attribute sequences to each sample. Briefly, RNA adapters were ligated to 3′ and
5′ ends of RNA followed by cDNA synthesis and PCR amplification. The cDNA library
was size-separated using PAGE gel, and small RNA between 18 bp and 40 bp was excised
and purified.

2.5. Bioinformatic Analysis

Raw data in fasta format were processed through in-house perl scripts. In this step,
clean data were obtained by removing reads containing adapter, reads on containing ploy-
N, and low quality reads (reads having >50%, bases with quality score ≤5) from raw data
using PRINSEQ (version 0.19.3) [32]. At the same time, Q20, Q30, and GC content of the
clean data were calculated. In second-generation sequencing, each base measured gave a
corresponding quality value (Q), which is a measure of sequencing accuracy. The higher
the quality value (Q), the lower the probability (P) of the base being tested incorrectly. The
calculation formula is Q = −10 lgP. Q20 and Q30 represent the percentage of a certain base
quality value to the total number of bases. When the value of Q30 is higher than 85%, it
indicates that the quality of sequencing is very good, and the next step of analysis can be
carried out. Meanwhile, GC content is also an indicator of data quality, generally between
50 and 60%. All downstream analyses were based on the high-quality cleaned data.

To identify known miRNAs, we mapped sequenced reads to the sequences collected
in mirBase using mirdeep2 [33]. We predicted candidate novel miRNA using mirEvo [34]
and miRdeep [35] and assessed the length distribution and nucleotide proportion. The
known miRNAs and novel miRNAs were combined as the final miRNA set.

The nucleic acid sequences of all genes identified by small RNA-seq in the database
of turtle genome (AGCU00000000.1) [36] were used to blast against the Swiss-Prot and
TrEMBL (the Swiss Institute of Bioinformatics and the European Bioinformatics Insti-
tute) protein database to get the UniProt-accession [37]. After obtaining the UniProt-
accession of the genes, their KEGG Orthology ID and GO Orthology ID were obtained with
the online tool bioDBnet (http://biodbnet.abcc.ncifcrf.gov accessed on 15 July 2021) for
enrichment analysis.

2.6. Quantitative Real-Time PCR (qPCR)

The qPCR assays were performed to validate the small RNA-seq data. MiRNAs 1st
Strand cDNA Synthesis Kit (by stem-loop) is a special kit suitable for one-strand synthesis
of miRNA cDNA by stem-loop method which contains genomic DNA removal steps.
Quickly remove the contamination of genomic DNA under the condition of 42 ◦C for 2 min
to ensure that the follow-up results are more reliable (Vazyme, China). The subsequent
quantification of cDNA products was performed as described previously [38]. U6 rRNA
expression was used to normalize miRNA expression [39]. The primers are designed for

http://biodbnet.abcc.ncifcrf.gov
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this experiment by miRNA design. The primers for target gene qRT-PCR were provided
in Table 1. Relative miRNA and mRNA expression levels were calculated by the 2−(∆∆Ct)

method [40].

2.7. Analysis of Differentially Expressed microRNAs and Target Genes

MiRNAs with a fold change≥1.5 and a q-value≤0.05 were considered as differentially
expressed miRNAs. Differentially expressed microRNAs were classified with Venn’s
diagrams by online tools (https://bioinfogp.cnb.csic.es/tools/venny/index.html accessed
on 18 September 2021). Use MiRanda and qTar software to predict target genes for known
miRNAs and new miRNAs. In order to ensure the accuracy of the results, the final result
is the intersection of the two softwares [41]. Cytoscape tool was used to form a network
diagram of miRNAs and target genes [42].

2.8. Statistical Analysis

All the experimental data from at least three independent experiments were ana-
lyzed using GraphPad Prism 7.0 software (San Diego, CA, USA) and were expressed
as the mean ± SD. Student’s t-test were performed to compare the differences between
two groups.

3. Results
3.1. Pseudo-Female Chinese Soft-Shelled Turtles Were Obtained by E2 Treatment

Exactly 5 µL of 10 mg/mL estradiol (E2) was injected into the soft-shelled turtle eggs
using a micro-syringe, which were hatched at 30 ± 0.5 ◦C for 15 days (Figure S1) to induce
the pseudo-female turtles. Whether the tail length exceeds the calipash is a common way to
distinguish between male and female turtles in seed selection and breeding. After 1 year of
cultivation, the results showed that the tails of some turtles treated by E2 could not exceed
the calipash (Figure 1A), while PCR revealed they were male turtles by the sex-specific
primers (Figure 1B, Table 1). Therefore, the Chinese soft-shelled turtles which own the
feature of the male genotype and female phenotype were named pseudo-female turtles (Z).
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Figure 1. Pseudo-female Chinese soft-shelled turtles were obtained by E2 treatment: (A) Pseudo-
female of Chinese soft-shelled turtles were obtained by E2 treatment. (B) Verification of three
phenotypes by PCR. F: female, M: male, Z: pseudo-female.

Figure 1A showed that the tail length of pseudo-female turtles (Z) and female turtles
(F) were similar, but obviously shorter than the tail length of male turtles (M). We conducted
hormone induction on 219 soft-shelled turtles and tested their genotypes and phenotypes
after 1 year. We found that the rate of sexually reversed soft-shelled turtles was 50.83%

https://bioinfogp.cnb.csic.es/tools/venny/index.html
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(Figure S2). These results showed that exogenous hormones E2 could cause sexual reversal
in male individuals and generate pseudo-female individuals.

3.2. The Distribution and Number of Small RNA among Males, Females and Pseudo-Females

The exported data of omics showed that the raw reads of sample F, M, and Z were
27,912,069, 24,060,307, and 31,682,467. The Q20 and Q30 of the three groups were all
above 99%; meanwhile, the GC contents were 49% (F), 51% (M), and 50% (Z), respectively
(Table 2). The number of total reads and bases revealed that the male turtles had far less
than the female turtles and pseudo-female turtles, which proved that small RNAs had a
significant impact during sexual dimorphism (Table 3).

Besides the differences in the number of small RNAs, greater diversity was found
in chromosome distribution. The distribution of group M was wider than the other two
groups in the P. sinensis reference genome, which showed that some small RNAs are
silenced during the transition from male to female by E2 treatment (Figure 2A). The
sequence length distribution of three groups showed that the male group had more short
fragments. In the groups of the females and pseudo-females, the 22 nt length transcripts
were the most abundant, while the male group 18 nt, 19 nt, 20 nt, and 22 nt length transcripts
all occupying a large part (Figure 2B). About 62.12%, 63.54%, and 72.60% of high-quality
reads were mapped to the turtle genome (AGCU00000000.1).
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Figure 2. The distribution and number of small RNA among males, females, and pseudo-females:
(A) Distribution of small RNAs of female, male, and pseudo-female individuals on the genome.
(B) The sequence length distribution of small RNAs of female, male, and pseudo-female individuals.
(C) The number of small RNAs of female, male, and pseudo-female individuals. (D) The small RNAs
distribution of female, male, and pseudo-female individuals.
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The number of small RNAs in the three groups were 21,538,085, 13,550,606, and
20,669,068, respectively (Figure 2C). The distribution of small RNAs showed that the
number of miRNAs in male turtles was strikingly less than the one of the pseudo-female
turtles, which suggested that the miRNAs played an important role in the process of
gonadal differentiation. Figure S3A-C showed the comparison and annotation situation
of unique small RNAs. The number of unique known miRNAs of males, females, and
pseudo-females (F, M, Z) are 1653, 1090, 1517. The total amount of rRNA in the classification
annotation results can be used as a quality control standard for a sample, which ensured
that the three RNA samples met quality standards (Figure S3).

Table 2. Data output statistics of three samples (F, M, Z).

Exported Data

Sample Reads Bases Error_rate Q20 Q30 GC_content
F 27,912,069 1.396 G 0% 100% 99% 49%
M 24,060,307 1.203 G 0% 100% 99% 51%
Z 31,682,467 1.584 G 0% 100% 99% 50%

Table 3. The small RNA data statistics of three samples (F, M, Z).

Sample Total_Reads Total_Bases Uniq_Reads Uniq_Bases

F 22,867,409 511,199,551 374,086 9,254,425
M 14,375,684 311,711,063 428,327 10,622,778
Z 21,932,331 477,377,965 462,946 11,181,717

3.3. The Character of miRNAs Identified by Males, Females and Pseudo-Females

MiRNAs as a pivotal component of small RNAs showed significant difference among
the males, females, and pseudo-females. The correlation of miRNA expression levels
between samples is a key indicator. The closer the correlation coefficient is to 1, the
higher the similarity of the expression patterns between samples. Compared with male
individuals, the correlation showed that the pseudo-female individuals are more similar to
that of female individuals (Figure 3A), and showed that the miRNAs have changed from
males to females in the process of sexual reversal.
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miRNAs expression levels between samples. (B) The TPM distribution of males, females, and pseudo-
females (F, M, Z). (C) The miRNAs first nucleotide bias of males, females, and pseudo-females
(F, M, Z).
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The miRNAs of male individuals are significantly different from the female and
pseudo-female individuals according to the boxplot and distribution of miRNA TPM
density in the different samples (Figures 3B and S3D). The process in which the miRNAs
develop from a precursor to a mature body is completed by Dicer digestion, the specificity
of the restriction site gives the first base of the mature miRNA sequences a strong bias.
Therefore, we compared the first base of small RNAs and the base distribution of each
position of mature miRNAs. Figure 3C showed that all of the first nucleotide of female
and pseudo-female individuals was U when the length reached up to 27 nucleotides.
However, the male individuals lacked the miRNAs which were more than 27 nucleotides
in length (Figure 3C). The difference in miRNAs among the three groups identified the
prominent role of miRNAs in the process of gonadal differentiation. In another aspect,
each nucleotide bias position of the miRNAs in males, females, and pseudo-females had
no obvious difference (Figure S4).

3.4. Differential miRNAs Analysis of Males, Females and Pseudo-Females (F, M and Z)

According to the miRNA expression profiles, we analyzed and compared the differen-
tial miRNA for different groups. Figure 4A showed that there are 79 up-regulated miRNAs
and 344 down-regulated miRNAs between female and male individuals. Figure 4B,C
showed that pseudo-female individuals have 145 up-regulated miRNAs and 59 down-
regulated miRNAs against female individuals, and 173 up-regulated miRNAs and 360 down-
regulated miRNAs against male individuals (p < 0.5). Among the differential miRNAs, the
number of differential miRNAs between males and pseudo-females significantly increased.
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Figure 4. Differential miRNAs analysis of males, females, and pseudo-females (F, M and Z): (A) The
differential expressed miRNAs between female and male individuals. (B) The differential expressed
miRNAs between female and pseudo-female individuals. (C) The differential expressed miRNAs
between male and pseudo-female individuals. (D) GO enrichment analysis of target genes of
differential miRNAs between male and pseudo-female individuals. (E) KEGG enrichment analysis of
target genes of differential miRNAs between male and pseudo-female individuals.
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Then, we performed GO and KEGG analysis of the target genes of the differential
miRNAs among the three comparison groups (Figures 4D,E and S6). In the process of
reversing from a male to female soft-shelled turtle, GO enrichment results showed that
the target genes were mainly enriched in biological processes including cellular process,
single-organism process, and biological regulation. Candidate target genes of differential
miRNAs between males and pseudo-females were overrepresented in molecular function
such as binding, catalytic activity, and signal transducer activity (Figure 4D). Meanwhile,
the KEGG analysis of differential target genes between male and pseudo-female individuals
showed that the main processes are transport and catabolism, signal transduction, and the
immune and endocrine system (Figure 4E).

GO and KEGG enrichment analysis were performed on the differential target genes of
the other two pairs. GO enrichment analysis showed that the target genes of differential
miRNAs had a big impact on various processes such as the cellular process, single-organism
process, and biological regulation (Figure S5A,B). KEGG enrichment of the targets of female-
biased miRNAs displayed overrepresentation of many important signaling pathways such
as signal transduction and lipid metabolism (Figure S5C,D).

3.5. Cluster Analysis of Differential miRNAs and Validation of the Target Genes

As shown in Figure 5A, we performed Wayne analysis on unique miRNAs identified
in three groups. There are 278 male-specific miRNAs and 32 female-specific miRNAs.
Different from male and female, pseudo-female individuals have 113 novel miRNAs
(Figure 5A). A total of 737 miRNAs were significantly differentially expressed among the
three groups (p < 0.5). The cluster map of miRNA expression patterns reflects the level of
gene expression and expression patterns (Figure 5B). From the cluster map, we can clearly
see that there was a striking difference in the expression of miRNAs between males and
the other types. The expression levels of miRNAs for females and pseudo-females were
significantly lower than the expression level of males.
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Figure 5. Cluster analysis of differential miRNAs of males, females, and pseudo-females: (A) Wayne
analysis on unique miRNAs identified in three groups. (B) The cluster map of differential miRNAs
expression. F: female, M: male, Z: pseudo-female. (C) The cluster map of differential miRNAs
expression related to gonadal development. F: female, M: male, Z: pseudo-female.
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From the differential miRNAs, we found 12 miRNAs related to gonad development
and performed clustering heat map analysis (Figure 5C, Table 4). The number in Table 4 rep-
resents the expression level of some differential miRNAs related to gonadal development.
The miRNAs related to gonad development included miR-143, miR-26a-5p, miR-22a-3p,
miR-212-5p, miR-181b-3-3p, miR-212, miR-202-3p, miR-301a, miR-202-5p, miR-25-3p, miR-
96-5p, miR-181b-3p. To validate the sequencing data of miRNAs, we selected six miRNAs
to test their relative expression of three samples (Figure 6A–F). The expression of six
miRNAs in the samples was consistent with the results of RNA sequencing. Among the
miRNAs, miR-26a-5p, miR-212-5p, miR-301a, miR-202-5p, miR-181b-3p were up-regulated
during the sexual reversal process, while miR-96-5p was down-regulated. These results
suggest that miRNAs may play an important role in the process of sexual reversal.
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Figure 6. The relative expression level of differential miRNAs among males, females, and pseudo-
females: (A) The relative expression level of miR-26a-5p among males, females, and pseudo-females.
(B) The relative expression level of miR-212-5p among males, females, and pseudo-females. (C) The
relative expression level of miR-202-5p among males, females, and pseudo-females. (D) The relative
expression level of miR-301a among males, females, and pseudo-females. (E) The relative expression
level of miR-181b-3p among males, females, and pseudo-females. (F) The relative expression level of
miR-96-5p among males, females, and pseudo-females. Data were expressed as mean ± SD. Different
letters show significant differences (p < 0.5).



Genes 2021, 12, 1696 11 of 15

Table 4. The expression level of differential miRNAs related to gonadal development.

miRNA F M Z

miR-143 66,453.90 69,180.60 96,007.02
miR-26a-5p 70,778.96 55,517.76 77,512.06
miR-22a-3p 2.20 111.12 0.16
miR-212-5p 13.97 62.99 8.98

miR-181b-3-3p 8.28 44.57 16.66
miR-212 10.22 25.55 4.08

miR-202-3p 3.23 24.36 1.96
miR-301a 1.04 18.42 2.61

miR-202-5p 0.13 8.91 0.65
miR-25-3p 0.00 8.32 0.00
miR-96-5p 68.58 7.72 25.81

miR-181b-3p 6.21 0.59 6.04

3.6. Construction of the Gonadal Related miRNAs and Some Target Genes Network

The result of qRCR and transcriptome data revealed that miR-26a-5p, miR-212-5p,
miR-301a, miR-202-5p, miR-181b-3p, and miR-96-5p were gonadal-related miRNAs. To
construct the network of miRNAs and target genes, we screened some target genes which
showed a strong correlation with gonadal development (Figure 7). The network diagram
showed that the miR-26a-5p played a significant role in these processes, such as ovarian
development, osteoclast-stimulating, osteoclast-associated, and growth/differentiation.
MiR-212-5p and miR-202-5p were involved in the development of ovaries or testes. During
the oocyte maturation process, the miR-301a played an important role. These miRNAs
and some target genes may participate in regulating sexual reversal processes, including
ovarian development and growth/differentiation.
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Figure 7. The network of some miRNAs and target genes related to gonadal development. Blue
ellipse represents miRNAs differential expressed among males, females, and pseudo-females. Red
rectangle represents target genes related to gonadal development differential expressed among males,
females, and pseudo-females. Orange rectangle represents target genes differential expressed among
males, females, and pseudo-females.
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4. Discussion

Sexually dimorphic phenotypes exist in many animals and have complex genetic
architectures [10,43,44]. Chinese soft-shelled turtles have obvious sexual dimorphism. The
advantage of male individual Chinese soft-shelled turtles, which exhibit a larger body
size, faster growth, a thicker and wider calipash, and less body fat, gives male Chinese
soft-shelled turtle individuals a high economic value [45,46]. Therefore, cultivation of the
all-male phenotype of Chinese soft-shelled turtle is a hot issue in actual production.

In the previous research, Ma et al. and Liu et al. found that miRNAs and lncRNA were
involved in gonadal development [47,48]. The discovery of small RNAs such as miRNAs,
snRNAs, and other types had unveiled a slew of powerful regulators of gene expression in
recent years [49]. The defining features of small ncRNAs are their short length (~20–30 nt),
their association with members of the Ago (argonaute) family of proteins, and typically
their effect on the downregulation/silencing of target gene expression [50]. Of these small
RNA classes, microRNAs (miRNAs) have emerged as key regulators of biological processes
in animals [51]. MiRNAs played a crucial role in gonadal differentiation. MiRNA-mediated
steroidogenesis can regulate adrenal and gonadal steroidogenesis [52]. Liu et al. found
665 differentially expressed miRNAs, with 519 being up-regulated in testis and 146 being
down-regulated in ovary, respectively [48]. A total of 633 miRNAs showed differential
expression in the ovaries and testes [47]. However, the molecular mechanism of miRNA
regulating gonadal differentiation is currently unclear. We identified 21,538,085, 13,550,606,
and 20,669,068 small RNAs of males, females and pseudo-females, respectively, by small
RNA-seq, and found 351 miRNAs related to sex, which greatly enriched the miRNA
database related to gonadal differentiation.

Figure 2C showed the number of small RNAs of male individuals that was obviously
decrease compared to the female and pseudo-female individuals. Analyzing the distri-
bution of small RNAs with males, females, and pseudo-females, it was found that most
of the small RNAs lacking are miRNAs. MiRNAs generally base-pair to mRNAs with
nearly perfect complementarity and trigger endonucleolytic mRNA cleavage by the RNA
interference (RNAi) mechanism [25]. We concluded that the number of miRNAs of pseudo-
female individuals changed during the transition from male to female, the newly produced
miRNAs may have a certain inhibitory effect on androgens. After comparison, it was
found that the small RNAs of pseudo-female individuals induced by E2 showed similar
characteristics to female individuals, while they were different from male individuals. The
results of small RNAs and miRNAs showed that the similar features had changed although
the genotype had not changed.

We found that the expression levels of miRNA in females and pseudo-females were sig-
nificantly lower than that of males after clustering analysis of different miRNAs. Bhat et al.
summarized the current advances made in teleost miRNA study regarding reproduc-
tion and gonadal development [29]. According to the previous study, 12 miRNAs, such
as miR-143, miR-26a-5p, miR-22a-3p, miR-212-5p, miR-181b-3-3p, miR-212, miR-202-3p,
miR-301a, miR-202-5p, miR-25-3p, miR-96-5p, and miR-181b-3p also exist in the gonadal
development of Chinese soft-shelled turtles though small RNA-seq [30,53,54]. In this study,
miRNAs such as miR-26a-5p, miR-212-5p, miR-301a, miR-202-5p, and miR-181b-3p were
up-regulated during the sexual reversal process, while miR-96-5p was down-regulated.
The network diagram showed the relationship of some miRNAs and target genes related
to gonadal differentiation. MiRNAs are a class of endogenous small noncoding RNAs that
participate in most biological processes via regulating target gene expression [55]. Multiple
miRNAs or genes were not merely a single gene involved in regulating the biological
processes. Wang et al. proved the inhibitory effect of miR-215-5p on recombinant PCDH9
containing its own promoter and 3′ UTR more effective than that containing the promoter
or 3′ UTR alone, which indicated the benefit of synergetic suppression by miRNAs [56].
The high expression level of miR-26a-5p in male individuals may inhibit the expression of
target genes such as growth/differentiation, ovarian development, and the oocyte division
biological process. Meanwhile, the low expression level of miR-96-5p in male individuals
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may contribute to the production of estrogen. Currently, little is known about their func-
tions in the gonad development of Chinese soft-shelled turtles. Given further study, we
would analyze their function of sex-biased miRNAs to identify their role in depth. These
sex-biased miRNAs including male-biased miRNAs and female-biased miRNAs were
predicted as negative regulators of multiple genes that significantly upregulated or down-
regulated in turtle ovaries at maturation and spawning stage. Potential miRNA-mediated
post-transcriptional regulation in gonads or testis is a clue to the gonad differentiation
mechanisms of turtles. Taken together, these data suggested that miRNAs played a crucial
role in the sexual reversal process from males to females. The characteristics the pseudo-
female displayed were obviously close to females but away from males. During the sexual
reversal process, small RNAs, especially miRNAs, affected the expression of some target
genes. The quantitative results also identified that miRNAs played an important role in the
sexual reversal process.

5. Conclusions

In this study, the pseudo-females were obtained by injecting estradiol, in which the sex
was reversed with the male genotype and female phenotype. A total of 533 differentially
expressed miRNAs were found in the process of transformation from male to female
phenotypes, including 173 up-regulated miRNAs and 360 down-regulated miRNAs. Six
miRNAs, such as miR-26a-5p, miR-212-5p, miR-301a, miR-202-5p, miR-181b-3p and, miR-
96-5p, were identified as having a close relationship with sexual reversal process. Our
results suggest that they might serve as important candidates for further investigation
with regard to the biological functions of miRNAs in the sexual dimorphism of Chinese
soft-shelled turtles. At the same time, it also provides a direction for the study of the
molecular mechanism of sexual reversal.
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males, females and pseudo-females. Figure S5: The GO and KEGG enrichment analysis between the
female individuals and the other two types.
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