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Abstract: Polyamine biosynthesis is frequently dysregulated in cancers, and enhanced flux increases
intracellular polyamines necessary for promoting cell growth, proliferation, and function. Polyamine
depletion strategies demonstrate efficacy in reducing tumor growth and increasing survival in animal
models of cancer; however, mechanistically, the cell-intrinsic and cell-extrinsic alterations within the
tumor microenvironment underlying positive treatment outcomes are not well understood. Recently,
investigators have demonstrated that co-targeting polyamine biosynthesis and transport alters the
immune landscape. Although the polyamine synthesis-targeting drug 2-difluoromethylornithine
(DFMO) is well tolerated in humans and is FDA-approved for African trypanosomiasis, its clinical
benefit in treating established cancers has not yet been fully realized; however, combination therapies
targeting compensatory mechanisms have shown tolerability and efficacy in animal models and
are currently being tested in clinical trials. As demonstrated in pre-clinical models, polyamine
blocking therapy (PBT) reduces immunosuppression in the tumor microenvironment and enhances
the therapeutic efficacy of immune checkpoint blockade (ICB). Thus, DFMO may sensitize tumors to
other therapeutics, including immunotherapies and chemotherapies.

Keywords: polyamines; tumor microenvironment; cancer therapeutic; immune regulation;
difluoromethylornithine; polyamine blocking therapy; macrophage polarization

1. Introduction

The major polyamines found in mammals, putrescine, spermidine, and spermine, are
polycationic alkylamines that are essential for life [1,2]. Polyamines perform critical func-
tions, including modulation of cell growth, proliferation, and function. The biosynthetic and
catabolic machinery are highly regulated; dysregulation can promote tumorigenesis and/or
oxidative damage and cell death [1–3]. The biosynthetic rate-limiting enzyme ornithine
decarboxylase (ODC) catalyzes the generation of the first polyamine putrescine (Figure 1).
A second rate-limiting enzyme, S-adenosylmethionine decarboxylase (AMD1), produces
the aminopropyl donor sequentially added by spermidine synthase and spermine synthase
to generate spermidine and spermine, respectively. As the major catabolic enzymes, spermi-
dine/spermine N1-acetyltransferase (SAT1) acetylates spermidine or spermine; spermine
oxidase (SMOX) directly oxidizes spermine to generate hydrogen peroxide, spermidine,
and 3-aminopropanal; and N1-acetylpolyamine oxidase (PAOX) is a peroxisomal enzyme
that can oxidize the acetylated polyamines, producing 3-aceto-aminopropanal and either
spermidine or putrescine, depending on the starting substrate; however, most acetylated
polyamines are exported from the cell via solute carriers such as SLC3A2 [4]. Recently
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ATP13A3, a P-type ATPase, has been implicated as a major polyamine importer in mam-
malian cells [5,6]; however, the precise polyamine transport machinery and mechanisms
remain unclear.
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Figure 1. Diagram of polyamine metabolism. Ornithine is generated by the action of arginase I 
(ARG1) in the urea cycle. Ornithine decarboxylase (ODC) catalyzes the first rate-limiting reaction in 
polyamine biosynthesis to generate putrescine. Adenosylmethionine decarboxylase (AMD1) re-
moves the carboxyl group from S-adenosylmethionine (SAM) to generate decarboxylated S-adeno-
sylmethionine (dcAdoMet). Spermidine synthase (SRM) then adds an aminopropyl moiety from 
dcAdoMet to putrescine to generate spermidine. Spermine synthase (SMS) adds an additional ami-
nopropyl moiety to spermidine to generate spermine. Polyamine biosynthetic enzymes are shown 
in blue. Spermine oxidase (SMOX), a cytoplasmic and nuclear oxidase, directly oxidizes spermine 
to spermidine and generates 3-aminopropanal (3-AP) and hydrogen peroxide (H2O2) as byproducts. 
Spermidine/spermine N1-acetyltransferase 1 (SAT1) adds an acetyl group to the N1 position of 

Figure 1. Diagram of polyamine metabolism. Ornithine is generated by the action of arginase I (ARG1)
in the urea cycle. Ornithine decarboxylase (ODC) catalyzes the first rate-limiting reaction in polyamine
biosynthesis to generate putrescine. Adenosylmethionine decarboxylase (AMD1) removes the car-
boxyl group from S-adenosylmethionine (SAM) to generate decarboxylated S-adenosylmethionine
(dcAdoMet). Spermidine synthase (SRM) then adds an aminopropyl moiety from dcAdoMet to
putrescine to generate spermidine. Spermine synthase (SMS) adds an additional aminopropyl moiety
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to spermidine to generate spermine. Polyamine biosynthetic enzymes are shown in blue. Sper-
mine oxidase (SMOX), a cytoplasmic and nuclear oxidase, directly oxidizes spermine to spermidine
and generates 3-aminopropanal (3-AP) and hydrogen peroxide (H2O2) as byproducts. Spermi-
dine/spermine N1-acetyltransferase 1 (SAT1) adds an acetyl group to the N1 position of spermidine
or spermine, thus permitting polyamine export as well as catabolism by polyamine oxidase (PAOX),
a peroxisomal enzyme. PAOX generates spermidine or putrescine from the respective acetylated
precursors, with 3-acetoaminopropanal (3-AAP) and H2O2 as byproducts. Polyamine catabolic
enzymes are shown in purple. 2-Difluoromethylornithine (DFMO) is an ornithine analog that is
imported into the cell and decarboxylated by ODC; the reaction intermediate covalently binds to
and inactivates ODC. Import of polyamines (PA) is incompletely understood but may involve paired
mechanisms engaging endocytosis [5–8].

Overexpression of ODC has been implicated in numerous cancers [9], while genetic
deletion of Odc1 is embryonic lethal in mice [10]. The proto-oncogene MYC is highly over-
expressed and/or amplified in human cancers and transcriptionally activates ODC1; thus,
polyamine metabolism is an attractive cancer therapeutic target [1,11]. The most widely
used inhibitor of ODC is 2-difluoromethylornithine (DFMO), an enzyme-activated suicide
inhibitor that is well tolerated in humans and animal models. DFMO is FDA-approved
for African trypanosomiasis but not for cancer due to its limited efficacy as a single can-
cer agent [1]; however, combination treatments targeting additional pathways engaged in
polyamine metabolism have shown efficacy in animal models and are being tested in clinical
trials [2,9,12]. Currently, there are four clinical trials listed (clinicaltrials.gov) investigating
DFMO with chemotherapeutics in astrocytoma (NCT02796261, active) and neuroblastoma
(NCT03794349, recruiting; NCT02030964, active; NCT01059071, completed). Additionally,
one trial is investigating DFMO with the polyamine transport inhibitor AMXT 1501 in solid
tumors (NCT03536728, recruiting), and another is investigating the polyamine analog SBP-
101 with gemcitabine in pancreatic cancer (NCT03412799, completed). Of note, only one
trial has results posted (NCT01059071, Phase I) in which DFMO and etoposide co-treatment
was well-tolerated and resulted in very low frequencies of serious adverse events.

Analysis of the immunomodulatory effects of polyamine depletion strategies is the
focus of this review. Specifically, new evidence demonstrates the requirement of polyamines
for regulating immune cell lineage, proliferation, and function. Thus, systemic inhibition of
biosynthetic and metabolic machinery may alter the immune microenvironment and the
balance between pro- and anti-inflammatory networks. Combined polyamine depletion
strategies effectively reduce tumor burden and increase survival, but the treatment effects
on the immune microenvironment are just beginning to be investigated.

2. New Evidence Indicates That Polyamines Are Critical for Immune Cell
Specification and Function
2.1. Deficiency in Polyamine Biosynthesis in CD4+ T Cells Confers Aberrant Function and
Delayed Proliferation but Enhances IFNγ Expression

CD4+ T cells require polyamines for proper lineage specification and function. To
specifically delete Odc in CD4+ T cells, Puleston et al. bred mice harboring loxP sites
flanking exons 9–11 of Odc with mice expressing CD4cre to generate Odc-∆T mice on the
C57BL/6 (B6) background [13]. Similar to WT B6 mice, Odc-∆T mice had comparable CD4+
and CD8+ T cell frequencies and numbers in the spleen; however, deletion of Odc in CD4+
T cells led to aberrant differentiation and cytokine profiles.

Naïve CD4+ T cells were isolated from WT and Odc-∆T mice, and the T cells were
induced to differentiate into Th1, Th2, Th17, and Treg subsets in vitro [13]. From day 0 to 4,
all differentiated T-helper cells derived from Odc-∆T mice exhibited delayed proliferation
as well as an approximately 4-fold decrease in cell number as compared to those of WT
mice. Examining cytokine profiles revealed critical differences. Namely, differentiated Th2,
Th17, and Tregs exhibited significantly increased IFNγ expression (from negligible levels to
between 40–60% cells expressing IFNγ). Interestingly, Th17 cells exhibited near-complete
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loss of IL-17A expression while Th1, Th2, and Tregs gained expression of IL-17A. Moreover,
IFNγ expression was sustained across multiple cell divisions.

To examine if enhanced IFNγ expression and inflammation could be induced in vivo,
naïve CD4+ T cells from WT or Odc-∆T mice were transferred into lymphocyte-deficient
Rag1−/− mice. After 23 days, Rag1−/− mice bearing Odc−/− T cells began losing weight.
These mice developed severe inflammation (physiologic and histologic), and harbored a
significantly increased number of IFNγ+ T cells, and by day 36 had to be sacrificed due to a
loss of 20% of their body weight compared to Rag1−/− mice bearing WT T cells [13].

Recent evidence has implicated polyamines in the post-translational modification
of eukaryotic translation initiation factor 5A (eIF5A) as a critical juncture through which
polyamines mediate cellular processes [14,15]. eIF5A is the only protein known to be post-
translationally modified via hypusination: (1) deoxyhypusine synthase (DHPS) transfers
the 4-aminobutyl group derived from spermidine to the eIF5ALys50-deoxyhypusine; (2) deoxy-
hypusine hydroxylase (DOHH) catalyzes the hydroxylation to generate eIF5Ahyp. Since
global deletion of Dhps is embryonic lethal in mice, cell-type-specific deletions are re-
quired [16]. Puleston et al. generated Dohh-∆T and Dhps-∆T mice to specifically delete
DOHH and DHPS, respectively, in CD4+ T cells [13]. In the spleen of Dohh-∆T mice, there
was an approximately 50% reduction in T cell frequency and number as compared to that in
WT mice. Similar to Odc deletion, in vitro differentiated Dohh−/− and Dhps−/− CD4+ T cells
exhibited highly elevated IFNγ and IL-17A expression. Importantly, Dohh-∆T mice died
within 2–3 months, likely from severe inflammation based on physiological and histological
analysis. Furthermore, aberrant Odc−/− and Dohh−/− Tregs failed to protect against the
heightened inflammatory response as compared to WT Tregs.

Further mechanistic analyses revealed that Odc−/− and Dohh−/− T cells harbored
aberrant acetylation marks. Pharmacological inhibition and/or genetic ablation of the
H3K27 acetyltransferase P300 or the H3K9 acetyltransferase KAT2A reduced IFNγ levels
across Th subsets to WT levels. Thus, depletion of hypusine biosynthesis recapitulates the
consequence of Odc deletion, and ultimately suggests that polyamine-derived hypusine is
critical for specifying T-helper cell lineage.

2.2. Spermidine Potentiates Foxp3-Expressing Tregs

In an independent study, spermidine was also shown to regulate T-cell differen-
tiation [17]. Specifically, spermidine induced Foxp3 expression in Th17 and Treg cells
generated by in vitro differentiation of murine naïve CD4+ T cells. Interestingly, naïve
CD4+ T cells derived from human cord blood samples induced to differentiate under
Th17 conditions and supplemented with spermidine also reduced IL-17 production. To
investigate spermidine supplementation in vivo, Carriche et al. treated BALB/c mice with
30 mM spermidine in drinking water and the adoptive transfer of naïve T cells [17]. After
1 week of treatment, there was a significant increase in Foxp3+ Treg cells within the small
intestine and colon. Furthermore, L-arginine supplementation in drinking water also led to
increased CD4+ Foxp3+ T cells in the colon. Moreover, the deletion of autophagy protein 5
(ATG5) in T cells abolished the increase in Foxp3+ Tregs. Thus, autophagy may play an
important role in mediating spermidine potentiation of Tregs. To measure the immunosup-
pressive Treg functions of spermidine-treated mice, naive CD4+ T cells were transferred
into lymphocyte-deficient Rag2−/− mice, and 30 mM spermidine was administered in
drinking water. Importantly, spermidine treatment ameliorated the severe body weight loss
observed in the untreated group. Moreover, there was a significant increase in frequency
and number of Foxp3+ T cells in the colon and small intestine, concomitant with increased
anti-inflammatory IL-10 production [17].

2.3. Polyamine Transport Can Compensate for Deficiency in Biosynthesis in CD4+ T Cells

In agreement with findings from Puleston et al. [13], Wu et al. noted that Odc−/−

T cells exhibited delayed cell cycle progression post-activation, and overall suppressed
proliferation in vitro [18]. Pharmacological inhibition of ODC via DFMO treatment sim-
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ilarly reduced T cell progression and proliferation in vitro. Moreover, genetic deletion
or pharmacological inhibition resulted in increased T cell death. To examine the conse-
quences of Odc deletion in vivo, CD4+ T cells from Odc-∆T or WT mice were transferred to
Rag1−/− mice. Interestingly, loss of ODC neither significantly affected T cell proliferation
nor antigen-specific proliferation. Wu et al. commented that polyamine salvage from
circulation might be responsible for supporting T cell proliferation and function in vivo to
compensate for the deficiency in de novo polyamine biosynthesis [18]. This is an interesting
perspective that agrees with comments by Carriche et al. that secreted polyamines in the
microenvironment and/or serum may promote distribution and uptake by surrounding
cells. Furthermore, Carriche et al. posit that the gut microbiome may serve as a major
source of circulating polyamines [17].

To investigate if exogenous polyamine uptake can mediate T cell proliferation in the
absence of ODC, the authors supplemented polyamines and observed restored cell cycle
progression, proliferation, and viability in Odc−/− CD4+ T cells in vitro [18]. Moreover,
the combination treatment of DFMO and the polyamine transport inhibitor AMXT 1501
(AMXT) abolished the compensatory increase in putrescine uptake observed in DFMO
treatment alone. Similar results were obtained with human T cells. In an experimental
autoimmune encephalomyelitis (EAE) murine model of multiple sclerosis (MS), DFMO
and AMXT abrogated pathogenesis, which the authors attributed to the reduction in
CD4+ T cell infiltration and in IL-17+ CD4+ T cells; however, the disease state induces
hyper-recruitment of a complex array of immune cells [18,19]. Nonetheless, polyamine
biosynthesis and transport can effectively maintain polyamine homeostasis in and viability
of CD4+ T cells.

Surprisingly, Wu et al. showed that Odc deletion in CD4+ T cells, which were differenti-
ated under Th1, Th17, and Treg conditions, resulted in significantly reduced populations of
IFNγ+, IL-17+, as well as increased Foxp3+ T cells [18]. This is in sharp contrast to findings
by Puleston et al., in which Odc deletion in CD4+ T cells cultured under similar conditions
resulted in significantly increased IFNγ+, IL-17+, and Foxp3+ T cells. Moreover, the differ-
ences were highly significant. Of note, however, while Foxp3 expression by Th1 and Th2
was highly significant (p < 0.00005), the change in percent value of expressing cells was very
small, perhaps indicative of a switch from non-expressing to expressing cells. Nonetheless,
the data demonstrate opposing effects of Odc deletion. Although Puleston et al. cite the
work by Wu et al., the authors do not mention these important differences. The cause
for such differences is unclear but may involve differences in Odc-∆T model generation
(CD4cre is constant), and/or differences within in vitro differentiation and flow cytometric
analyses; the disparities warrant further study.

2.4. Odc Deletion in Myeloid Cells Enhances Pro-Inflammatory Response to Bacterial Infection

In the context of bacterial infection, the potentiation of classically activated M1
macrophages contributes to a pro-inflammatory response [20]. To investigate the role
of myeloid cell ODC in response to H. pylori or C. rodentium infections, Hardbower et al.
generated Odc∆mye mice (Lyz2-Cre; Odcloxp/loxp). H. pylori or C. rodentium infection enhanced
acute and chronic inflammation in Odc∆mye mice [21]. Gastric tissue from infected Odc∆mye

mice harbored significantly increased inflammatory cytokines and chemokines as compared
to that of control mice (Odcloxp/loxp). Moreover, gene expression data revealed increased
expression of classical M1 markers such as Il1b, Il6, Tnfa, Nos2, and limited effect on M2
markers such as Arg1, Chil3, Retnla, and Il10 [21].

To confirm the specific engagement of macrophages, the authors isolated bone marrow-
derived macrophages (BMDMs) from Odc∆mye and control mice and infected them with
either H. pylori or C. rodentium. In agreement with their findings, mRNA expression of
M1 markers, as well as secretion of inflammatory cytokines, were significantly increased
in Odc−/− BMDMs. The authors then examined epigenetic alterations and observed that
Odc−/− BMDMs had increased the presence of H3K9ac in promoters of M1 markers. Sub-
sequent pharmacologic inhibition of KAT2A significantly reduced M1 marker expression
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while exogenous putrescine reverted levels of NO production as well as histone modifi-
cations [21]. Interestingly, KAT2A inhibition also decreased pro-inflammatory markers of
Odc−/− T-helper cells [13]; thus, Odc deletion may exert conserved epigenetic alterations
across immune populations.

2.5. Microbiota-Derived Polyamines Are Important for Modulating Macrophage Function

Exogenous polyamines can be imported into cells and promote biosynthetic and
metabolic activity. Recent evidence has highlighted the importance of microbiota-derived
polyamines in regulating macrophage differentiation in vivo [22]. Germ-free B6 mice
were inoculated with either WT E. coli or SK930 E. coli, a putrescine biosynthesis-deficient
strain, and fecal and colonic tissue samples were analyzed. Interestingly, mice harbor-
ing SK930 E. coli had significantly reduced cell number and percent of anti-inflammatory
CX3CR1hi Ly6C- M2-like macrophages in the colonic lamina propria as compared to that
of mice with WT E. coli [22]. Moreover, pro-inflammatory Nos2+ Arg1- F4/80+ CD11b+
macrophages were significantly increased. Thus, bacterium-derived polyamines may po-
tentiate anti-inflammatory macrophages, similar to how Carriche et al. reported an increase
in immunosuppressive Tregs upon spermidine administration in drinking water [17].

2.6. The Role of Hypusine Biosynthesis in Specifying Macrophage Polarization Is Unclear

Recent evidence has also implicated hypusine in the modulation of macrophage ac-
tivation. BMDMs were isolated from B6 mice and polarized into classically activated
M1 (LPS and IFNγ) macrophages and alternatively activated M2 (IL-4) macrophages [23].
Upon M2 induction, the authors observed increased ODC, DHPS, and eIF5Ahyp levels
as well as increased putrescine uptake as compared to that of M1-induced and unpo-
larized BMDMs. Another group also observed increased levels of hypusine as well as
mitochondrial electron-transport complexes upon M2 induction as compared to M1 induc-
tion [22]. Moreover, Puleston et al. reported that pharmacological inhibition of DHPS via
N1-guanyl-1,7-diaminoheptane (GC7) significantly reduced M2 markers in IL-4 stimulated
human monocyte-derived macrophages [23]. In vivo injection of an IL-4 complex signifi-
cantly increased levels of eIF5Ahyp, which the authors attributed to the potentiation and
accumulation of Ly6G- Ly6C- F4/80+ CD11b+ M2 macrophages [22,24,25].

In contrast to findings by Puleston et al. and Nakamura et al., neither IL-4 induction
of M2 macrophages affected eIF5Ahyp levels, nor did pharmacological inhibition of DHPS
via GC7 affect eIF5Ahyp levels [16]. The authors noted this disparity in their results and
suggested that GC7 had an effect on M2 polarization independent of DHPS inhibition. To
further investigate the role of DHPS in macrophage activation, Anderson-Baucum et al.
generated Dhps∆mye mice harboring a genetic deletion of Dhps in the myeloid cell population
(Lyz2-Cre) [16]. Interestingly, BMDMs derived from Dhps∆mye mice and polarized under
M1 conditions did not differ in their secretion of inflammatory cytokines TNFα and IL-6 or
chemokines MCP-1 and MIP-2 as compared to that of control mice. Proteomic analyses
in M2-polarized macrophages derived from Dhps∆mye mice apparently did not yield clear
pathway alterations in macrophage functions; thus, the authors concluded that DHPS-
deficiency primarily affects M1 polarization [16]. Of note, while the relative abundance
of DHPS was significantly decreased compared to control, it was still relatively high. The
disparities in these results warrant further study.

2.7. Immune Cell-Intrinsic Deficiencies in Polyamine Biosynthesis Induced by Odc Deletion or
Pharmacological Inhibition via DFMO Can Restrict Proliferation and Alter Function

It is evident that polyamines and hypusine also promote the proper function of other
immune cells, such as NK cells. Pharmacological modulation of polyamine biosynthesis
via DFMO or N1,N11-diethylnorspermine (DENSpm) reduced NK cell proliferation as well
as IFNγ and granzyme B production in vitro [26]. Moreover, inhibition of hypusination via
GC7 similarly reduced IFNγ and granzyme B production as well as cytotoxicity, without
affecting viability. Thus, decreased polyamines, especially spermidine, are detrimental
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to NK cell function in vitro [26], bringing to question the effects of systemic polyamine
depletion strategies in disease settings such as cancer.

The data presented on T cells, macrophages, and NK cells thus far exemplify the
cell-intrinsic immunomodulatory effects of polyamine depletion. Since polyamines are
critical for regulating immune cell lineage, proliferation, and function, it is expected that
systemic polyamine depletion strategies would affect immune populations. Interestingly,
while genetic deletion or pharmacological inhibition of ODC in CD4+ T cells, macrophages,
and NK cells led to reduced proliferation and/or increased cell death in vitro, the aberrant
CD4+ T cells (as well as Tregs) or macrophages presented higher IFNγ expression that
was perhaps indicative of a pro-inflammatory phenotype [13,21,26]. On the other hand,
spermidine potentiated Tregs in vitro and/or stimulated an anti-inflammatory phenotype
in vivo [17,22]. Thus, depletion of polyamines may tip the balance between pro- and anti-
inflammatory signaling toward pro-inflammatory even though absolute immune content
may decrease, at least in vitro. In vivo, serum-available polyamines derived from sources
such as the gut microbiome may compensate for disrupted de novo biosynthesis and
maintain immune cell proliferation [17,18,22].

The addition of a tumor further confounds the immune microenvironment. High intra-
tumoral ARG1 expression is associated with an immunosuppressive phenotype, which may
deplete resources for polyamine biosynthesis of immune cells such as T cells. Concomitantly,
tumor-derived polyamines may potentiate Tregs and M2 macrophages. Furthermore, tu-
mor cell apoptosis and subsequent efferocytosis by neighboring and/or infiltrating immune
cells may enhance the immunosuppressive phenotype. McCubbrey et al. demonstrated that
LPS-stimulated macrophages co-cultured with apoptotic Jurkat cells exhibited increased
spermine uptake and reduced IL1β and IL6 gene expression, while treatment with the Rac-1
inhibitor NSC23766 abolished the increase in polyamine content and reverted IL1β and IL6
expression to near-normal levels [7]. Thus, investigating immune-cell-intrinsic alterations
upon systemic DFMO treatment alone and/or in combination with transport inhibitors
may provide insight into the anti-tumor efficacy or lack thereof in these treatment groups.

3. Immunomodulatory Effect of DFMO in the Context of Polyamine Blocking Therapy
3.1. DFMO and AMXT 1501 Reduce Tumor Growth in Immunocompetent Mice

Polyamine-blocking therapy (PBT) combining DFMO (0.5% w/v, drinking water) and
AMXT 1501 (3 mg/kg, i.p.) significantly reduced putrescine and spermidine levels and
inhibited tumor growth, as compared to either treatment alone, in syngeneic models of
colon carcinoma (CT26.CL25, BALB/c) and melanoma (B16F10, B6) [27]. Interestingly, nude
mice (deficient in mature T cells and reduced lymphocytes) injected with CT26.CL25 cells
did not respond to PBT. These data suggest that the PBT-mediated anti-tumor response was
dependent on T cells. Furthermore, PBT prevented tumor rechallenge in a syngeneic model
of mammary adenocarcinoma (Neu02, FVB), suggesting that PBT promotes a protective anti-
tumor immune memory [27]. Thus, while PBT-induced immunosurveillance is likely highly
context-dependent, these data provide a strong rationale for investigating the therapeutic
benefit of PBT and subsequent alterations in the tumor immune microenvironment.

3.2. DFMO Alone Can Reduce Immunosuppression in the Tumor Microenvironment

In the context of glioblastoma, infiltration of immunosuppressive tumor-associated
myeloid cells (TAMCs) is associated with poor survival [28]. Intracranial injection of
CT-2A glioma cells into B6 mice yielded aggressive tumors with significantly increased
polyamine content and ODC expression [28]. The authors treated CT-2A tumor-bearing
mice with DFMO (1% w/v) and observed increased survival and reduced polyamines
in TAMCs but not in myeloid cells within the spleen. To investigate potential immune-
associated effects of DFMO treatment, the authors injected Rag1−/− mice (lacking T and
B cells) with CT-2A glioma cells and observed no survival benefit with DFMO. Thus,
lymphocytes could have directed the PBT-mediated anti-tumor response. Interestingly, in
B6 mice, the authors observed significant reductions in M-MDSCs, TAMs, and microglia
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but not in the T cell compartment. Thus, the active immunosurveillance driving a survival
benefit may differ depending on tumor context and model system. Indeed, in the GL-
261 syngeneic model, treatment with DFMO led to a reduction in TAMCs but also in
CD4+ T cells. Nonetheless, reduction in TAMC populations was a common effect in
mice exhibiting survival benefits. The authors further demonstrated that, in vitro, TAMCs
tolerated increasingly acidic conditions (down to pH 6.7), but the addition of DFMO
significantly enhanced necrosis, to which add-back of putrescine was able to rescue. These
data suggest that polyamines buffer intracellular pH and might protect TAMCs against the
acidic TME in glioblastoma [28].

Importantly, CT-2A tumors presented higher immune-inhibiting programmed cell
death-ligand 1 (PD-L1) expression upon DFMO treatment, to which putrescine reverted
to near-control levels. To leverage this outcome, the authors combined DFMO with either
immune-stimulating checkpoint inhibitor α-PD-L1 or α-PD-1 and observed significantly
increased survival (additive effect) as compared to single treatment arms [28]. Thus,
DFMO alone may reduce the immunosuppressive TME and sensitize the tumor to immune
checkpoint blockade (ICB).

3.3. DFMO and Trimer44NMe Reduce Immunosuppression and Sensitize Tumors to α-PD-1

Muth et al. delineated the development of a novel polyamine transport inhibitor (PTI),
Trimer44NMe, designed/optimized to inhibit spermidine import in DFMO-treated Chinese
hamster ovary (CHO) and L3.6pl human pancreatic cancer cells in vitro [29]. To investigate
the efficacy of this combination in vivo, Alexander et al. subcutaneously injected female
B6 mice with 5 × 105 B16F10-sTAC melanoma cells and administered DFMO (0.25% w/v,
drinking water) and/or the Trimer PTI (3 mg/kg, i.p. daily) [30]. Trimer PTI preferentially
bound to the tumor but alone did not affect tumor growth; however, the combination of
DFMO and Trimer PTI (PBT) significantly reduced tumor volume and polyamine content.
Moreover, there was a significant increase in tumoral F4/80+ cells as well as in IFNγ, IL-10,
and MCP-1 expression, indicative of immune infiltration [30].

To confirm PBT efficacy in vivo, the authors subcutaneously injected 5 × 105 CT26.CL25
colon cancer cells into BALB/c mice and treated them with PBT. Analysis of tumor-
isolated leukocytes revealed a significant increase in CD8+ T cells with increased IFNγ
and granzyme B expression as well as decreases in CD206+ F4/80+ macrophages, Gr1+
CD11b+ MDSCs, and CD25+ CD4+ Tregs. Unfortunately, DFMO and PTI were not exam-
ined as single agents in this system. To further examine the role of T cells, the authors
depleted CD-4 and CD-8-expressing cells (75 µg anti-CD4/CD8, i.p. every three days, four
doses total) and observed accelerated tumor growth; subsequent DFMO and Trimer PTI
co-treatment did not significantly reduce tumor growth [30]. Thus, cytotoxic and helper
T cell populations may drive the anti-tumor response. Interestingly, although combined
DFMO (1% w/v) and Trimer PTI (1.8 mg/kg) conferred significant survival benefits in the
orthotopic Pan02 model of gemcitabine-resistant pancreatic cancer, it did not further reduce
tumor burden when compared to DFMO or PTI alone [31]. Nakkina et al. increased the
Trimer44NMe dosage to 4 mg/kg, (DFMO: 0.25% w/v) and observed a significant increase
in survival, reduction in Pan02 pancreatic tumor burden, and increase in co-stimulatory
marker CD86 expression when compared to either treatment alone [32].

To investigate PBT-driven alterations of immune populations, Alexander et al. ex-
panded their previous findings to include an orthotopic model of breast cancer. The 4T1
cells were injected into the mammary fat pad of BALB/c mice and were treated with
previously established regimens [30]. Co-treatment with DFMO and Trimer PTI signifi-
cantly inhibited tumor growth as well as reduced metastatic lung nodules as compared to
untreated mice. Tumor progression in the 4T1 model is associated with high recruitment
and accumulation of MDSCs [33]. Analysis of tumor composition revealed 60% leukocytes,
which was significantly reduced by nearly 20% in PBT-treated mice. PBT reduced Ly6G+
CD11b+ granulocytic MDSCs and CD206+ F4/80+ macrophages. Interestingly, treatment
with anti-Ly6G prior to PBT abolished the inhibition of tumor growth, suggesting that
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Ly6G+ myeloid cells were targeted in PBT [33]. Of note, Boivin et al. investigated the
duration and efficacy of anti-Ly6G depletion of Ly6G+ cells and observed a re-emergence
of neutrophilic cells [34]. The authors proposed a continuous dosing regimen to reliably
deplete neutrophils [34]. Thus, whether neutrophils and/or other Ly6G-expressing cells
remained after the initial dosing remains unclear.

To leverage the decrease in TME immunosuppression, Alexander et al. tested PBT in
combination with α-PD-1 in the 4T1 and B16F10-sTAC tumor models [33]. Although PBT
alone resulted in reduced tumor growth and improved survival, the addition of α-PD-1
yielded additional benefits. Interestingly, α-PD-1 treatment alone had no effect on inhibiting
tumor growth in the 4T1 model, unlike in the B16F10-sTAC model. A T-cell response
may be critical for PBT-mediated inhibition of tumor growth in melanoma and colon
carcinoma; however, depletion of pro-tumorigenic monocytic and/or granulocytic myeloid
populations may be critical for positive treatment outcomes in mammary carcinoma [30,33].
Thus, the drivers of immune alterations and/or response are tumor- and context-dependent.

3.4. DFMO and 5-Azacytidine Reverse Immunosuppression and Enhance Pro-Inflammatory
Myeloid-Derived Cells

Previous studies have demonstrated that epigenetic therapies such as DNA methyl-
transferase inhibitors (DNMTIs) and histone deacetylase inhibitors (HDACIs) can reduce
tumor immunosuppression [35]. In the VEGF-β-Defensin ID8 (VDID8) murine ovarian
cancer model, the combination of the DNMTI 5-azacytidine (5AZA-C) with the HDACI
MS275 enhanced IFN signaling and sensitized tumors to α-PD-1 immunotherapy [35].

To investigate the potential for combining epigenetic therapy with polyamine deple-
tion, Travers et al. treated VDID8 tumor-bearing B6 mice with DFMO (2% w/v) and/or
5AZA-C (0.5 mg/kg, i.p.) [36]. DFMO or 5AZA-C alone or in combination increased
lymphocytes in ascites and particularly IFNγ+ cells, including NK cells, as well as T cells.
Combination treatment significantly reduced tumor ascites volume and increased survival
as compared to either treatment alone, as well as reduced the CD11b+ F4/80+ macrophage
compartment. Interestingly, the addition of α-PD-1 neither decreased tumor burden nor
increased survival, suggesting that the T-cell response was not the primary mechanism.

To investigate macrophage polarization, the authors treated mice continuously (bi-
weekly) with anti-colony stimulating factor 1 receptor (α-CSF1R) and observed a significant
reduction in MHC II+ CD206- M1 macrophages while MHC II- CD206+ M2 macrophages
remained low. Moreover, α-CSF1R treatment increased tumor ascites and reduced survival
of mice treated with DFMO and 5AZA-C; thus, the authors proposed that M1 macrophages
were critical players contributing to the positive treatment outcome [36]. The limited
therapeutic effect of α-CSF1R-mediated depletion of TAMs in various tumors has been doc-
umented [37,38]. Kumar et al. demonstrated that inhibition of CSF1R induced PMN-MDSC
infiltration [37]; thus, while a reduction in the M1 macrophage compartment observed by
Travers et al. likely contributed to the increased tumor burden, it is possible that additional
factors were involved, such as the recruitment of MDSCs, that was not sustainably affected
by DFMO plus 5AZA-C treatment.

Notably, the tumors examined thus far exhibit relatively high frequencies of tumor-
associated immune cells. Polyamine depletion strategies may have an increased efficacy in
such tumors (Figure 2); however, there exists a paucity of these studies in immunologically
deprived solid tumors. As described by Gitto et al., PBT with DFMO and Trimer PTI
did not yield additive survival benefits as compared to DFMO alone in a gemcitabine-
resistant pancreatic adenocarcinoma model [31]. Furthermore, the model system used by
Travers et al. utilizes ascites volume as a measure of tumor burden as well as response
to treatment [36]; however, the solid ovarian tumor microenvironment likely differs in
immune content and treatment-induced response. It would be interesting to examine both
therapeutic efficacy and/or immunomodulatory effects of polyamine depletion strategies
within poorly immune-infiltrated solid tumors.
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Figure 2. Polyamine blocking strategies decrease immunosuppression in multiple animal models of
cancer. The tumor microenvironment (TME) presents anti-inflammatory cytokines and chemokines
to support tumor growth; tumor- and gut microbiome-derived polyamines may further enhance
immunosuppression [17,22]. Of the cancers examined, the respective panels are comprised of no-
treatment (left) and treatment groups (right) and delineate significant alterations in the immune
landscape. The red-green bar indicates the shift from an anti-inflammatory to pro-inflammatory
phenotype, and the size of respective immune cells indicates the shift in observed frequencies as
reported in the following articles. The immune cell types are labeled accordingly, and of note T cell (−)
indicates a non-inflammatory and/or exhausted phenotype. DFMO and Trimer44NMe polyamine
transport inhibitor (PTI) significantly reduced Ly6G+ polymorphonuclear myeloid-derived suppres-
sor cells (PMN-MDSCs) and M2 macrophages (M2 Mϕ) in the 4T1 orthotopic mammary carcinoma
model [33]. DFMO and Trimer44NMe significantly increased IFNγ-expressing cells and T cells, and
decreased M2 macrophages and/or monocytic MDSCs (M-MDSCs), as well as Tregs in the CT26.CL25
subcutaneous colon carcinoma model [30]. DFMO and Trimer44NMe significantly increased IFNγ-
expressing myeloid cells and T cells in the B16F10-sTAC subcutaneous melanoma model [30,33].
DFMO treatment alone significantly decreased M2 Mϕ and/or M-MDSCs as well as microglia in the
CT-2A orthotopic glioblastoma model [28]. DFMO and 5-azacytidine (5AZA-C) significantly reduced
M2 macrophages and increased pro-inflammatory M1 macrophages (M1 Mϕ), T and NK cells in the
VDID8 intraperitoneal ovarian carcinoma model [36].

4. Conclusions and Future Directions

Combining polyamine depletion strategies to restrict cancer cell proliferation has
shown efficacy within in vitro systems and in vivo animal models and is currently being
tested in clinical trials [2,9,12]. Recent evidence has demonstrated that the tumor immune
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microenvironment is significantly altered, that the efficacy of PBT may be due to the
treatment-induced anti-tumor immune response, and that the immune cell subtypes driving
this response differ depending on tumor model systems [27,28,30,33,36]. Thus, it is of
interest to define the immunomodulatory effects of these novel therapies. Importantly, new
evidence in pre-clinical models of inflammation demonstrates the critical regulatory effects
exerted by polyamines on immune cell lineage specification, proliferation, and function.
In the tumor context, these data may provide rationale for targeting polyamine depletion
strategies toward the tumor and/or immediate pro-tumorigenic immune cells as a means
to increase the efficacy of DFMO alone and/or in combination with novel therapeutics.

The mouse models tested thus far have exemplified the PBT-mediated remodeling of
the immunological landscape, primarily promoting a pro-inflammatory and/or anti-tumor
response; however, the location of tumor implantation affects the immune microenviron-
ment. In a comparison of mouse models of colorectal cancer, Zhao et al. developed a novel
endoscopy-guided orthotopic model and compared the immune content of it and other
syngeneic orthotopic models to that in respective subcutaneous models [39]. Notably, or-
thotopic tumors harbored significantly higher immune infiltration of T cells, B cells, and NK
cells, as well as fewer immunosuppressive myeloid cells than subcutaneous tumors, with
increased expression of inflammatory cytokines IL-2, IL-6, and IFNγ. Interestingly, while
subcutaneous tumors exhibited higher levels of immune-inhibiting checkpoint cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) and PD-1 on T cells as compared to orthotopic
tumors, these tumors persisted post α-PD-1 and α-CTLA-4 treatment while orthotopic tu-
mor growth ceased [39]. Thus, the immune landscape associated with carcinogenesis differs
significantly with tumor location and can translate into differential treatment response. In
the studies utilizing subcutaneous models, investigating the effects of combined polyamine
depletion strategies on orthotopic and/or transgenic models would provide critical data
for the characterization and stratification of tumor immune microenvironments.

As recent evidence demonstrated that Odc deletion or DFMO treatment resulted in
reduced proliferation and viability of T cells and NK cells cultured in vitro [18,26], systemic
polyamine depletion might attenuate the immune infiltrate in vivo. Thus, it would be of
interest to develop and investigate tumor-specific polyamine depletion strategies. One
approach may involve nanoparticle encapsulation of, or conjugation with, DFMO and other
polyamine analogs to deliver and accumulate the drugs within the tumor [2]; however,
Wu et al. demonstrated that Odc deletion in T cells did not affect proliferation in vivo,
likely due to compensatory mechanisms [18]; perhaps systemic DFMO would not signif-
icantly inhibit immune proliferation. Nonetheless, developing tumor-targeted delivery
mechanisms with DFMO could clarify whether the anti-proliferative effects on immune
populations and/or mechanistic switch to pro-inflammatory phenotypes are important in
determining treatment outcomes. Moreover, while in vitro generated macrophages and
T cells polarized under established conditions provide a system to investigate polyamine
depletion, the in vivo immune content and profiles vary with the microenvironment; thus,
classical signatures of M1 or M2 macrophages, as well as T-helper subsets characterized
in vitro, might not be directly translatable in vivo [40].

The expansion of multi-omic sequencing has greatly advanced knowledge of intri-
cate tumor landscapes. Single-cell RNA sequencing (scRNA-seq) harnesses genome-wide
transcriptional profiling with single-cell resolution and has enabled the identification and
characterization of the immune landscape as well as developmental trajectories [41,42].
Alshetaiwi et al. defined an MDSC differentiation trajectory and expanded the conven-
tional MDSC gene signature to include CD84hi and junctional adhesion molecule-like
protein (JAML); their data highlighted that the standard markers CD11b and Gr-1 were
also expressed in B cells, T cells, neutrophils, and monocytes in mammary tumor-bearing
mice [41]. Thus, without functional confirmation, the presence of conventional MDSC
markers is likely insufficient. This phenomenon extends into other immune cells; thus,
performing scRNA-seq on tumor and lymphoid organs of DFMO-treated and PBT-treated
mice may more clearly define the heterogeneity of the TME and of individual cells within
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clusters. Alternatively, digital spatial profiling (DSP) enables highly specific and multiplex
transcriptomic and/or proteomic analyses and provides critical geographic readout [43].
With DSP, it may be possible to identify critical regions and major drivers of immuno-
suppression that are altered by DFMO treatment or PBT. In addition, epigenetic analyses
may provide important mechanistic information. Interestingly, Odc deletion in BMDMs
and T-helper cells resulted in enhanced expression of pro-inflammatory markers, which
subsequent pharmacological inhibition of KAT2A abrogated; thus, Odc deletion may exert
conserved epigenetic modifications across immune populations [13,21]. These data warrant
further investigation of polyamine depletion strategies and their cell-intrinsic and TME
immunomodulatory effects from multi-omic approaches.
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