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Abstract

Plant defensins are small cysteine-rich antimicrobial proteins. Their three-dimensional structures are similar in that they
consist of an a-helix and three anti-parallel b-strands stabilized by four disulfide bonds. Plant defensins MsDef1 and MtDef4
are potent inhibitors of the growth of several filamentous fungi including Fusarium graminearum. However, they differ
markedly in their antifungal properties as well as modes of antifungal action. MsDef1 induces prolific hyperbranching of
fungal hyphae, whereas MtDef4 does not. Both defensins contain a highly conserved c-core motif (GXCX3–9C), a hallmark
signature present in the disulfide-stabilized antimicrobial peptides, composed of b2 and b3 strands and the interposed loop.
The c-core motifs of these two defensins differ significantly in their primary amino acid sequences and in their net charge. In
this study, we have found that the major determinants of the antifungal activity and morphogenicity of these defensins
reside in their c-core motifs. The MsDef1-c4 variant in which the c-core motif of MsDef1 was replaced by that of MtDef4 was
almost as potent as MtDef4 and also failed to induce hyperbranching of fungal hyphae. Importantly, the c-core motif of
MtDef4 alone was capable of inhibiting fungal growth, but that of MsDef1 was not. The analysis of synthetic c-core variants
of MtDef4 indicated that the cationic and hydrophobic amino acids were important for antifungal activity. Both MsDef1 and
MtDef4 induced plasma membrane permeabilization; however, kinetic studies revealed that MtDef4 was more efficient in
permeabilizing fungal plasma membrane than MsDef1. Furthermore, the in vitro antifungal activity of MsDef1, MsDef1-c4,
MtDef4 and peptides derived from the c-core motif of each defensin was not solely dependent on their ability to
permeabilize the fungal plasma membrane. The data reported here indicate that the c-core motif defines the unique
antifungal properties of each defensin and may facilitate de novo design of more potent antifungal peptides.
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Introduction

Plants are sessile organisms that are continually challenged by

microbial pathogens during their life cycle. To ward off pathogen

attack, plants produce a number of cationic antimicrobial

peptides. These include defensins that are one of the largest

families of antimicrobial peptides found in plants. These basic,

cysteine-rich, proteins are 45 to 54 amino acids in length and share

significant structural homology with defensins from insects,

mollusks and mammals [1]. All plant defensins contain an

invariant tetradisulfide array and share a common cysteine-

stablized a/b structure (CSa/b) composed of three antiparallel b-

strands and one a-helix. Despite their structural similarity, the

amino acid sequences of plant defensins are highly diverse [2,3].

This variation in primary sequences may account for different

functions attributed to plant defensins including antibacterial

activity, zinc tolerance, proteinase and a-amylase inhibitory

activity, ion channel blocking activity [4] as well as pollen tube

growth arrest, burst and sperm discharge [5].

A large number of cationic plant defensins exhibit inhibitory

activity against filamentous fungi in vitro and in transgenic plants

[2,3,4,6,7,8]. Because of their potent in vitro antifungal activity,

plant defensins have the potential to be used as antifungal agents in

transgenic crops. A growing body of evidence suggests that plant

defensins with highly diverse primary structures inhibit the growth

of target fungi via different modes of action [9,10,11]. For

example, RsAFP2 from Raphanus sativus and DmAMP1 from Dahlia

merckii bind to distinct sphingolipids in membranes of fungi and

this interaction with sphingolipids is required for their antifungal

activity [12,13,14]. Other plant defensins like MsDef1 and ZmES4

likely act on ion channels [5,15].

MsDef1, a 45-amino acid protein from the seed of Medicago

sativa, inhibits the growth of a filamentous fungus, Fusarium

graminearum, at micromolar concentrations. MtDef4 is a 47-amino

acid protein that is expressed constitutively and in response to

biotic and abiotic stress in many tissues of a model legume, M.

truncatula. Based on their effects on the morphology of fungal

hyphae, antifungal plant defensins are divided into two different

subgroups, referred to as morphogenic and nonmorphogenic.

Morphogenic defensins inhibit hyphal growth with a concomitant

increase in hyphal branching, whereas nonmorphogenic defensins

inhibit hyphal growth without causing marked morphological

alterations [16,17]. MsDef1 is a morphogenic defensin that

induces extensive hyperbranching of fungal hyphae, whereas
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MtDef4 is a nonmorphogenic defensin that does not induce

hyperbranching [18]. MtDef4 is more potent against F. grami-

nearum than MsDef1 [18]. Two lines of evidence indicate that

MsDef1 and MtDef4 have different modes of antifungal action.

First, insertional mutants of F. graminearum that were isolated as

being hypersensitive to MsDef1 exhibit no change in their

sensitivity to MtDef4 [18]. The analysis of these mutants revealed

two mitogen-activated protein kinase signaling cascades that were

required for the protection of the fungus from the toxic effects of

MsDef1. Second, a mutant depleted in the plasma membrane

sphingolipid glucosylceramide, designated DFggcs1, was found to

be highly resistant to MsDef1, but retained the wild-type sensitivity

to MtDef4 [19].

Little is known about the structural determinants of the in vitro

antifungal activity of MsDef1 and MtDef4. Since all plant

defensins whose 3-D structures have been determined have a

similar backbone, any differences in their antifungal activities and

specificities are likely to arise primarily from differences in the

amino acid composition and charge distribution of solvent-

exposed loops. The calculated net positive charge of +6 for

MtDef4 is significantly higher than the calculated net positive

charge of +3 for MsDef1. Also, the predicted solvent exposed c-

core (see results) of MtDef4 has significantly higher positive charge

than that of MsDef1. We previously reported that the carboxy-

terminal amino acid sequence (AA31 to AA45) was a major

determinant of the in vitro antifungal activity of MsDef1 and that

R38Q mutation significantly reduced its antifungal activity [15].

This sequence spans the b2 and b3 strands and the interposed loop

on the homology-based 3-D structure of MsDef1 [20], previously

referred to as AlfAFP [21]. It also contains the c-core motif

GXC(X3–9)C conserved among disulfide-containing antimicrobial

peptides. This motif is characterized by the presence of two

antiparallel b strands with an interposed loop that has a net

cationic charge and participates in one to four disulfide bonds

[22]. The c-core motif is conserved in all antifungal plant defensins

including MsDef1 and MtDef4.

In this study, we have identified and functionally characterized

the contributions of the c-core motifs to the antifungal activity of

MsDef1 and MtDef4. We show that the MsDef1-c4 variant in

which c-core motif of MsDef1 was replaced with that of MtDef4

behaved like a nonmorphogenic defensin with antifungal activity

similar to that of MtDef4. The chemically synthesized peptides

that contained the c-core motif plus the carboxy-terminal 6 amino

acids of each defensin also exhibited antifungal activity that was

less potent than that of a full length defensin. Importantly, the c-

core motif of MtDef4 alone was sufficient for antifungal activity,

whereas that of MsDef1 was not. We further show that the

positively charged amino acids and hydrophobic side chains

present in the c-core loop are important for the antifungal activity

of MtDef4. Furthermore, MsDef1, MsDef1-c4 and MtDef4

markedly differed in their ability to permeabilize fungal plasma

membrane, but membrane permeabilization was not the sole

determinant of antifungal activity.

Results

MsDef1 and MtDef4 contain highly conserved c-core
motifs

Previous structure-function analysis of disulfide-containing

antimicrobial peptides from phylogenetically diverse organisms

identified a conserved three-dimensional c-core motif with a

consensus sequence GXC(X3–9)C [22]. Analysis of the MsDef1

and MtDef4 primary sequences revealed the presence of a c-core

motif encompassing b2–b3 loops of their homology predicted 3-D

structures (Figure 1). Several plant defensin sequences deposited in

the PhytAMP database (http://phytamp.pfba-lab-tun.org/main.

php) also contain the consensus c-core motif. A search of the

NCBI database using Blast P [23] resulted in the identification of

16 legume-specific plant defensin sequences sharing high sequence

homology with MsDef1 (Figure S1A). In contrast, defensin

sequences sharing high sequence homology with MtDef4 are

widespread throughout the plant kingdom (Figure S1B). CLUS-

TAL W alignment [24] of 18 amino acid sequences of the

homologs of MsDef1 identified a consensus c-core motif with the

sequence ‘GXCRDD(F/V)RC’ (Figure 1A), whereas similar

analysis of 28 MtDef4 homologs identified a consensus c-core

motif with the sequence ‘GXC(R/H/K)(G/A/_)(F/V)(R/H/

T)R(R/K)C’ (Figure 1A). The c-core motifs of MsDef1 and

MtDef4 are GRCRDDFRC and GRCRGFRRRC, respectively.

Based on their predicted structures (Figure 1B), both MsDef1 and

MtDef4 c-core motifs connect the two anti-parallel b2 and b3

strands and contain an interposed loop. Each c-core motif has a

net positive charge and a hydrophobic amino acid. The analysis of

the amino acid sequences of MsDef1 and MtDef4 homologs also

revealed the presence of another motif containing the GXC

sequence. We have designated this motif as a-core motif with a

consensus sequence GXC(X3–5)C. The a-core motifs of MsDef1

and MtDef4 are GPCFSGC and GPCASDHNC, respectively

(Figure 1A). This motif resides in the b1 strand-a-helix loop and

contains part of the a-helix of each defensin. This motif however

lacks the hairpin structure of the c-core motif.

The c-core substitution variant of MsDef1 containing the
c-core motif of MtDef4 has significantly enhanced
antifungal activity and becomes a nonmorphogenic
defensin

Defensins containing the c-core motif identical to that of

MtDef4 are widely distributed in the plant kingdom, whereas those

containing the c-core motif identical to that of MsDef1 are only

found in legumes. We therefore replaced the c-core motif of

MsDef1 with that of MtDef4 to determine what effect this

replacement would have on MsDef1’s ability to inhibit the growth

of F. graminearum and to induce hyperbranching of hyphae in this

fungus. A chimera of MsDef1 containing the c-core motif of

MtDef4 was created by replacing the RDDFR sequence with

RGFRRR and designated MsDef1-c4. The MsDef1-c4 variant

has significantly higher net positive charge (+7) when compared to

MsDef1 that has a net charge of +3 (Table 1). Mass spectrometric

analysis demonstrated that MsDef1-c4 had expected mass and

formed four disulfide bonds (data not shown). The antifungal

activity of this variant was compared to that of MsDef1 and

MtDef4 microscopically as well as spectrophotometrically. Micro-

scopic observations after overnight incubation of fungal macroco-

nidia (conidia) indicated that MsDef1-c4 exhibited antifungal

activity at concentrations as low as 0.375 mM. At 1.5 mM, it

inhibited 59612% of fungal growth, which is twice as effective as

MsDef1 (26612%) (Figures 2A and B). MtDef4 inhibited conidial

germination completely (100% growth inhibition) at this concen-

tration (Figure 2A). At 3 mM, MsDef1-c4 completely inhibited the

germination of conidia. In contrast, conidia were able to

germinate and grow even in the presence of 6 mM MsDef1.

MsDef1 caused only 3865% and 5763% growth inhibition at

3 mM and 6 mM, respectively (Figure 2B). Thus, the MsDef1-c4

variant exhibited significantly higher antifungal activity than

MsDef1 and was almost as potent as MtDef4. As reported

previously [15], the MsDef1-R38Q variant showed no antifungal

activity in this experiment and may as such act as a negative

Antifungal Determinants of Plant Defensins
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control (Figure 2B). Significantly, hyperbranching of fungal

hyphae, which is a typical morphological response of F.

graminearum to MsDef1, was not observed in the presence of

MsDef1-c4 variant (Figure 2A).

We have previously characterized a mutant strain of F.

graminearum, DFggcs1, lacking sphingolipid glucosylceramide

(GlcCer) in the plasma membrane and demonstrated that it is

resistant to MsDef1, but not to MtDef4 [19]. Interestingly, the

DFggcs1 strain was highly sensitive to MsDef1-c4 at concentrations

that were insufficient for MsDef1 to be effective (Figure 2C). At

1.5 mM, the MsDef1-c4 variant, but not MsDef1, inhibited the

growth of the DFggcs1 strain. MsDef1-c4 variant completely

inhibited conidial germination of the DFggcs1 strain at 3 mM,

whereas MsDef1 caused only 1662% inhibition at 3 mM and

2362% inhibition at 6 mM (Figure 2D).

Together, these results suggest the c-core motif of MsDef1

contains the major determinants of its morphogenicity and likely

interacts with GlcCer as part of MsDef1’s antifungal action.

c-core motif is a vital structural component of MsDef1
that affects hyphal tip growth

Since the hyperbranching of fungal hyphae was not observed in

F. graminearum treated with the MsDef1-c4 variant, it was

speculated that the c-core motif of MsDef1 affected hyphal tip

growth. To test this hypothesis, fungal hyphae were treated with

complete inhibitory concentrations (Table 1) of MsDef1 or

MtDef4 or MsDef1-c4 and their effects on hyphal morphology

were monitored and compared with the morphology of untreated

hyphae. At 4 hours, the hyphae treated with MsDef1 appeared

swollen with conspicuous bulges at the tips. In contrast, the hyphae

Figure 1. Highly conserved structural motifs and homology-based three-dimensional structures of plant defensins MsDef1 and
MtDef4. (A) Amino acid sequences of MsDef1 and MtDef4 showing highly conserved a-core and c-core motifs. The consensus a-core (pink color)
and c-core (orange color) sequences were created using 16 homologs of MsDef1 and 28 homologs of MtDef4. For both sequences, conserved amino
acids of the core regions are listed underneath the respective motifs with highly conserved amino acids on the top followed by less conserved ones.
a-helix and b-strands are underlined. (B) Homology-based models of MsDef1 and MtDef4. The a-core motif is indicated in pink color; the c-core motif
is indicated in orange color and the four disulfide bridges are indicated in yellow color. Models were developed using the I-TASSER website for
protein structure and function predictions as described in Materials and Methods.
doi:10.1371/journal.pone.0018550.g001
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treated with MtDef4 and MsDef1-c4 appeared similar to

untreated control hyphae. After 7–8 hours of treatment, the

hyphae treated with MsDef1 remained swollen and the tips started

to branch dichotomously (Figure 3). More than 90% of the tips

treated with MsDef1 had apparent swelling morphology or were in

the process of division, where as no difference was noticed in

morphology of hyphae treated with either MtDef4 or the MsDef1-

c4 variant or the untreated control hyphae (Figure 3). Based on

these observations, we speculate that the c-core region of MsDef1

directly or indirectly interacts with the molecular determinants of

hyphal tip growth thus resulting in hyperbranching of fungal

hyphae. The substitution of this motif with that of MtDef4 in the

MsDef1-c4 variant likely prevents the proposed interaction

resulting in the lack of hyperbranching effect.

MsDef1, MsDef1-c4 variant and MtDef4 permeabilize the
plasma membrane of F. graminearum, but with different
intensities

One characteristic feature of many cationic antimicrobial

peptides is their ability to permeabilize the plasma membrane of

their target organisms. Plant defensins have been previously

shown to permeabilize fungal plasma membrane [25,26].

Because of their different modes of antifungal action and

morphological effects on F. graminearum, MsDef1, MsDef1-c4

and MtDef4 were examined for their ability to permeabilize the

fungal plasma membrane using the fluorometric SYTOX Green

(SG) (Molecular Probes Inc., OR), a dye which is only taken up

by cells with compromised plasma membrane. Fluorescence of

this dye increases .500-fold upon binding to nucleic acids thus

allowing quantitative analysis and fluorescence microscopy [27].

Permeabilization was measured by fluorescence microscopy and

spectrophotometry using SG uptake assay. SG uptake was

monitored at regular intervals (15 minutes, 30 minutes, 1 hour,

2 hours, 3.5 hours, 5 hours and 6 hours). The SG uptake

increased during exposure to defensins and started to plateau

at 5 hours. Therefore, the fluorescence at 5 hours represents the

maximum effect of the defensins and is correlated with the

concentration of defensins in Figure 4. SG uptake steadily

increased with an increase in MtDef4 concentration, whereas

MsDef1 induced a rapid uptake of SG at low concentrations

(,1 mM) that became plateau at 1 to 6 mM. At a concentration

of 6 mM, MtDef4 treated hyphae emitted a maximum fluores-

cence of 702610 units at 5 hours (Figure 4A), whereas MsDef1

treated hyphae had a maximum fluorescence of 30465 units at

2 hours.

The defensin-induced uptake of SG was also examined using

fluorescence microscopy. SG uptake by F. graminearum hyphae

started within 5 minutes of the addition of MsDef1 and MtDef4.

SG entered and bound to the nuclei of hyphae treated with both

MsDef1 (not shown) and MtDef4 (Figure 4B) within 2 hours. No

significant differences were observed in the SG uptake in hyphae

treated with MsDef1 at concentrations of 0.375, 0.75, 1.5, 3.0 and

6.0 mM. In contrast, MtDef4-induced SG uptake increased in a

concentration dependant manner. At higher concentrations, a

large number of MtDef4-treated hyphae were affected as

compared to the MsDef1-treated hyphae (Figure S2). With both

MsDef1 and MtDef4, heavily affected hyphae appeared much

darker and granular and the SG appeared disseminated inside the

hyphae (data not shown). However, it is also important to note that

not all hyphae treated with either MsDef1 or MtDef4 were

Table 1. List of amino acid sequences, net charge and growth inhibitory concentrations against F. graminearum PH-1.

Name @Type #Charge $IC50
&IC100

A. Full length proteins with mixed ab conformation

MsDef1 RTCENLADKYRGPCFSGCDTHCTTKENAVSGRCRDDFRCWCTKRC Mixed ab +3 2–4 .6

MtDef4 RTCESQSHKFKGPCASDHNCASVCQTERFSGGRCRGFRRRCFCTTHC Mixed ab +6 0.75–1 1.5–2.5

MsDef1-c4* RTCENLADKYRGPCFSGCDTHCTTKENAVSGRCRGFRRRCWCTKRC Mixed ab +7 1.3–1.5 3–4

MsDef1-R38Q* RTCENLADKYRGPCFSGCDTHCTTKENAVSGRCRDDFQCWCTKRC Mixed ab +2 .6 .24

B. Peptides corresponding to original sequences from MsDef1 or MtDef4

GMA1-C GRCRDDFRCWCTKRC Unknown +3 14 24

GMA4-C GRCRGFRRRCFCTTHC Unknown +5 3 6

GMA1 GRCRDDFRC Unknown +1 .192 .192

GMA4 GRCRGFRRRC Unknown +5 3 6

GMA1-L RDDFR Unknown 0 .96 .96

GMA4-L RGFRRR Unknown +4 4 12

ALP1 GPCFSGC Unknown 0 .48 .48

ALP4 GPCASDHNC Unknown 21 .48 .48

C. Variant peptides of GMA4-L

GMA4-L1 RGARRR Unknown +4 .96 .96

GMA4-L2 RGFARR Unknown +3 .96 .96

@Type = Protein/peptide conformation; Mixed ab means, structure includes both a-helix and b-strand conformation. Unknown = peptide structure not determined.
#Net charge of the peptide was determined using Biochemistry Online- http://vitalonic.narod.ru/biochem/index_en.html.
$Amount of protein (mM) required for inhibiting 50% growth of F. graminearum.
&Amount of protein (mM) required to inhibit F. graminearum conidial germination completely.
*Replaced amino acid(s) are italicized.
Cysteines are indicated in bold font.
doi:10.1371/journal.pone.0018550.t001
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uniformly affected. These studies suggest that MtDef4 induces

plasma membrane damage to a much greater extent than MsDef1.

This is also consistent with the more potent in vitro antifungal

activity of MtDef4 than that of MsDef1.

To better understand the relationship between plasma mem-

brane permeabilization and antifungal activity of MsDef1, SG

uptake by hyphae treated with two variants of MsDef1 were

examined; MsDef1-R38Q variant with significantly reduced

antifungal activity [15] and MsDef1-c4 substitution variant with

antifungal activity nearly as potent as that of MtDef4. As expected,

MsDef1-R38Q induced little or no uptake of SG by fungal hyphae

(Figure 4A). Surprisingly, MsDef1-c4 variant also induced little

(maximum 8262 units) uptake of SG even at a concentration of

3 mM, a concentration that is sufficient for 100% growth inhibition

(Figure 4A).

Taken together, our data indicated that MsDef1, MsDef1-c4

and MtDef4 affected the permeability of fungal plasma mem-

brane, but their intensities of permeabilization were significantly

different. Importantly, the degree of permeabilization did not

correlate well with the antifungal potency.

Figure 2. MsDef1 c-core substitution variant, MsDef1-c4, exhibits antifungal activity similar to that of MtDef4 against the wild-type
F. graminearum PH-1 and the MsDef1-resistant mutant DFggcs1 lacking glucosylceramide. (A) Images showing the inhibition of conidial
germination and hyphal growth at different concentrations of MsDef1, MtDef4 and the variant MsDef1-c4. Images were taken after 16 hours of
incubation of PH-1 conidia with defensins. Bar = 50 mm. Hyperbranching of hyphae in the presence of MsDef1 is indicated with black arrow. (B)
Quantitative assessment of the antifungal activity of MsDef1, MtDef4 and the variant MsDef1-c4 against PH-1 strain. (C) Images showing the
inhibition of conidial germination and hyphal growth of MsDef1-resistant mutant DFggcs1 lacking glucosylceramaide at different concentrations of
MsDef1 and the variant MsDef1-c4. Images were taken after 16 hours of incubation of DFggcs1 conidia with defensins. Bar = 50 mm. (D) Quantitative
measurement of the antifungal activity of MsDef1 and its c-core substitution variant MsDef1-c4 against DFggcs1 strain. Values are means of three
replications. Error bars indicate standard deviations.
doi:10.1371/journal.pone.0018550.g002
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Synthetic peptides containing the c-core motifs plus
carboxy-terminal 6 amino acids of MsDef1 and MtDef4
inhibit the growth of F. graminearum

In order to determine the contribution of the c-core motif to the

antifungal activity of MsDef1 and MtDef4, two chemically

synthesized peptides, GMA1-C and GMA4-C, containing the c-

core motif sequence and six carboxy-terminal amino acids of

MsDef1 and MtDef4, respectively (Table 1) were tested for

antifungal activity. GMA1-C and GMA4-C were 15 and 16 amino

acids in length, respectively. Each peptide contained four cysteine

residues with no S-S bonds as determined by mass spectrometry

(data not shown). At 16 hours after incubation of conidia with

peptides, inhibition of fungal growth was clearly evident at 6 mM

of GMA1-C and 1.5 mM of GMA4-C (Figure S3). However, these

concentrations did not have any effect on fungal growth after

36 hours. Quantitation of fungal growth spectrophotometrically

indicated that the inhibition of fungal growth was 43610% at

12 mM of GMA1-C peptide, whereas the inhibition in the

presence of 3 mM GMA4-C peptide was 7069% (Figure 5A).

Both GMA1-C and GMA4-C peptides completely inhibited the

germination of conidia at 24 and 6 mM, respectively (Figure S3). It

is important to note, however, that the GMA1-C peptide did not

cause hyperbranching of fungal hyphae, a hallmark feature of

MsDef1, indicating that the carboxy-terminal 15 amino acid

sequence containing the c-core motif alone is not the sole

determinant of the morphogenicity of MsDef1 [18].

GMA1-C and GMA4-C peptides also induced the uptake of

SG, indicating that they permeabilized the fungal plasma

membrane (Figure 5B). At 12 mM, GMA4-C was more effective

in inducing SG uptake than GMA1-C. However, at 24 mM,

GMA1-C-induced SG uptake was twice that induced by GMA4-

C. This again demonstrates that there is not a direct relationship

between plasma membrane disruption and antifungal activity.

MtDef4 c-core motif alone exhibits antifungal activity,
but MsDef1 c-core motif does not

Two peptides, GMA1 (GRCRDDFRC) and GMA4 (GRCR-

GFRRRC) (Table 1), representing the only c-core motif of each

defensin were examined for antifungal activity. As shown in

Figure 6A and Figure 6B, GMA4 exhibited antifungal activity at

6 mM and completely inhibited conidial germination at 12 mM. In

contrast, GMA1 even at a concentration of 96 mM failed to show

any antifungal activity. From these results, it is apparent that,

while MtDef4 c-core motif alone is sufficient for antifungal

activity, the MsDef1 c-core is not.

As previously described, MsDef1 and MtDef4 contain the a-

core motif with a consensus sequence of GXC(X3–5)C. The a-core

motif of each defensin was chemically synthesized and tested for

antifungal activity. Both ALP1 (GPCFSGC) and ALP4

(GPCASDHNC) peptides were totally inactive at all concentra-

tions tested (Figures 6A and 6B) indicating that the a-core motifs of

MsDef1 and MtDef4 alone do not exhibit antifungal activity.

Figure 3. MsDef1 induces significant changes in the growing
hyphal tip morphology of F. graminearum, but MtDef4 and
MsDef1-c4 do not. Images showing the hyphal tips of untreated
fungal hyphae and those of fungal hyphae treated with IC100

concentrations of MsDef1 (12 mM), MtDef4 (1.5 mM) and the variant
MsDef1-c4 (3 mM). Hyphal tips of fungal hyphae treated with MtDef4
and MsDef1-c4 appear similar to those of untreated fungal hyphae,
whereas hyphal tips of fungal hyphae treated with MsDef1 appear
swollen. Black arrows point to the hyphal tips. The division of hyphal
tips in the presence of only MsDef1 is indicated with gray arrows.
Bar = 20 mm. All images were taken between 7–8 hours after incubation
of PH-1 germlings with defensins.
doi:10.1371/journal.pone.0018550.g003

Figure 4. MsDef1, MtDef4 and the MsDef1 variants, MsDef1-c4 and MsDef1-R38Q, permeabilize the plasma membrane of F.
graminearum, but with different intensities. (A) Quantitative measurement of Sytox Green (SG) uptake by F. graminearum hyphae treated with
MsDef1, MsDef1-c4, MtDef4, and MsDef1-R38Q (488 excitation; 540 emission (530 cut-off)) for 5 hours, (B) Fluorescence image of SG binding to the
nuclei of F. graminearum following treatment with MtDef4. Bar = 20 mm.
doi:10.1371/journal.pone.0018550.g004
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RGFRRR hexapeptide is a major contributor to the
antifungal activity of the c-core motif of MtDef4

The next step was to determine which residues in the MtDef4 c-

core motif are important for antifungal activity against F.

graminearum (Figure S1). The first peptide tested was GMA4-L

(RGFRRR), from within the c-core motif of MtDef4. GMA4-L

peptide carried a net charge of +4 and inhibited fungal growth at a

concentration as low as 3 mM (Figure 7A). At a concentration of

6 mM, GMA4-L peptide inhibited 9167% of fungal growth after

36 hours and at 12 mM, it caused 100% growth inhibition (i.e., no

fungal conidial germination) (Figure 7C). As expected, the GMA1-

L (RDDFR) peptide, with a net charge of 0, possessed no

antifungal activity. These results suggest that the cationicity is a

major contributor to the antifungal activity of the peptide (see

below) and that the RGFRRR motif plays an important role in the

antifungal activity of MtDef4.

We had previously shown that the R38Q mutation in the c-core

markedly reduced the antifungal activity of MsDef1 [15].

Therefore, the importance of the cationic Arg residue at position

4 of GMA4-L (RGFRRR) (corresponding to Arg38 of MtDef4) for

the antifungal activity of this peptide was determined. In addition,

to understand the importance of hydrophobicity in the antifungal

activity of the peptide, the hydrophobic Phe residue at position 3

of GMA4-L (corresponding to F37 of MtDef4) was also changed.

To this end, two variants, GMA4-L1 (RGARRR) and GMA4-L2

(RGFARR), were synthesized and compared for their antifungal

activity to that of GMA4-L (RGFRRR). Both variants were much

less potent inhibitors of fungal growth than RGFRRR. At

16 hours, both variants at 24 mM caused mild growth inhibition

of the fungus, but at 36 hours, no significant reduction in growth

inhibition was observed (Figure 7C). Only at a high concentration

of 96 mM, moderate (30–40%) growth inhibition was evident at

16 hours (Figure 7B), and this persisted even at 36 hours (Figure

S4A). These results indicate that a hydrophobic amino acid F37

and a charged residue R38 are important for the antifungal activity

of the RGFRRR peptide.

GMA1-L, GMA4-L and its variants GMA4-L1 and GMA4-

L2 were also compared for their ability to permeabilize the

fungal plasma membrane. Only GMA4-L was capable of

inducing concentration-dependent increase in SG uptake.

GMA4-L1 induced a modest uptake of SG (.100 fluorescence

units) only at a concentration 24 mM. GMA1-L and GMA4-L2

failed to induce any uptake of SG at all concentrations tested

(Figure 7D).

Synthetic peptides containing the c-core motifs plus
carboxy-terminal 6 amino acids of MsDef1 and MtDef4
exhibit antifungal activity against other ascomycetous
fungi, F. verticillioides and Aspergillus flavus

Since one of the main objectives of understanding the structure-

activity relationships of antimicrobial peptides is to explore their

biotechnological applications, the activity of MsDef1, MtDef4 and

the synthetic peptides GMA1-C and GMA4-C was tested against two

other economically important ascomycetous mycotoxigenic fungi, F.

verticillioides and A. flavus. F. verticillioides causes Fusarium ear rot disease

in maize, whereas A. flavus causes Aspergillus rot in this crop as well as

in peanut and cotton. They both produce mycotoxins that

significantly impact the safety of the food products derived from

the infected seed of these crops. In addition, the morphology of the

conidia of these two fungi is significantly different from that of the

conidia of F. graminearum. Both GMA1-C and GMA4-C exhibited

antifungal activity against these fungi; however, there were significant

differences in their potency. Importantly, F. verticillioides was much less

sensitive to full-length MsDef1 than to GMA1-C (Figure 8A). At

24 mM, GMA1-C inhibited more than 90% of the fungal growth,

while MsDef1 caused only 4165% growth inhibition. Like F.

graminearum, F. verticillioides also displayed the hyperbranching

phenotype in the presence of MsDef1, but not in the presence of

GMA1-C. Even GMA4-C had more potent antifungal activity than

the full-length MtDef4, but the difference in the activity was not as

significant as that observed between MsDef1 and GMA1-C

(Figure 8B). Unlike Fusarium spp., A. flavus was more sensitive to

MsDef1 than MtDef4 (Figure 9A). Although conidia germinated in

the presence of 6 to 48 mM MsDef1, the germ tubes and hyphal

extension were severely affected thus leading to more than 90%

growth inhibition at concentrations of 12 to 48 mM. Furthermore, no

hyperbranching phenotype was observed in A. flavus (Figure 9A).

Most of the conidia did not germinate in the presence of 12 to 48 mM

of MtDef4, ultimately resulting in a growth inhibition of approxi-

mately 75% at 48 mM. Full-length MsDef1 was however more active

against A. flavus than GMA1-C. In contrast, GMA4-C was more

active than the full-length MtDef4 (Figure 9B). These results have

significant implications for the use of these peptides for genetic

engineering of fungal resistance in crops.

Discussion

In this study, we have studied the structure-activity relationships

of two antifungal plant defensins MsDef1 and MtDef4 that exhibit

Figure 5. GMA1-C and GMA4-C peptides containing the c-core sequences plus the carboxy-terminal 6 amino acids of MsDef1 and
MtDef4 exhibit antifungal activity and induce plasma membrane permeabilization in F. graminearum. (A) Quantitative measurement of
fungal growth inhibition caused by treatment with GMA1-C and GMA4-C. Values are means of at least three replications. Error bars indicate standard
deviations, (B) Quantitative measurement of SG uptake by F. graminearum PH-1 hyphae treated with GMA1-C or GMA4-C.
doi:10.1371/journal.pone.0018550.g005
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different modes of antifungal action [16,17]. Both proteins inhibit

the growth of F. graminearum at micromolar concentrations, but

induce strikingly different morphological responses in the fungus.

It was therefore of interest to determine the structural motifs and

amino acid sequences contributing to the potent antifungal activity

of these proteins and elucidate requirements for the morphogeni-

city of MsDef1. We previously showed that the major determi-

nants of the antifungal activity of MsDef1 resided in the carboxy-

terminal region spanning amino acid 31 to 45 [15]. Closer

examination of this sequence and the corresponding sequence of

MtDef4 revealed the presence of a highly conserved c-core motif,

the hallmark feature of the three-dimensional structure of

disulfide-containing antimicrobial peptides from evolutionarily

diverse organisms [22]. The c-core motif of both defensins satisfied

the consensus sequence GXC(X3–9)C and were part of the

predicted three-dimensional solvent-exposed b2–b3 loop region

of each protein [20,28,29,30,31,32]. Plant defensins also contain

the a-core motif with a consensus sequence GXC(X3–5)C

(Figure 1). This motif however is not conserved in all disulfide-

containing antimicrobial peptides and does not always share the

characteristic features of the c-core motif.

The c-core motifs of MsDef1 and MtDef4 differed in their

primary amino acid sequence. The c-core sequence

GRCRGFRRRC of MtDef4 contains five basic amino acids and

no acidic amino acids. In comparison, the c-core sequence

GRCRDDFRC of MsDef1 was one amino acid shorter and

contained two basic and two acidic amino acids. Both c-core

motifs however shared a hydrophobic Phe residue. The substitu-

tion of the c-core motif of MsDef1 with that of MtDef4 not only

enhanced the antifungal activity of MsDef1 more than 2-fold, but

also transformed it into a nonmorphogenic defensin. This indicates

that major determinants controlling antifungal potency as well as

morphogenicity reside within the c-core motif of each defensin.

However, it is also clear that this motif by itself does not contain all

requirements for the morphogenic effects of MsDef1 since the

GMA1-C peptide, containing this motif plus the carboxy-terminal

6 amino acids, failed to induce hyperbranching of fungal hyphae.

Our previous study demonstrated that the amino-terminal 15

residues also had some contribution to the antifungal activity of

MsDef1 [15]. It is therefore likely that sequences outside the c-core

motif of MsDef1 are also required to produce the observed

morphological changes in the fungal growth (Figure 3). The 15

amino-terminal residues of MsDef1 may contain additional

determinants of antifungal activity and thus, together with c-core

motif, may exhibit more potent antifungal activity. It will also be

interesting to determine if replacement of the c-core motif of

MtDef4 with that of MsDef1 will enable MtDef4 to exhibit

morphogenicity and antifungal activity typical of MsDef1. The

DFggcs1 mutant that lacks plasma membrane sphingolipid GlcCer

and exhibits resistance to MsDef1 became sensitive to MsDef1-c4

indicating that the c-core motif of MsDef1, directly or indirectly,

governs its interaction with GlcCer.

That the antifungal activity of MsDef1 and MtDef4 is

concentrated largely in the b2–b3 strands and the interposed

loop was further confirmed by our observation that chemically

synthesized peptides, GMA1-C and GMA4-C, containing these c-

core sequences plus the carboxy-terminal 6 amino acids of each

defensin exhibited strong in vitro antifungal activity against F.

graminearum. Similar results were obtained previously with the

radish defensin, RsAFP2, whose antifungal activity also resides

mainly in the b2–b3 loop which contains the predicted c-core

motif of this defensin [33,34]. Interestingly, the homology model of

MsDef1 and the NMR structure of a plant defensin NaD1 had

also previously predicted a putative effector site in their b2–b3

loop regions [20]. It is worth noting however that the antifungal

activity of GMA1-C or GMA4-C was less potent than that of

native defensin again confirming that some determinants of

antifungal activity reside outside the c-core motifs. Although

chemically synthesized GMA1-C and GMA4-C peptides each

contained four cysteines, molecular mass of these peptides

indicated no formation of a non-native disulfide bond formation.

The possibility that non-native disulfide bonds might have been

Figure 6. GMA4 peptide containing only the c-core sequence of
MtDef4 exhibits antifungal activity, but the GMA1 peptide
containing only the c-core sequence of MsDef1 and the a-core
peptides, ALP1 & ALP4, of both defensins do not. (A) GMA4
shows potent antifungal activity at concentration as low as 6 mM, while
GMA1 as well as ALP1 and ALP4 show no antifungal activity even at
48 mM. (B) Quantitative measurement of fungal growth inhibition
caused by treatment with GMA1, GMA4, ALP1 and ALP4. Values are
means of at least three replications. Error bars indicate standard
deviations.
doi:10.1371/journal.pone.0018550.g006
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formed during the interaction of these peptides with the fungus

could not be ruled out.

Further studies were carried out to delineate the minimal amino

acid sequence required for the antifungal activity of the active

regions of MsDef1 and MtDef4. Interestingly, the MtDef4 c-core

motif, but not the MsDef1 c-core motif, alone possessed antifungal

activity. This is consistent with earlier reports on the antimicrobial

activity of the c-core motif of other antimicrobial peptides. Thus,

the c-core motifs of protegrin-1, tachyplesin-1 and RTD-1 alone

have been reported to be sufficient for antimicrobial activity [22].

The lack of antifungal activity of the c-core motif of MsDef1 alone

suggests that a complete b3-strand which includes the carboxy-

terminal 6 amino acids is needed for antifungal activity. Not

surprisingly, highly cationic RGFRRR sequence within the c-core

of MtDef4 exhibited antifungal activity at a concentration as low

as 6 mM, but RDDFR sequence within the c-core of MsDef1 was

inactive even when used at 96 mM. Previously, another hexapep-

tide HKCICY derived from the b3-strand of the plant defensin

RsAFP2 was also shown to be active against F. culmorum [33].

Recently, PAFs, a group of hexapeptides, derived from a peptide

combinatorial library have been shown to have antifungal activity

against certain filamentous fungi [35,36]. One of the peptides,

PAF26, containing the sequence RKKWFW also exhibits

preferential activity against filamentous fungi [37]. Like PAF26,

RGFRRR peptide also contains mainly basic and hydrophobic

amino acids. The RGFRRR mutagenesis studies presented here

clearly indicated that changing the hydrophobic Phe residue at

position 3 or the basic Arg residue at position 4 of this peptide to

Ala dramatically reduced the antifungal activity of this peptide.

This demonstrates the importance of both hydrophobic and basic

residues in the antifungal activity of a defensin. The net charge

and IC50 values of peptides used in this study (Table 1) lend further

support to our findings. More studies are required to determine

the relative contribution of other residues to the antifungal potency

of this peptide and of the native protein.

Many antimicrobial peptides have been reported to cause

permeabilization of plasma membrane. Antifungal plant defensins

have also been shown to cause plasma membrane damage in their

Figure 7. The hexapeptide RGFRRR of the MtDef4 c-core motif alone is capable of inhibiting fungal growth, but its activity depends
on the presence of F37 and R38 residues. (A) Images showing the inhibition of conidial germination and hyphal growth at different
concentrations of GMA1-L with a sequence RDDFR and GMA4-L with a sequence RGFRRR. Images were taken after 16 hours of incubation of PH-1
conidia with peptides. Bar = 50 mm. Note the potent in vitro antifungal activity of GMA4-L and complete lack of antifungal activity of GMA1-L, (B)
Morphology of inhibition of conidial germination and hyphal growth inhibition at different concentrations of GMA4-L1 and GMA4-L2. Values are
means of at least three replications. Error bars indicate standard deviations. (C) Quantitative measurement of the inhibition of fungal growth and (D)
SG uptake by the peptides GMA1-L, GMA4-L and its variants GMA4-L1 and GMA4-L2.
doi:10.1371/journal.pone.0018550.g007
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target fungi as demonstrated by the uptake of fluorescent dyes such

as SG or propidium iodide in defensin-challenged fungal cells

[25,26,38,39]. The mechanisms by which defensins permeabilize

fungal plasma membrane are not fully understood, although it has

been recently reported that the permeabilization of fungal hyphae

by the plant defensin NaD1 occurs through a cell wall dependent

process [39]. In this study, we have found that both MsDef1 and

MtDef4 permeabilize the plasma membrane of F. graminearum, but

their kinetics of permeabilization is significantly different. MtDef4-

induced increase in SG uptake was concentration dependent, but

MsDef1-induced SG uptake was not. Consistent with its more

potent antifungal activity, MtDef4 was more effective in causing

membrane permeabilization than MsDef1. Surprisingly, MsDef1-

c4 variant with antifungal potency much higher than that of

MsDef1 was also as ineffective as MsDef1 indicating that the

ability to permeabilize plasma membrane is not a direct indicator

of a peptide’s antifungal potency. Hexapeptide RGFRRR caused

significant permeabilization of the membrane (Figure 7D) whereas

its variant peptides (RGARRR and RGFARR) with reduced

activity were ineffective in permeabilizing the fungal plasma

membrane (Figure S4B). It has been suggested that hexapeptide is

too short to span the fungal plasma membrane as a monomer,

requiring perhaps higher-order interactions among monomers to

cause membrane permeabilization [37].

There is an interesting correlation between the cationicity and

antifungal activity among the six synthetic peptides GMA1-C,

GMA4-C, GMA1, GMA4, GMA1-L and GMA4-L, that were

synthesized based on full-length MsDef1 and MtDef4 sequences.

GMA4-C and GMA4 with the highest cationicity of +5 exhibited

the maximum antifungal activity followed by GMA4-L (+4) and

GMA1-C (+3). The peptides GMA1 with a net charge of +1 and

the uncharged GMA1-L were inactive. The replacement of Phe in

GMA4-L (+4) with Ala resulted in significant decrease in

antifungal activity though the net charge of the peptide remained

unchanged. We suspect that the loss of antifungal ability may be

due to a decrease in hydrophobicity resulting from Phe to Ala

substitution. The two variants of GMA4-L, GMA4-L1 (+4) and

GMA4-L2 (+3) exhibited similar antifungal activity even though

they differ in net charge. It may be that the loss in basic residue in

GMA4-L2 is compensated for by the presence of a highly

hydrophobic Phe. Recent studies involving a-helical antimicrobial

peptide D-V13K revealed that antifungal activity increased with

an increase in hydrophobicity in the Ascomycota fungi [40,41].

The model fungus in our studies, F. graminearum belongs to

Ascomycota and we observed that the increase in hydrophobicity

could compensate for the decrease in cationicity. Based on existing

information and in vitro antifungal studies using F. graminearum as a

model in this study, we propose that there is a correlation between

net positive charge of the peptide and its antifungal activity;

however, this correlation seems to be dependent on hydrophobic-

ity. Further, the specific composition of amino acids in the b2–b3

loop region, which manages the distribution of charge and

hydrophobicity, in conjunction with the adjacent structural

domains defines the specificity and potency of an antifungal

defensin. MsDef1, MtDef4 and the peptides (GMA4-C and

GMA1-C) derived from each defensin also exhibit in vitro

Figure 8. MsDef1, MtDef4 and peptides GMA1-C and GMA4-C
inhibit the growth of another ascomycetous fungal pathogen
F. verticillioides M3125 in vitro. (A) Images showing the inhibition of

F. verticillioides conidial germination and hyphal growth and (B)
Quantitative measurement of the inhibition of fungal growth at
different concentrations of MsDef1, MtDef4 and the peptides, GMA1-
C and GMA4-C. Images were taken after 16 hours of incubation of
M3125 microconidia with proteins/peptides. Bar = 50 mm. Values are
means of at least three replications. Error bars indicate standard
deviations.
doi:10.1371/journal.pone.0018550.g008
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antifungal activity against other economically important ascomy-

cetous fungal pathogens, F. verticillioides and A. flavus. However,

there are significant differences in the responses of these fungi to

the native defensins and the shorter peptides indicating some

degree of specificity in recognition of the c-core motif by each

fungus. It is also likely that the shorter peptides derived from native

MsDef1 and MtDef4 might have different molecular targets thus

leading to varied activity against F. verticillioides and A. flavus.

Further studies are needed to unravel the shared as well as unique

structure-activity relationships of these two defensins.

Materials and Methods

Fungal cultures and growth medium
The fungal strains, F. graminearum PH-1 and DFggcs1, F.

verticillioides M3125 and A. flvaus NRRL 3357 were stored in

20% (v/v) glycerol at 280uC and were routinely cultured on

complete medium [42]. For macroconidia (conidia) production,

the fungal strains from agar plates were inoculated into 10–25 mL

of carboxymethyl cellulose medium [43] and cultured for 2–4 days

under shaking conditions at 28uC.

Protein purification and peptide synthesis
MsDef1 and MtDef4 were expressed in Pichia pastoris and

purified as described previously [15]. These partially purified

defensins were further purified by reverse-phase HPLC column

chromatography as described below. A synthetic gene encoding

the MsDef1-c4 substitution variant was obtained from GenScript

Corporation (Piscataway, NJ) and subsequently cloned into

pET28a and expressed in the Rosetta (DE) strain of E. coli as

described elsewhere [44]. The MtDef4-c4 variant was further

purified by HPLC (Beckman Coulter, Brea, CA) using a reverse

phase C18 column (Deltapak Wat 011793, 15063.9 mm, 5 mM,

300 A) to obtain .95% purity. Peptides derived from each

defensin (Table 1) were synthesized at Genemed Synthesis, Inc

(San Antonio, TX). All peptides were purified to .95%

homogeneity by reverse phase HPLC and characterized by mass

spectroscopy. Concentrations of MsDef1, MtDef4, MsDef1-c4

and MsDef1-R38Q were determined by BCA assay kit (Pierce,

Rockford, IL). Peptide concentrations were determined by

quantitative amino acid analysis performed at the Proteomics

and Mass Spectrophotometry Facility at the Danforth Center.

Defensins as well as peptides were dissolved in sterile ddH2O and

filtered through 0.22 mM syringe filter before using for in vitro

antifungal activity assays.

Homology-based three dimensional structures of MsDef1
and MtDef4

The models shown in Figure 1 were created using the I-

TASSER web site for protein structure and function predictions

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/) [45,46,47].

For this application, the amino acid sequences of MsDef1 and

MtDef4 were threaded onto the known structure of a floral

defensin NaD1 from Nicotiana alata (PDB accession, 1MR4) [20].

Figure 9. Antifungal activity of MsDef1, MtDef4 and derived
peptides against an ascomycetous pathogen Aspergillus flavus.
(A) Images showing the inhibition of A. flavus conidial germination and
hyphal growth and (B) Quantitative measurement of the inhibition of
fungal growth at different concentrations of MsDef1, MtDef4 and the
peptides, GMA1-C and GMA4-C. Images were taken after 16 hours of
incubation of A. flavus conidiospores with proteins/peptides.
Bar = 50 mm. Values are means of at least three replications. Error bars
indicate standard deviations.
doi:10.1371/journal.pone.0018550.g009
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The correlation scoring (C-score) in I-TASSER can range from

25 to 2 with higher scores representing greater confidence in the

threaded model. For both the MsDef1 and MtDef4 models, the C-

score was .1.6, with an estimated RMSD of 0.5 Å+/20.5 Å. The

threaded models had all but one of the expected disulfide bonds,

but these were easily fixed by simple rotamer rotations of the

cysteine side chains.

In vitro antifungal activity determination
In vitro antifungal assays were performed using synthetic fungal

medium (SFM) without calcium as described previously [15,48].

Bight-field images were taken using the transmitted light channel

in a Zeiss LSM 510 META confocal microscope to monitor the

early visible phenotypic effects of defensins on conidial germina-

tion and growth of fungal hyphae (at 16 hours after treatment with

defensins). Unless specified otherwise, the quantitative fungal

growth inhibition by defensins and synthetic peptides was

estimated at 36 hours by measuring the absorbance at 595 nm

using Spectramax M2 spectrophotometer (Molecular Devices,

Sunnyvale, CA) [48].

Hyphal tip morphology studies
F. graminearum conidia (56104) were germinated in 400 mL (in

each well) of 26SFM in a 24-well plate with a sterile cover slip at

the bottom. After 16–18 hours, hyphae adhered to cover slip were

treated with complete inhibitory concentrations of MsDef1,

MtDef4, MsDef1-c4 (Table 1) or sterile water. Hyphae were

observed under wide-field microscope after 4 hours and 7–8 hours

and images were taken at 606magnification.

SYTOX Green uptake assay
For SYTOX Green (Invitrogen, Carlsbad, CA) assay, macro-

conidia (56104) were incubated in 50 mL of 26 SFM in a black

polystyrene 96-well plate (Corning Inc., Corning, NY) for

16 hours at room temperature. After 16 hours, mixtures of

proteins/peptides (at concentrations of 6, 3, 1.5, 0.75, 0.375,

0.19 and 0.1 mM) plus SYTOX Green (0.5 mM final concentra-

tion) were added to the hyphae in 50 mL volumes. Assay plates

were incubated in dark and the fluorescence was monitored (488

excitation; 540 emission (530 cut-off)) using Spectramax M2

spectrophotometer. Samples containing only SYTOX Green

(without defensins) and samples without both defensin and

SYTOX Green were used as negative controls. No fluorescence

was emitted by hyphae without both defensin and SYTOX Green;

fluorescence emitted by sample with just SYTOX Green (without

defensins) was considered as background and these fluorescence

units were subtracted from samples with defensins before plotting

graphs. Black polystyrene plates were used to prevent cross

transfer of fluorescence. To confirm the fluorescence measure-

ments, hyphae were also visualized under a Zeiss LSM 510 META

confocal microscope with a BPIR filter (excitation wavelength

500–550).

Supporting Information

Figure S1 Amino acid sequence alignment of the
MsDef1 and MtDef4 homologs from different plants.
Amino acid sequences of MsDef1 homologs (A) and MtDef4

homologs (B) were obtained from NCBI database and were

aligned using CLUSTAL W. The a-core and c-core motifs

containing highly conserved GXC(X3–9)C consensus are indicated

in bold letters. *denotes the only defensin homolog of MtDef4 that

does not have the conserved G in the a-core motif.

(TIF)

Figure S2 Fluorescence image of SG uptake by hyphae
treated with different concentrations of MsDef1 and
MtDef4. Note a significant concentration-dependent increase in

the uptake of SG induced by MtDef4, but not by MsDef1.

Bar = 50 mm. Inset images are white light images.

(TIF)

Figure S3 Images showing the inhibition of conidial
germination and hyphal growth at different concentra-
tions of GMA1-C and GMA4-C. Both the peptides have

antifungal activity but GMA4-C is more potent compared to

GMA1-C. Images were taken after 16 hours of incubation of PH-1

conidia with peptides. Bar = 50 mm,

(TIF)

Figure S4 Antifungal activity and fungal plasma mem-
brane permeabilization induced by the GMA4-L vari-
ants, GMA4-L1 and GMA4-L2. Quantitative measurement of

the (A) fungal growth inhibition and (B) SG uptake by fungal

hyphae treated with GMA4-L1 and GMA4-L2.

(TIF)
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