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ABSTRACT: The Human Proteome Project (HPP) aims decipher-
ing the complete map of the human proteome. In the past few years,
significant efforts of the HPP teams have been dedicated to the
experimental detection of the missing proteins, which lack reliable
mass spectrometry evidence of their existence. In this endeavor, an in
depth analysis of shotgun experiments might represent a valuable
resource to select a biological matrix in design validation
experiments. In this work, we used all the proteomic experiments
from the NCI60 cell lines and applied an integrative approach based
on the results obtained from Comet, Mascot, OMSSA, and X!
Tandem. This workflow benefits from the complementarity of these
search engines to increase the proteome coverage. Five missing
proteins C-HPP guidelines compliant were identified, although
further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional
analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a
combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the
NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations.
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■ INTRODUCTION

Since 2010, the Human Proteome Project (HPP)1,2 has
brought together the efforts of the international research
community in the field of proteomics, bioinformatics, and
molecular biology to (1) define the complete catalog of human
proteins (C-HPP initiative3) and (2) study the functions of
proteins in biology and disease (B/D-HPP initiative4−6).
Although there have been successful scientific and technological
advances over these years,7−12 significant challenges still remain
uncovered. In terms of the human proteome characterization,
the main objective is the detection of the proteins without
sufficient experimental evidence using mass-spectrometry, also
known as the “missing proteins” or “missing proteome”.13

The neXtProt human protein knowledgebase14 (https://
www.nextprot.org) has been consolidated as the key resource

for the evaluation of the C-HPP initiative advances in the
description of the human proteome. In this database, different
experimental evidence categories are assigned to each protein.
The codes PE2 (experimental evidence at transcript level), PE3
(protein inferred from homology), and PE4 (predicted protein)
correspond to missing proteins, while PE1 is the annotation for
proteins with strong evidence from mass spectrometry or other
experimental methods, and PE5 is the code for uncertain
proteins. neXtProt not only includes the most up-to-date
annotation of the human proteome, but also other information
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resources of great relevance for the proteomic research
community. For example, in recent versions it is possible to
verify if a certain peptide is unique to a protein (proteotypic
definition by HUPO) and if it has been detected in a biological
matrix. For this purpose, neXtProt included the “Peptide
uniqueness checker” utility to determine the unambiguous
peptides of a protein taking into account the known variants
stored in the database (more than 5 million SNPs and disease
mutations).15 In this way, this resource allows compliance with
the C-HPP guidelines for the proper detection of a protein in
an MS experiment.16 These guidelines consider an MS evidence
as accurate if the following thresholds are applied: 1% FDR at
PSM, peptide, and protein level, and more than one unique
peptide detected of nine or more amino acids and without any
ambiguity in their spectrum assignment (SNPs, mutations, or
incorrect amino acid assignments).
Different bioinformatic workflows were implemented to

detect missing proteins using alternative methods in a shotgun
experiment.12,17,18 Some of the obtained proteins that were
identified with only one peptide, also known as one-hit
wonders, did not fulfill the specified C-HPP criteria. Therefore,
they can only be considered when further validation of the
presence of the protein in the sample is provided. The
validation of the detected peptides can include targeted
proteomic experiments using synthetic peptide standards and
manual evaluation and annotation of the obtained high-

resolution spectra for each peptide. However, because of their
low expression or their tissue specificity, the selection of the
biological matrix in which these proteins are expressed is one of
the main difficulties for the design of the proteomic
experiments.8,10,12,19−21 Several algorithms were developed to
predict where the probability of detection of missing proteins is
higher using, for example, an integrative approach based on
publicly available genomic, transcriptomic, and proteomic
experiments.
In one of these studies, the authors developed a bayesian

classifier to guide the search of missing proteins based on the
analysis of thousands of microarray experiments obtained from
the Gene Expression Omnibus (GEO) database.10 Another
study analyzed RNA-Seq experiments from the ENCODE
project and the Illumina Human Body Map 2.0 (HBM)22

obtaining a database of expressed proteins along different
normal tissues and cell lines. Finally, a different approach was
implemented using a set of shotgun experiments obtained from
the PRIDE database12,23 as source of information. All previous
results suggested testis, brain, skeletal muscle, and embryonic
tissues as promising biological sample sources due to their
enriched number of expressed missing proteins. The in-depth
analysis of the spermatozoa proteome8,20 and the HEK293 cell
line12 confirmed the validity of the mentioned methodologies.
However, even in these cases, improved bioinformatic methods

Figure 1. (A) Overall scheme of the analysis pipeline developed to identify missing proteins. An integrative strategy based on the results of four
search engines was used with the shotgun experiments of the NCI60 data set and the RNA-Seq experiments of the CCLE project.
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and manual curation of the mass spectra corresponding to the
detected peptides were required.
In this manuscript, we propose the integration of all the

proteins identified using four different search engines (Comet,
Mascot, OMSSA, and X!Tandem) from the analysis of all the
cell lines available in the NCI60 data set.24 Previous studies
using different statistical approaches demonstrated that the
analysis of the results using different search engines effectively
increases the coverage of a proteome using a single shotgun
experiment.25−27 Such a study was even applied for the
detection of missing proteins.11 In this case, an unique FDR for
the integration of the results obtained with all the search
engines was calculated but only one biological sample was
analyzed. Here we present the analysis of a huge proteomic data
set consisting of 59 cell lines (NCI60) with more than 900
fractions in total using four search engines. The union of the
results of the four search engines increases the number of
identifications and has proven to be crucial in the detection of
the missing proteins.28 We were able to integrate the results of
more than 3600 proteomic searches using a sample-based
strategy for the calculation of the FDR. The NCI60 cell lines
are available in molecular laboratories all over the world, being
good candidates for the validation of our results. In addition, we
performed a peptide detectability study for the unique peptides,
detected or not in different analysis configurations, using a
classifier approach based on the peptide information stored in
the GPMDB database.29 The obtained predictions were used to
evaluate the results from the different search engines, and we
were able to draw several conclusions, which could be relevant
to increase our knowledge about the missing proteins from a
computational and a biological point of view.
We detected five missing proteins with two unique peptides

and less than 1% FDR at PSM, peptide, and protein levels:
FREM3 (Chr 4), LAMB4 (Chr 7), MYEOV (Chr 11),
RAD21L1 (Chr 20), and TLDC2 (Chr 20). Validation
experiments with synthetic peptides were performed for these
proteins with questionable results. In addition, we detected 165
one-hit wonder missing proteins that should be further
validated. These validation process starts with the selection of
those cell lines in which the probability of finding these missing
proteins is high. To do so, the results obtained for the
mentioned NCI60 experiments were combined with the
analysis of the gene expression profiles in the set of RNA-Seq
samples available in the CCLE project.30 This information is
provided for the laboratories involved in the C-HPP initiative
to facilitate the design of targeted proteomic experiments for
the one-hit wonders of their corresponding chromosomes in
the most appropriate cell lines.

■ MATERIAL AND METHODS

Bioinformatic Workflow

In this work, we developed a bioinformatic workflow (Figure 1)
for the detection of missing proteins based on three pillars: (1)
the strict application of the C-HPP guidelines for the detection
of proteins using MS/MS experiments; (2) the analysis of
shotgun experiments of 59 different cell lines using an
integrative approach based on four search engines; and (3)
the quantification of the expression level of the protein coding
genes in these cell lines as a guidance for predicting the suitable
sample sources for the targeted proteomic validation experi-
ments.

The main goal of the method we propose is to increase the
proteome coverage obtained from the analysis of a given
proteomic experiment, increasing our capacity to find missing
proteins through the reanalysis of public experiments. Briefly,
the pipeline takes into account all the peptide identifications
from the search engines used. In this way, peptide and protein
identifications following the C-HPP guidelines using each of
the searching algorithms contribute to the total number of
proteins detected, including missing proteins.
To combine the strengths of different approaches, we

selected four search engines with a different strategy for
peptide detection: one commercial (Mascot) and three open
source ones (X!Tandem, Comet, and OMSSA). Mascot uses a
probabilistic scoring algorithm adapted from the MOWSE
algorithm, which is a methodological approach to detect
peptides based on the calculation of the probability of whether
an observed PSM has occurred by chance. The peptide
detection with the lowest probability of occurring by chance is
returned as the most significant one.31 Instead, X!Tandem
represents the experimental spectrum using only peaks that
match peaks in the theoretical spectrum and then calculates the
dot product. The scoring algorithm is called hyperscore, which
is based on the number of assigned b and y ions using the
hypergeometric distribution.32 X!Tandem uses this score
distribution to extrapolate empirical E-values and assess the
significance of a PSM. On the other hand, Comet is a search
engine originated from the University of Washington’s
academic version of SEQUEST. It implements a fast cross-
correlation algorithm33 to score the PSMs in a shotgun
experiment. For every candidate peptide in the protein
database, the cross-correlation is calculated by a simple sum
of peak intensities at each calculated fragment ion mass. This
eliminates the need to create theoretical spectra. The score
histogram is then used to generate an expectation value or E-
value.34 Finally, OMSSA ranks the detected peptide matches
using a probability score developed using classical hypothesis
testing, the same statistical method used in BLAST.
We tested our bioinformatic pipeline with proteomic and

transcriptomic public data available: shotgun experiments from
the NCI60 project and RNA-Seq experiments from the CCLE
data set.

Proteomic and Transcriptomic Public Data Sets of Cell
Lines

The NCI60 anticancer drug screen was developed in the late
1980s by the US National Cancer Institute (NCI) to identify
compounds with growth-inhibitory or toxic effects on particular
tumor types. As a result, panels of cell lines were assembled that
represented nine distinct tumor types: breast, brain, colon,
leukemia, lung, melanoma, ovarian, prostate, and renal tumors.
On the other hand, the Cancer Cell Line Encyclopedia (CCLE)
project is a collaboration between the Broad Institute, and the
Novartis Institutes for Biomedical Research and its Genomics
Institute of the Novartis Research Foundation to conduct a
detailed genetic and pharmacologic characterization of a large
panel of human cancer models. To do so, they developed
integrated computational analyses that link distinct pharmaco-
logic vulnerabilities to genomic patterns and to translate these
genomic patterns into cancer patient stratification. The CCLE
provides public access to genomic data, analysis, and visual-
ization for about 1000 cell lines.
We found 43 cell lines with both proteomic and tran-

scriptomic experiments available (Table 1). Using these
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experiments, we compared the expression levels of protein
coding genes and the number of detected proteins in the
shotgun experiments.

Analysis of Shotgun Proteomic Data

All the proteomic experiments available from the NCI60 cell
lines (61 shotgun experiments and 9 deep proteomes) were
downloaded from the NCI60 proteome resource (http://129.
187.44.58:7070/NCI60/main/index). This database stores the
proteome profile of the cell lines performed using a
conventional one-dimensional PAGE followed by in-gel
digestion and liquid chromatography−tandem mass spectrom-
etry (GeLC−MS/MS) approach with an LTQ Orbitrap XL
ETD mass spectrometer.35 To increase the tissue-specific
proteome coverage, one cell line from each of the nine tissues

represented was analyzed in more depth with an Orbitrap Elite
mass spectrometer (deep proteomes).36

We converted raw data files to MGF files using the
MSConvertGUI software. For each cell line, 12 fractions in
the case of shotgun experiments and 24 fractions in the case of
deep proteomes were generated, given a total number of more
than 900 MGF files to analyze. The protein identification
analyses were performed following the C-HPP guidelines for
the identification of proteins using MS/MS experiments.16 We
searched all the MGF files against the UniprotKB human
database (release 2017.01.v2) using the target-decoy strategy.
Decoy database was created using the peptide pseudoreversed
method, and separate searches were performed for target and
decoy databases.

Table 1. Molecular Characteristics of the Cell Lines for Which Shotgun and RNA-Seq Experiments Were Availablea

cell line disease tissue of origin epithelial source p53 transcriptomics proteomics

BT-549 BRCA breast yes metastasis RNA-Seq shotgun
Hs 578T BRCA breast yes primary MT RNA-Seq shotgun
MCF-7 BRCA breast yes pleural effusion WT RNA-Seq shotgun; deep proteome
MDA-MB-231 BRCA breast yes pleural effusion MT RNA-Seq shotgun
T-47D BRCA breast yes MT RNA-Seq shotgun
HCT 116 COAD colon yes RNA-Seq shotgun
HCT 15 COAD colon yes RNA-Seq shotgun
HT-29 COAD colon yes primary MT RNA-Seq shotgun
KM12 COAD colon yes MT RNA-Seq shotgun
SW620 COAD colon yes MT RNA-Seq shotgun
786-O KIRC renal yes MT RNA-Seq shotgun
A-498 KIRC renal yes WT RNA-Seq shotgun
ACHN KIRC renal yes WT RNA-Seq shotgun
Caki-1 KIRC renal yes metastasis WT RNA-Seq shotgun
UO-31 KIRC renal yes WT RNA-Seq shotgun
HL-60 LCLL leukemia no PBL MT RNA-Seq shotgun
K-562 LCLL leukemia no pleural effusion MT RNA-Seq shotgun
SF295 LGG cns no MT RNA-Seq shotgun
SF268 LGG cns no MT RNA-Seq shotgun
SF539 LGG cns no WT RNA-Seq shotgun
SNB-75 LGG cns no MT RNA-Seq shotgun
A-549 LUSC non-small cell lung yes WT RNA-Seq shotgun
EKVX LUSC non-small cell lung yes MT RNA-Seq shotgun
HOP-62 LUSC non-small cell lung yes MT RNA-Seq shotgun
HOP-92 LUSC non-small cell lung yes MT RNA-Seq shotgun (n = 2)
NCI-H226 LUSC non-small cell lung yes MT RNA-Seq shotgun
NCI-H23 LUSC non-small cell lung yes MT RNA-Seq shotgun
NCI-H460 LUSC non-small cell lung yes pleural effusion WT RNA-Seq shotgun; deep proteome
NCI-H522 LUSC non-small cell lung yes MT RNA-Seq shotgun
RPMI-8226 MM leukemia no PB WT RNA-Seq shotgun
IGROV-1 OV ovarian yes MT RNA-Seq shotgun
OVCAR-3 OV ovarian yes ascites MT RNA-Seq shotgun
OVCAR-4 OV ovarian yes WT RNA-Seq shotgun
OVCAR-8 OV ovarian yes MT RNA-Seq shotgun
SK-OV-3 OV ovarian yes ascites RNA-Seq shotgun; deep proteome
DU145 PRAD prostate yes metastasis RNA-Seq shotgun
PC-3 PRAD prostate yes MT RNA-Seq shotgun; deep proteome
LOX-IMVI SKCM melanoma no WT RNA-Seq shotgun
Malme-3M SKCM melanoma no metastasis WT RNA-Seq shotgun
SK-MEL-28 SKCM melanoma no MT RNA-Seq shotgun
SK-MEL-5 SKCM melanoma no metastasis WT RNA-Seq shotgun
UACC-257 SKCM melanoma no WT RNA-Seq shotgun
UACC-62 SKCM melanoma no WT RNA-Seq shotgun

aWT, cell line with wild-type P53; MT, cell line with mutant P53.
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Searches were performed using the following four search
engines: Comet v. 2016.01 rev. 2,37 an in-house Mascot Server
v. 2.3 (Matrix Science, London, U.K.), OMSSA v. 2.1.9,38 and
X!Tandem v. 2015.12.15.2.39 In all the cases, search parameters
were set as follows: carbamidomethylation of cysteine as a fixed
modification and oxidation of methionine as variable
modification. Precursor and fragment mass tolerance were set
to 10 ppm and 0.05 Da, respectively, for deep proteome data
sets and 20 ppm and 0.5 Da, respectively, for proteome profile
data sets, and one missed cleavage was allowed. FDR at the
PSM, peptide and protein level were calculated using in-house
scripts written in R/Bioconductor40 (see the Supporting
Information for more details and R code). Protein
identifications were obtained applying the criteria of PSM
FDR < 1%, peptide FDR < 1%, and protein FDR < 1%
following the C-HPP guidelines and then converted to
neXtProt protein accessions (neXtProt release 2017−02).
Each proteomic experiment was analyzed independently, and
the resulting sets of proteins and peptides detected for each
sample were compared afterward. The use of a global FDR is
mandatory by the C-HPP guidelines when the results are
obtained from the combination of the samples analyzed. This
strategy is not the one used in our analysis because our main
goal is to find MS evidence for missing proteins in a given
sample. Nevertheless, the global FDR was calculated and
included in Supporting Table 5.
Protein inference process was greatly simplified using

exclusively unique peptides to ensure reliable identifications
as required by C-HPP initiative. Proteogest software41 was used
to perform the in silico digestion of the proteins contained in
the neXtProt database and only those proteins with unique
peptides between 9 and 30 amino acid in lengths were selected
for further analyses. We applied the standard rules of cleavage
for trypsin enzyme and allowed oxidation of methionine and
one missed cleavage.

Detection of Missing Proteins

In this manuscript, we propose the integration of the results
obtained from the analysis of the same shotgun experiment
using different search engines (Comet, Mascot, OMSSA, and
X!Tandem) as an alternative method to increase the number of
missing protein identifications in a biological sample. Once
peptides and proteins for sample were identified as stated
before, the neXtProt protein evidence codes were used to
distinguish the class of the missing proteins (PE2, PE3, and
PE4). Then the neXtProt peptide uniqueness checker tool15

was used to remove unique peptides that were considered
ambiguous taking into account SNPs and disease mutations.
After applying this filter, we obtained a set of proteins with two
or more different unique peptides detected by at least one of
the search engines. In addition to these missing proteins with
mass-spectrometry based evidence of their presence in a
biological matrix, we also found a set of missing proteins with
only one detected unique peptide that must be validated using
another proteomic technology such as targeted proteomic
experiments (MRM or PRM).
A functional analysis of the detected missing proteins was

performed using DAVID 6.842 and Ingenuity Pathways Analysis
(QIAGEN IPA Spring 2017). Ingenuity functional categories
with p < 0.05 were considered enriched. In the case of DAVID,
analysis of GO terms, INTERPRO domains, KEGG pathways,
and UNIGENE quantile expression level gene sets was
performed with default parameters and, although the p-value

was corrected using multiple hypothesis methods (including
FDR), the selection of enriched categories was based on a
criterion of EASE score (modified Fisher exact p-value) < 0.1.
In addition, we complement the biological information about
these proteins using the Protein MissingPedia43 and
GeneCards.44

Validation Experiment with Heavy Peptides

Heavy peptides for the 10 unique peptides detected for the five
missing proteins identified, labeled with either 13C6

14N4−Arg
or 13C6

14N2-Lys, were synthesized on an automated Multipep
peptide synthesizer (Intavis) by standard F-moc chemistry.
After synthesis, they were pooled together and desalted with a
C18 OMIX tip (Agilent), speed-vac dried and redissolved in
0.5% formic acid, 20% acetonitrile. This peptide mixture was
directly infused at a flow rate of 0.5 μL/min into a 5600 Triple-
TOF mass spectrometer (Sciex) through a nanospray III
ionsource (Sciex) equipped with a fused silica PicoTip emitter
(10 μm × 12 cm, New Objective). MS/MS spectra of each
precursor ion were acquired for 0.25 to 1 min with
accumulation times of 100 to 500 ms.
We compared the fragmentation spectra of the endogenous

peptides obtained in NCI60 data set with the corresponding
synthetic peptide spectra. The Supporting Information includes
all the annotated spectra and the obtained spectral dot product
(SDP) scores45 as a measure of spectral matching. The method
used for the calculation of SDP scores is also described in the
Supporting Information.
It is important to highlight that in this validation experiment

we used a 5600 Triple-TOF mass spectrometer instead of an
Orbitrap that was the instrument used in the shotgun
experiments. This fact complicated the comparison of the
endogenous and synthetic spectra.

Analysis of Transcriptomic Data Set

The BAM files corresponding to the cell lines available in both
the NCI60 data set and the CCLE project were downloaded
from the GDC Data Portal (https://portal.gdc.cancer.gov).
The reference genome used for the alignment of the reads was
hg19. The annotation of the transcript structures of the human
transcriptome considered in this study was derived from
MiTranscriptome.46 This assembly, based on 7256 RNA-Seq
experiments from human normal tissues and cancer samples,
contains 384 066 predicted transcripts, 165 020 of them
corresponding to protein coding genes of Gencode version
19. The ab initio transcriptome assembly was performed using
Cufflinks.47 The quantification of these transcripts for each
RNA-Seq experiment to obtain the matrix of expression levels
of the 43 cell lines was performed using the software
featureCounts.48 Finally, a global normalization method using
the mean size of the libraries was applied to make the samples
comparable.
A multiomic bioinformatic analysis was used to highlight the

samples in which the probability of detection of missing
proteins was higher. For this purpose, we used the expression
profiles of all the gene structures in the 43 cell lines of the
NCI60 for which we had RNA-Seq experiments in the CCLE
project. We considered a gene to be expressed when at least
one of its corresponding transcripts was expressed. The
difference between expressed and highly expressed genes was
defined based on the histogram of the normalized counts for all
the gene structures in all the cell lines: a gene was considered
expressed in a cell line when its expression value was greater
than the first quartile (Q1) or highly expressed when its
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expression exceeded the third quartile (Q3). Using these
thresholds as reference, it was possible to identify which of the
analyzed samples had an over representation of missing
proteins at transcript level. These cell lines would be considered
as good candidates for validation of missing proteins, especially
those ones that expressed a higher number of the one-hit
wonders detected in the shotgun experiments (see the
Supporting Information for more details and R code).

Study of Peptide Detectability Using a Machine Learning
Approach

In the peptide detectability study, all the tryptic peptides of the
human proteome and their detection frequency in proteomic
experiments were the input data. Tryptic peptides were
obtained from neXtProt database using Proteogest software,41

and detection frequencies for each peptide were downloaded
from GPMDB database (http://peptides.thegpm.org/
~/peptides_by_species/). The total number of observations
for each peptide was defined considering all the observations
independently of the parent ion charge. Then more than 550
physicochemical and biochemical properties were calculated for
each tryptic peptide using seqinr R package. These properties
were: peptide length, peptide molecular weight, theoretical
isoelectric point, percentage of different classes of amino acids
(tiny, small, aliphatic, aromatic, nonpolar, polar, charged,
positive or negative amino acids), and the mean value of the
characteristics stored in the AAindex database (release 9.1).49

We sorted tryptic peptides based on the number of
observations in proteomic experiments and compared the
properties of the most observed peptides with the less observed
ones. We randomly sampled 5000 peptides from the 50 000
most observed peptides and 5000 peptides from the 50 000 less
observed peptides 500 times. In this way, we performed 500 t
tests for each feature, and we corrected the obtained p-values
using FDR. There were 302 properties with FDR < 0.05 in the
500 tests, but some of them were redundant. For each group of
correlated properties described by the AAindex database, we
chose the feature with the best mean FDR.
A final selection of 106 nonredundant properties was used to

distinguished between the most and the less observed peptides
in GPMDB database. For this purpose, the 100 000 tryptic
peptides used for the selection of the differential peptide
properties were divided in a set of training peptides (75% of the
peptides) and a testing set (the remaining 25%). Different
classification methods were trained and their performance was
evaluated using Receiver Operator Characteristics Curve
(ROC) analysis. Some methods included built-in feature
selection, such as RPART, C5, JRIP, Random Forest (RF),
and PART, while others do not (Partial Least Squares (PLS),
Generalized Linear Model (GLM), Naiv̈e Bayes (NB), Neural
Network (NNET), and Support Vector Machine (SVM.R)).
This machine learning approach was performed with caret R
package,50 and the RF classifier resulted to be the best option
for the prediction of detectable peptides (see the Supporting
Information for more details and R code).

■ RESULTS AND DISCUSSION

NCI60 Proteomic Experiments

We analyzed the shotgun and deep proteome experiments of
the 59 cell lines from the NCI60.36 In this study, there were 61
shotgun experiments with 12 fractions for each experiment and
9 deep proteomes with 24 fractions each. Overall, we obtained

948 raw files, which were converted to 948 MGF files prior to
their analysis.
A previous study that compared the results of most of the

search engines we have used in our analysis (X!Tandem,
OMSSA, and Mascot)28 showed that the decoy database
approach for FDR filtering resulted in a similar number of
identified peptides by each search engine. They did not find a
great difference between the performances of Mascot and X!
Tandem search engines, but each search engine gives a number
of unique identifications due to the difference in the underlying
search algorithms. The different identifications between search
engines become especially important when we are analyzing
low quality mass spectra (high signal-to-noise ratio, lower
dissociation efficiency, etc.), as in the case of missing proteins.
This is the reason why we decided to use the union of the
results with all the search engines as integrative approach.
The total number of spectra in the complete data set was

14 275 503 and the percentage of them assigned to a peptide
for each search engine was 24.21% by Comet, 27.38% by
Mascot, 26.94% by OMSSA, and 25.58% by X!Tandem. The
summary of the number of peptides, unique peptides, and
proteins detected by each search engine can be seen in Tables
2, 3, 4, and 5. Numbers of proteins following C-HPP guidelines

per sample are represented in Supplementary Figures 1−4, one
for each search engine (Comet, Mascot, OMSSA, and X!
Tandem, respectively). In the Supporting Tables 1, 2, 3, and 4,
the PSM, peptide, and protein FDR, and the number of
estimated false positives per sample are calculated, one table for
each search engine. Interestingly, summarizing the PSMs

Table 2. Summary of Results Obtained from Analysis of
NCI60 Proteomic Dataset Using Comet Search Engine by
Tissue Type

cancer type PSMs peptides
unique
peptides

proteins
(≥1 unique
peptides)

proteins
(≥2 unique
peptides)

BREAST 390 486 48 683 46 290 5502 4481
CNS 373 302 46 323 43 979 5147 4073
COLON 388 323 46 843 44 501 5062 4104
MELAN 506 468 53 165 50 622 5780 4721
NSCLC 459 102 43 488 41 244 4981 3865
PROSTATE 181 427 42 809 40 641 4935 4045
RENAL 470 663 52 973 50 346 5281 4327
LEUK 341 972 42 950 40 667 5035 4041
OVAR 343 730 44 362 42 051 5047 4126

Table 3. Summary of Results Obtained from Analysis of
NCI60 Proteomic Dataset Using Mascot Search Engine by
Tissue Type

cancer type PSMs peptides
unique
peptides

proteins
(≥1 unique
peptides)

proteins
(≥2 unique
peptides)

BREAST 428 280 50 283 47 748 5726 4622
CNS 432 001 49 635 47 075 5421 4274
COLON 439 008 49 692 47 135 5317 4271
MELAN 556 346 54 707 52 022 5949 4822
NSCLC 532 187 47 233 44 739 5444 4174
PROSTATE 198 401 45 042 42 687 5231 4199
RENAL 538 219 55 014 52 163 5568 4528
LEUK 391 846 45 187 42 738 5335 4259
OVAR 392 124 46 253 43 824 5338 4272
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obtained across different tissues with each one of the search
engines results in a very similar total number of PSMs (Figure
2).
When Comet search engine was used, the number of total

PSMs obtained was 3 455 473, representing a mean number of
58 567 PSMs per cell line. The mean number of peptides
identified per sample was 13 605 and the total number of
unique peptides 94 135. Following the C-HPP guidelines for
each experiment, a total number of 6867 proteins were
identified.
In the analysis with Mascot, 3 908 412 PSMs were assigned

in all the cell lines, and the mean number of PSMs per cell line
was 66 244. The mean number of peptides per sample was

16 726, and the number of unique peptides identified
considering all the cell lines under study was 93 903. This
number of unique peptides allowed the identification of 6999
proteins following the C-HPP guidelines.
The number of PSMs and the mean number of PSMs per cell

line were 3 845 613 and 65 180 when OMSSA was used as
search engine. The mean number of peptides detected per
sample was 16 746, and the total number of unique peptides
was 91 215. At protein level, using the C-HPP guidelines, we
identified 6822 proteins.
The last search engine used in this study was X!Tandem,

which obtained 3 652 148 total PSMs with a mean number of
61 901 PSMs per cell line. In terms of peptides, we identified a
mean number of 13 731 peptides per sample. The total number
of unique peptides using the results of all the samples was
98 056, which achieved the identification of 7041 proteins using
the C-HPP guidelines.
Finally, Table 6 summarizes all the results obtained with the

different search engines per tissue type. Peptides and proteins

were considered identified if at least one of the search engines
detected them. Using this approach, we found 107 237 unique
peptides, and 7452 proteins were identified following the C-
HPP guidelines.
The numbers of unique peptides and proteins detected for

each cell line with any of the search engines are shown in
Figure 3. In the figure, we distinguished between the deep
proteome experiments and the shotgun experiments. As
expected, the number of detections at peptide and protein
level is higher in the first ones. The value of the mean number

Table 4. Summary of Results Obtained from Analysis of
NCI60 Proteomic Dataset Using OMSSA Search Engine by
Tissue Type

cancer type PSMs peptides
unique
peptides

proteins
(≥1 unique
peptides)

proteins
(≥2 unique
peptides)

BREAST 429 479 48 173 45 701 5645 4486
CNS 432 684 47 294 44 816 5293 4049
COLON 418 875 48 430 45 943 5221 4151
MELAN 571 977 53 223 50 578 5875 4632
NSCLC 533 040 47 572 45 060 5389 4152
PROSTATE 186 361 41 214 38 988 5074 4008
RENAL 533 934 52 833 50 096 5440 4360
LEUK 393 310 43 128 40 733 5272 4118
OVAR 345 953 43 449 41 166 5243 4127

Table 5. Summary of Results Obtained from Analysis of
NCI60 Proteomic Dataset Using X!Tandem Search Engine
by Tissue Type

cancer type PSMs peptides
unique
peptides

proteins
(≥1 unique
peptides)

proteins
(≥2 unique
peptides)

BREAST 421 176 51 135 48 623 5541 4634
CNS 393 296 48 889 46 391 5219 4225
COLON 408 798 49 316 46 846 5077 4227
MELAN 541 641 56 136 53 433 5855 4859
NSCLC 484 025 45 109 42 764 5017 3990
PROSTATE 193 642 45 429 43 118 5104 4180
RENAL 481 916 55 880 53 115 5480 4530
LEUK 355 932 43 046 40 721 4940 4083
OVAR 371 722 47 155 44 708 5127 4258

Figure 2. Number of total PSMs obtained from the analysis of the NCI60 proteomic data set summarizing the results per search engine used and
tissue of origin of the cell lines.

Table 6. Summary of Results Obtained from Analysis of
NCI60 Proteomic Dataset Using the Four Search Engines

cancer type PSMs peptides
unique
peptides

proteins
(≥1

unique
peptides)

proteins
(≥2

unique
peptides)

BREAST 1 669 421 60 488 57 565 6416 5002
CNS 1 631 283 59 113 56 188 6075 4604
COLON 1 655 004 59 526 56 603 5975 4636
MELAN 2 176 432 65 528 62 458 6703 5174
NSCLC 2 008 354 56 601 53 736 6104 4515
PROSTATE 759 831 53 176 50 502 5761 4541
RENAL 2 024 732 65 726 62 505 6259 4911
LEUK 1 483 060 54 334 51 520 5968 4614
OVAR 1 453 529 54 887 52 105 5950 4603
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of unique peptides (42 166 for deep proteomes and 15 151 for
proteome profiles) and proteins detected (4206 for deep
proteomes and 1985 for proteome profiles) can be used as a
measure of the improvement obtained in the coverage of the
proteome using a deeper MS experiment.
The graphical representation of peptides and proteins

detected across chromosomes is given in Figure 4A and B.
We did not find any significant bias in the number of detections
toward a specific search engine. However, although the
numbers are similar, differences in the assignment of peptides
generate distinct sets of identified proteins that allow to
increase the proteome coverage for a certain sample compared
to the coverage obtained using only one search engine (Figure
4C,D).
The conclusion of our analysis was that it was possible to

increase the number of proteins detected in shotgun experi-
ments using different search engines to perform the analysis.
From a total of 111 848 unique peptides detected, 75 580
(67.57%) peptides were assigned by the four search engines
considered. Moreover, 10.50% of the peptides (around 3000
peptides with each search engine) were detected only by one of
them. This effect could also be seen regarding the number of
proteins detected following the C-HPP guidelines. We

identified a total of 7452 proteins, 6351 (85.23%) independ-
ently of the search engine, while 321 proteins (4.31%) were
only detected by one of them. In addition, 780 proteins were
identified by two or three different search engines, which
contributed to increase also the confidence of these results.

Identification of Missing Proteins

The possibility of detecting missing proteins is one of the main
reasons it is relevant to improve the proteome coverage
obtained in the analysis of a shotgun experiment in the
framework of the goals of the C-HPP project. In the case of
missing protein detection, this point of the analysis could be
critical. Considering the low number of unique peptides usually
detected for the missing proteins, and the fact that these
identifications have to be validated using synthetic peptides or
with SRM verification, we decided to use all the results
obtained with the different search engines. Our objective is an
increase of the sensitivity, although we are aware of a
consequent decrease in the specificity. In fact, in a previous
study,28 they compared the results of the search engines used in
our analysis (X!Tandem, OMSSA, and Mascot), and the
observed false positive identifications were unique for each
search engine, so the intersection among the results obtained

Figure 3. (A) Number of unique peptides detected with any of the four search engines. (B) Number of proteins detected following the C-HPP
guidelines. For each cell line and experiment type (deep proteome or proteome profile), all the results obtained with the four search engines are
represented.
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were statistically more confident at the price of a loss of
sensitivity. However, the union of the results of the search
algorithms applied was able to increase the number of
identifications. The differences between search engine perform-
ances become especially important when we are analyzing low
quality mass spectra (high signal-to-noise ratio, lower
dissociation efficiency, etc.), as in the case of missing proteins.
In the selected case study, we identified five missing proteins

in five different cell lines with two unique peptides each
(Supporting Table 5). The cell lines where the missing proteins
were found were the following: MCF7−7 (breast tumor),
SF268 (CNS tumor), COLO-205 (colon tumor), CCRF-CEM

(Leukemia), and NCI60-H23 (NSCLC). If we applied a less
restrictive criteria and we considered those proteins with PSM
< 1%, peptide FDR < 1%, and protein FDR < 1% but with one
unique peptide detected (one-hit wonders), we included 165
missing proteins identified in 58 cell lines (Supporting Table
5). One-hit wonder missing proteins are represented per
sample in Supplementary Figures 5−8, one for each search
engine. The unicity of all the peptides from the missing
proteins was verified using the peptide uniqueness checker of
neXtProt. The distribution of unique peptides and detected
proteins across chromosomes is represented in Figure 5.

Figure 4. (A) Number of unique peptides detected across chromosomes considering all the experiments analyzed and obtained for each of the four
search engines used in the study. (B) Number of proteins identified using the C-HPP guidelines across chromosomes obtained for each of the four
search engines used in the study. (C) Venn diagram representation of the unique peptides found per search engine considering all the experiments
analyzed. (D) Venn diagram representation of the proteins found per search engine (C-HPP guidelines).
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These results were achieved with the assignment of 866
spectra from 69 samples (all but one) using four search engines
(Comet, Mascot, OMSSA, and X!Tandem), but only two
peptides were detected by the four search engines. Most of the
peptides were detected only in one of the searches: 47 with
Comet, 33 with Mascot, 48 with OMSSA, and 34 with X!
Tandem. These results highlighted the importance of the
integration of different results in the quest for the missing
proteins (Figure 6).
The number of missing proteins that fulfill the C-HPP

criteria was five, and they were identified with more than one
unique peptides (FREM3(chr 4), LAMB4 (chr 7), MYEOV
(chr 11), RAD21L1 (chr 20), and TLDC2 (chr 20)). The
peptides for the identified missing proteins were the following:
IFITDVDNK and LVDAVGAPLPR (FREM3), LNEEAD-
GAQKLLVK and LAGDTEAKIR (LAMB4), VAGSWLTVV-

TVEALGGWR and GVSFLTFHLHQSVPLGDR (MYEOV),
IWLAAHWEKK and MLFTKCFLSSGFK (RAD21L1),
GGSSPCPTFNNEVLAR and DGFSLQSLYR (TLDC2). We
performed a validation experiment for these peptides
(Supporting Information), and although we obtained good
SDP Score values in many of them, the results were dubious.
The mass analyzer of the validation experiments was different
from the instrument used in the shotgun experiments and this
could be one of the causes of the differences between
endogenous and synthetic spectra. Consequently, further
experiments should be performed to validate this missing
proteins.
On the other hand, 165 missing proteins are detected with

one unique peptide by at least one of the search engines (46
proteins by COMET, 26 proteins by Mascot, 42 proteins by
OMSSA, and 30 proteins by X!Tandem). In addition, 19 one-

Figure 5. (A) Number of unique peptides associated with missing proteins per chromosome and search engine. (B) Number of missing proteins
identified with at least one unique peptide. Highlighted (in black) proteins were identified with two unique peptides, following the C-HPP
guidelines.

Figure 6. (A) Number of unique peptides associated with missing proteins separated per search engine. (B) Number of missing proteins identified
with one (left) and two (right) unique peptides.
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hit wonders were detected with two or three search engines,
and all the search engines detected the same two peptides. We
cannot assign MS evidence for these proteins using the C-HPP
criteria, but they are good candidates for further validation
using targeted proteomic experiments. The selection of the
proper sample in which design these experiments can be guided
by the combination of the proteomic and transcriptomic
experiments performed in this study.
Additionally, the information on resources such as

PeptideAtlas51 and SRM Atlas52 could help prioritizing missing
proteins for further validation. From the 165 one-hit wonder
proteins identified in our analysis, we have found other
additional unique peptides previously reported in PeptideAtlas
for 44 of them and SRM Atlas provides natural or synthetic
SRM transitions for 159 of the proteins.
The functional analysis results of DAVID for the 170 missing

proteins were in line with previous characterizations of the
missing proteins.10,12 As previously described, enriched GO

categories (Supporting Table 6) included G-protein coupled
receptors (15 proteins), regulation of transcription (17
proteins), olfatory receptor activity (11 proteins), and integral
components of membrane (60 proteins). Over-represented
Interpro domains were zinc fingers (14 proteins) and G-protein
coupled receptors (15 proteins) among others, while enriched
KEGG pathways were related to neuroactive ligand−receptor
interaction (5 proteins) and olfactory transduction (9 proteins).
The latter may result from the fact that we have detected 11
olfactory receptors (OR10J4, OR8G5, OR9K2, OR4C13,
OR5M3, OR6N2, OR51F2, OR51H1, OR2 V1, OR51E1,
OR2A14) of the total of 165 one-hit wonders. As we have
mentioned before, this set of proteins have to be considered for
further validation and some of them are expected to be false
positives. According to the biological origin of the cell lines
from the NCI60 data set, in which none of them are derived
from nasal tissue, olfactory receptors need some additional
support information for being considered a candidate. To

Figure 7. Interaction network of the detected missing proteins with the best score in IPA.
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determine which ones are more likely to be true positives we
have consulted the information available in the Missing
ProteinPedia (http://www.missingproteins.org/)43 and Gene-
Cards44 about these proteins. Except for OR10J4 and OR8G5,
their localization in plasma membrane is clear, and the
expression of their transcripts has been detected in several
tissues of the nervous, immune, muscle, secretory, reproductive,
and internal systems. There is no information about OR8G5,
while for OR10J4 protein some low expression of its transcript
has been observed in testis, cortex, and thyroid in addition to an
association with cardiovascular disease.53 OR9K2 has also been
associated with autism and schizophrenia,54 OR51E1 with
prostate cancer,55 intestine carcinoma,56 and lung carcinoids,57

and OR2A14 with high-altitude pulmonary edema or HAPE.58

The tissue specific expression analysis using the “UNIGENE
EST QUARTILE” categories highlighted brain (54 proteins),
testis (61 proteins), and tissues related to embryo development
(58 proteins), confirming the sample specificity of the detected
missing proteins and previously published predictions.10,12

In the IPA functional and pathway analysis, we found a lack
of enrichment of molecular functions or canonical pathways.
This is to be expected since IPA is based on a curated database
and the missing proteins are proteins without experimental
evidence, which, in most of the cases, is linked to scarce
bibliographic information about them or their coding genes.
However, 167 of the missing proteins had some functional
annotation and 137 of them are annotated to cancer category
(p = 1.23 × 10−4), coherently with the samples where they have
been detected (Supporting Table 7). In particular, the most
enriched categories are related to melanoma (93 proteins),
pancreatic tumor (39 proteins), and uterine carcinoma (38
proteins). Interestingly, the five missing proteins detected with
two discriminant peptides can be related to the IPA network
that has the best score. This network is enriched in proteins
associated with liver tumor (Figure 7).
Even thought the current biological knowledge about the

proteins for which we found MS evidence is not abundant,
some relevant information was found. FREM3 (FRAS1 Related
Extracellular Matrix 3) is a extracellular matrix protein, which
may play a role in cell adhesion, and it has been associated with
Fraser Syndrome and Glucosephosphate Dehydrogenase
Deficiency diseases.59 MYEOV (Myeloma Overexpressed)

was found deregulated in a subset of t(11;14) positive multiple
myelomas,60 and LAMB4 (Laminin Subunit Beta 4) is a
extracellular matrix protein that is involved in different
pathways in cancer, and it is also involved in migration and
organization of cells into tissues during embryonic develop-
ment.61 According to Missing ProteinPedia43 and GeneCards,44

LAMB4, which was seen in the NCI60 cell line SF268 (CNS),
was previosly detected in cerebrospinal fluid and MYEOV,
which was detected in MCF7 (breast), has a corresponding
transcript expressed in breast. RAD21L1 (AD21 Cohesin
Complex Component Like 1) is a meiosis-specific component
of a cohesin complex required during the initial steps of
prophase I in male meiosis, and its activity is related to
synaptonemal complex assembly, synapsis initiation, and
crossover recombination between homologous chromosomes
during prophase I.62 Finally, no information is available for
TLDC2 (TBC/LysM-Associated Domain Containing 2).
CCLE RNA-Seq Experiments and Enrichment of Missing
Proteins

We quantified the transcript structures of the MiTranscritome
human assembly46 using the RNA-Seq experiments corre-
sponding to the cell lines found in both the NCI60 data set and
the CCLE project (43 samples). These structures were
compared with GENCODE version 19, which resulted in the
annotation of 17 136 protein coding genes, 12 986 noncoding
genes, and 15 129 novel structures. The expression level
distributions of these biotypes (Figure 8) showed statistically
significant differences among them (p < 0.01), which confirmed
the higher expression at transcript level of the protein coding
genes.
To select the thresholds to distinguish between nonex-

pressed, expressed, and highly expressed genes we used the
quartiles (Q1 and Q3, respectively) of the expression level
distribution corresponding to all the gene structures (Figure
9A). Applying this criterion to each one of the 43 cell lines with
RNA-Seq experiments, we determined the number of expressed
and highly expressed genes in each sample and the number of
proteins identified in the corresponding proteomic experiments
(Figure 9B). We combined the proteomic and transcriptomic
results at gene level, and we have not considered which of the
transcripts of each gene is being expressed. In this way, we used
the term gene as a generalization of all the possible structures

Figure 8. Transcript expression level distributions of protein coding, noncoding, and novel gene categories were compared in each of the 43 cell lines
of the CCLE initiative.
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Figure 9. (A) Expression level distribution of all the genes structures in the 43 cell lines analyzed is shown and both quartiles Q1 and Q3 are marked
in red. (B) Number of genes expressed or highly expressed for each cell line and proteins identified in the corresponding proteomic experiments for
the same cell lines are represented (Number of MiTranscritome accessions are shown for transcriptomics and number of neXtProt accessions for
proteomics). (C) Venn diagram with the intersections between expressed genes, highly expressed genes, and detected proteins in the set of 43 cell
lines. (D) Number of missing proteins detected in each cell line and how many of their corresponding genes are expressed or highly expressed in the
same cell lines. (E) Venn diagram with the intersections between expressed genes, highly expressed genes, and identified missing proteins in the set
of 43 cell lines.
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that can be expressed from the transcription of a DNA region.
The mean number of expressed genes was 29 170 genes, and
the mean number of highly expressed genes was 9727, while the
mean number of detected proteins using the C-HPP guidelines
in these samples was 2155 proteins. As it is well-known, the
number of proteins that we are able to identify in MS
experiments is limited. Accordingly, the number of expressed
genes in the analyzed cell lines was higher than the number of
detected proteins. The intersection between the expressed
genes and the detected proteins in at least one of the cell lines
(Figure 9C) was 6041 proteins (29.97% of the total number of
proteins in neXtProt). Interestingly, the genes of almost 90% of
the identified proteins were highly expressed in some of the
analyzed cell lines. In the case of missing proteins, Figure 9D
summarizes the number of missing proteins that are expressed
or highly expressed for each cell line of the total of detected
missing proteins in the same cell lines (Supporting Table 8 and
Supporting Figure 9). Although only 57% of the detected
missing proteins were highly expressed (Figure 9E), this
information is a valuable resource to decide in which cell lines
should be performed the targeted proteomic validation
experiments for the detected one-hit wonders. PC3 and NCI-
H460 cell lines are good options due to the high number of
one-hit wonders detected and the proportion of these missing
proteins that are highly expressed (Supporting Table 8).

Study of Peptide Detectability of Peptides from Missing
Proteins Using Several Search Engines

One of the possible causes for the difficulties encountered in
the missing proteins detection could be a detectability problem
of peptides. Under this scenario, we decided to study the
physicochemical and biochemical properties of the tryptic
peptides identified in shotgun experiments of the NCI60
initiative and test this hypothesis. We were able to sort the
tryptic peptides based on the number of observations in
proteomic experiments and compare the properties of the most
observed peptides with the less observed ones. We used a final
selection of 106 nonredundant properties statistically different
between both groups of peptides to train a classifier. As
described in the Methods section, different classification
methods were applied, and Random Forest (RF) was the
best option for the prediction of detectable peptides with a
sensitivity of 0.746 and a specificity of 0.719 (Figure 10).

The developed classifier was applied to the detected tryptic
peptides of the missing proteins, and 38.67% of them were
predicted to be detectable, while the detectability of the
nonmissing identified tryptic peptides was significantly higher
(73.48%). The low predicted detectability was an expected
result considering the number of missing proteins that are
membrane proteins or highly insoluble proteins.13 The tryptic
peptides of the identified missing proteins that were not
detected had even lower predicted detectability (32.39%) so
this information could be considered for prioritizing the
peptides of a missing protein for further validation.
In addition, we decided to check the peptide detectability of

the results obtained with each one of the four search engines
used. Detected peptides of the proteins identified using all the
used search engines were peptides with a good predicted
detectability (73.48%). On the other hand, the mean peptide
detectability for the detected peptides of proteins identified
only by one of the search engines was very similar (72.47%),
and these additional peptides could make the difference in the
detection of the missing proteins (Figure 11). Hence, we can
consider that the results are complementary because each
search engine identifies additional peptides with a predicted
good detectability.

■ CONCLUSIONS
It is well-known that the existence of a certain type of proteins
in a given biological matrix is difficult to prove using mass
spectrometry or antibody-based technologies, although bio-
informatic evidence of their translation is available in proteomic
databases. This type of proteins includes among others, low
expression proteins like transcription factors, tissue specific
proteins, proteins that are expressed only under certain
biological conditions or produced only in certain development
stages, or proteins with particular cellular locations, as
membrane proteins. However, although currently unknown,
the implications of these proteins in biological processes and
disease could be of major significance. On the basis of this
assumption, since its start in the year 2010, the Human
Proteome Project (HPP) is trying to complete the character-
ization of the human proteome, with a special interest in those
proteins with a lack of robust experimental evidence. In the
context of this project, this group of proteins is known as
“missing proteins”, and they are cataloged in the neXtProt
database, the central knowledge-based tool of the C-HPP
initiative.
Different methodological approaches to detect these proteins

have been developed by the research groups involved in the
project. These bioinformatic pipelines have made a tremendous
contribution both to (1) the advances in the description of the
human proteome and (2) the development of new data analysis
methods to improve the results obtained from a proteomic
shotgun experiment. Furthermore, many innovations in the
field of proteogenomics have been introduced in these
workflows with the aim of integrating different omics (mainly
genomics, transcriptomics, and proteomics) to make a leap
forward on the understanding of the complexity of the cellular
and molecular machinery.
In this manuscript, we go a step further in the analysis of

public proteomic data sets to take greater advantage of the
potential of these experiments. We analyzed the complete
NCI60 data set, which contains nine deep proteomes and 61
proteome profiles from 59 cell lines. However, we increased the
proteome coverage for each sample integrating the results from

Figure 10. Performance evaluation of the peptide detectability
classifiers is shown using ROC analysis with the test data set.
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four different search engines (Comet, Mascot, OMSSA, and X!
Tandem). More than 3600 searches were performed, and the
detected peptides were intersected with the unique peptides of
neXtProt database to be aligned with the C-HPP guidelines.
According to the data obtained, we can safely assume that the
search engines are complementary, and their integration is an
appropriate method to increase the performance of the analysis
of shotgun experiments. The statistical threshold of 1% at PSM,
peptide, and protein level were applied. As a result, we found
MS evidence for five missing proteins (FREM3 (Chr 4),
LAMB4 (Chr 7), MYEOV (Chr 11), RAD21L1 (Chr 20), and
TLDC2 (Chr 20)), identified with more than one unique
peptide, and we also found 165 missing protein candidates
detected with only one unique peptide (one-hit wonders). We
performed validation experiments using heavy peptides and a
SDP score approach to compare the fragmentation spectra of
the endogenous and the synthesized peptides for the five
missing proteins identified with two unique peptides. However,
we obtained questionable results, and these peptides cannot be
considered validated. Further experiments are required.
A machine-learning approach allowed us to study peptide

detectability, and we can conclude that unique tryptic peptides
of the identified missing proteins have a low predicted
detectability. Besides this, additional peptides detected only
by one of the used search engines have as high predicted
detectability as the peptides detected by all the search engines.
In this way, we confirmed the complementarity and quality of
the detection results obtained with our integrative bioinfor-
matic approach.
The MS evidence of the one-hit wonder proteins must be

verified using an alternative proteomic technology, for example,
using targeted proteomic experiments (MRM or PRM).

Although we have not carried out these experiments, the
integration of the proteomic results with the quantification of
the protein coding genes in a subset of the NCI60 cell lines
available in the CCLE project allowed us to provide guidance
for the selection of the biological matrices in which these
proteins are more probable to be detected. The analysis of the
165 missing proteins using DAVID and Ingenuity softwares for
tissue specificity, GO, KEGG pathways, and protein domain
enrichments provided insight into the biological function of
these proteins and supported the ranking of cell lines for
validation studies provided by the RNA-Seq experiments from
the CCLE.

■ ASSOCIATED CONTENT

*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jproteo-
me.7b00388.

Number of proteins following C-HPP guidelines per
sample for Comet, Mascot, OMSSA, and X!Tandem
results; number of missing proteins with one unique
peptide per sample for Comet, Mascot, OMSSA, and X!
Tandem results; expression profiles of transcripts
corresponding to identified missing proteins in CCLE
experiments (PDF)
Spectra of endogenous peptides detected for five missing
proteins identified following C-HPP guidelines; corre-
sponding validations with synthetic peptides (PDF)
Supporting methods; R code (PDF)
FDR values for each sample calculated at PSM, peptide,
and protein level for Comet results (XLSX)

Figure 11. Percentage of predicted peptide detectability for distinct sets of peptides: nondetected peptides of the identified missing proteins,
detected peptides of identified missing proteins, detected peptides of nonmissing identified proteins, detected peptides of the proteins identified by
the four search engines used (Common proteins), and detected peptides of the proteins identified by only one of the search engines (Comet,
Mascot, OMSSA, and X!Tandem specific proteins). In red, predicted to be detectable peptides and in blue, peptides predicted to be not detectable.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.7b00388
J. Proteome Res. 2017, 16, 4374−4390

4388

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.7b00388
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.7b00388
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00388/suppl_file/pr7b00388_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00388/suppl_file/pr7b00388_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00388/suppl_file/pr7b00388_si_003.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00388/suppl_file/pr7b00388_si_004.xlsx
http://dx.doi.org/10.1021/acs.jproteome.7b00388


FDR values for each sample calculated at PSM, peptide,
and protein level for Mascot results (XLSX)
FDR values for each sample calculated at PSM, peptide,
and protein level for OMSSA results (XLSX)
FDR values for each sample calculated at PSM, peptide,
and protein level for X!Tandem results (XLSX)
Missing proteins identified with PSM, peptide, and
protein FDR < 1% and one or more unique peptides
(XLSX)
Functional analysis of identified missing proteins using
DAVID (XLSX)
Functional analysis of identified missing proteins using
IPA (XLS)
Identified missing proteins per cell line and their
corresponding transcript expression level (XLSX)

■ AUTHOR INFORMATION
Corresponding Author

*E-mail: vsegura@unav.es.
ORCID

J. Ignacio Casal: 0000-0003-1085-2840
Fernando J. Corrales: 0000-0002-0231-5159
Victor Segura: 0000-0002-7740-6290
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Laboratories of CIMA, CNB, CIB, and UPV are members of
the PRBB-ISCIII platform. This work was supported by PRBB
and the Carlos III National Health Institute Agreement, PRBB-
ISCIII (PT13/0001/0002); Grant Nos. SAF2014-5478-R from
Ministerio de Ciencia e Innovacioń and ISCIII-RETIC RD06/
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(39) Fenyö, D.; Beavis, R. C. A method for assessing the statistical
significance of mass spectrometry-based protein identifications using
general scoring schemes. Anal. Chem. 2003, 75, 768−774.
(40) Gentleman, R. C.; et al. Bioconductor: open software
development for computational biology and bioinformatics. Genome
biology 2004, 5, R80.
(41) Cagney, G.; Amiri, S.; Premawaradena, T.; Lindo, M.; Emili, A.
In silico proteome analysis to facilitate proteomics experiments using
mass spectrometry. Proteome Sci. 2003, 1, 5.
(42) Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Systematic and
integrative analysis of large gene lists using DAVID bioinformatics
resources. Nat. Protoc. 2008, 4, 44−57.
(43) Baker, M. S.; Ahn, S. B.; Mohamedali, A.; Islam, M. T.; Cantor,
D.; Verhaert, P. D.; Fanayan, S.; Sharma, S.; Nice, E. C.; Connor, M.;
Ranganathan, S. Accelerating the search for the missing proteins in the
human proteome. Nat. Commun. 2017, 8, 14271.
(44) Stelzer, G.; et al. The genecards suite: from gene data mining to
disease genome sequence analyses. Current protocols in bioinformatics
2016, 1−30.
(45) Ye, D.; Fu, Y.; Sun, R.-X.; Wang, H.-P.; Yuan, Z.-F.; Chi, H.; He,
S.-M. Open MS/MS spectral library search to identify unanticipated
post-translational modifications and increase spectral identification
rate. Bioinformatics 2010, 26, i399−i406.
(46) Iyer, M. K.; et al. The landscape of long noncoding RNAs in the
human transcriptome. Nat. Genet. 2015, 47, 199−208.
(47) Trapnell, C.; Williams, B. A.; Pertea, G.; Mortazavi, A.; Kwan,
G.; van Baren, M. J.; Salzberg, S. L.; Wold, B. J.; Pachter, L. Transcript

assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 2010, 28, 511−515.
(48) Liao, Y.; Smyth, G. K.; Shi, W. featureCounts: an efficient
general purpose program for assigning sequence reads to genomic
features. Bioinformatics 2014, 30, 923−930.
(49) Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.;
Katayama, T.; Kanehisa, M. AAindex: amino acid index database,
progress report 2008. Nucleic Acids Res. 2007, 36, D202−D205.
(50) Kuhn, M. Caret package. Journal of Statistical Software 2008, 28,
1−26.
(51) Deutsch, E. W.; Sun, Z.; Campbell, D.; Kusebauch, U.; Chu, C.
S.; Mendoza, L.; Shteynberg, D.; Omenn, G. S.; Moritz, R. L. State of
the human proteome in 2014/2015 as viewed through PeptideAtlas:
Enhancing accuracy and coverage through the AtlasProphet. J.
Proteome Res. 2015, 14, 3461−3473.
(52) Kusebauch, U.; Campbell, D. S.; Deutsch, E. W.; Chu, C. S.;
Spicer, D. A.; Brusniak, M.-Y.; Slagel, J.; Sun, Z.; Stevens, J.; Grimes,
B.; Shteynberg, D. Human SRMAtlas: a resource of targeted assays to
quantify the complete human proteome. Cell 2016, 166, 766−778.
(53) Benjamin, E. J.; et al. Genome-wide association with select
biomarker traits in the Framingham Heart Study. BMC Med. Genet.
2007, 8, S11.
(54) Goodbourn, P. T.; Bosten, J. M.; Bargary, G.; Hogg, R. E.;
Lawrance-Owen, A. J.; Mollon, J. Variants in the 1q21 risk region are
associated with a visual endophenotype of autism and schizophrenia.
Genes, Brain and Behavior 2014, 13, 144−151.
(55) Weng, J.; Wang, J.; Hu, X.; Wang, F.; Ittmann, M.; Liu, M.
PSGR2, a novel G-protein coupled receptor, is overexpressed in
human prostate cancer. Int. J. Cancer 2006, 118, 1471−1480.
(56) Cui, T.; Tsolakis, A. V.; Li, S.-C.; Cunningham, J. L.; Lind, T.;
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