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Abstract 

Background:  Hemorrhagic fever with renal syndrome (HFRS) is endemic in Zhejiang Province, China, while few stud-
ies have concentrated on the influence of meteorological factors on HFRS incidence in the area. 

Methods:  Data on HFRS and meteorological factors from January 1, 2008 to December 31, 2020 in Taizhou City, Zhe-
jiang Province were collected. Multivariate analysis was conducted to the relationship between meteorological factors 
including minimum temperatures, relative humidity, and cumulative rainfall with HFRS. 

Results:  The HFRS incidence peaked in November and December and it was negatively correlated with average 
and highest average temperatures. Compared with median of meteorological factors, the relative risks (RR) of weekly 
average temperature at 12 ℃, weekly highest temperature at 18 ℃relative humidity at 40%, and cumulative rainfall at 
240 mm were most significant and RRs were 1.41 (95% CI: 1.09–1.82), 1.32 (95% CI: 1.05–1.66), 2.18 (95% CI: 1.16–4.07), 
and 1.91 (95% CI: 1.16–2.73), respectively. Average temperature, precipitation, relative humidity had interactions 
on HFRS and the risk of HFRS occurrence increased with the decrease of average temperature and the increase of 
precipitation. 

Conclusion:  Our study results are indicative of the association of environmental factors with the HFRS incidence, 
probable recommendation could be use of environmental factors as early warning signals for initiating the control 
measure and response. 

Keywords:  Hemorrhagic fever with renal syndrome, Distributed lag non-linear, Generalized additive models, Lag 
effect, Interactive effect
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Background
Climate change, especially extreme weather, not only 
affect the incidence of acute infectious diseases of the 
respiratory tract [1–3], but also increase the risk of death 
in patients with chronic diseases [4]. Hemorrhagic fever 
with renal syndrome (HFRS) is a natural focal disease, 
and a large number of studies have shown that its inci-
dence is influenced by climate change [5]. In the context 
of global warming, temperature, rainfall, and relative 
humidity are the main meteorological factors that pose a 
serious threat to human health [6]. Previous studies on 
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the impact of meteorological factors on diseases have 
identified certain hysteresis effects, which vary in form 
and by region [7, 8].

Meteorological factors, such as temperature, pre-
cipitation, and humidity, might affect human travel, 
thereby directly affecting the likelihood of rodent-
human contact [9]. They can also affect the spread 
of diseases by affecting crop yields, rodent reproduc-
tion, and vector density [10]. For example, temperature 
and rainfall were associated with the host ecosystem, 
affecting the HFTS transmission speed and the poten-
tial risk of outbreaks [11, 12]. These factors had a lag-
ging effect on HFRS incidence, but lag time ranged 
3–5  months in different areas [13–16]. Moreover, El 
Niño extreme weather events were also associated 
with the occurrence of HFRS [17].

The first documented case of HFRS in Zhejiang 
Province was reported in Jiaxing City in 1963. Since 
then, the size of the endemic area has gradually 
increased. In recent years, the number of cases has 
decreased with vaccination, rodent control strate-
gies, and environmental sanitation improvements [18]. 
However, the affected areas of Zhejiang Province is 
gradually expanding, and the incidence rates in some 
areas remain high [19]. Up to date, cases have been 
reported in all 11 prefecture-level cities in the prov-
ince [19]. However, few studies have concentrated on 
the influence of meteorological factors on HFRS inci-
dence in the area. In this study, distributed lag nonlin-
earity (DLNM) and generalized additive model (GAM) 
were used to evaluate the impact of HFRS incidence in 
Taizhou City, Zhejiang Province, and to determine the 
key influencing factors.

Material and methods
Study area
Taizhou City, a coastal city in the central part of Zhejiang 
Province, belongs to the mid-subtropical monsoon area 
and experiences four distinct seasons (Supplementary 
Figure S1). The territory experiences mild summers, cold 

winters, abundant rain, and a mild, humid climate due 
to the meteorological effects of nearby ocean waters and 
mountains in the northwest.

Data collection
According to the Law on Prevention and Treatment of 
Infectious Diseases, HFRS is classified as a Class B infec-
tious disease in China, and cases must be reported within 
24 h of diagnosis [19]. Data on HFRS from 2008 to 2020 
in Taizhou City were collected from the Chinese Notifi-
able Disease Reporting System.

We collected daily meteorological data from the 
China Meteorological Data Sharing Service System 
(http://​data.​cma.​cn/). These data, including daily aver-
age temperature, (Avetemp), minimum temperature 
(Mintemp), maximum temperature (Maxtemp), relative 
humidity, and total precipitation, were used to calculate 
the weekly average for each value.

Statistical methods
Normality test and descriptive analysis were conducted 
to summarize characteristics of all variables. Spearman 
correlation was used to assess the relationship between 
HFRS incidence and meteorological factors. This study 
developed a time series model based on the GAM and 
used the cross-basis process to describe the distribution 
of changes in the independent variable dimension and the 
lag dimension simultaneously [8]. Further, DLNM was 
used to fit the non-linear and lag effects of weekly Avet-
emp, Maxtemp, Mintemp, average relative humidity, and 
cumulative rainfall on the risk of HFRS [20]. The incuba-
tion period for HFRS is affected by the host animal, vector 
density, and meteorological factors, and lasts for several 
weeks. In our study, the maximum lag period was set to 
16 weeks [13, 20, 21]. Since HFRS cases in Taizhou City 
were relatively rare, Quasi-Poisson regression was used 
in this model to control for overdispersion. We used a 
two-stage analysis method. First, we used the DLNM to 
estimate the association of weekly Avetemp, Maxtemp, 
Mintemp, relative humidity, and weekly total precipitation 

Table 1  Descriptive statistics of weekly HFRS cases and meteorological factors in Taizhou City, China from 2008 to 2020

Abbreviations: S.D The standard deviation, Min The minimum of variables, Max The maximum of variables, Avetemp Average weekly temperature, RH Weekly average 
relative humidity, WTP Weekly total precipitation, Maxtemp Maximum average weekly temperature, Mintemp Minimum average weekly temperature

Variable X ± S.D Min P2.5 P25 P50 P75 P97.5 Max

Cases 1.74 ± 1.8 0.00 0.00 0.00 1.00 2.00 7.00 12.00

Avetemp(℃) 18.04 ± 7.61 2.33 4.55 11.18 18.63 24.78 29.14 30.33

RH(%) 77.88 ± 8.57 30.25 58.56 72.96 79.18 83.71 91.61 94.75

WTP(mm) 38.54 ± 48.85 0.00 0.00 6.79 23.11 51.57 173.60 362.64

Maxtemp(℃) 19.3 ± 7.65 3.54 14.91 14.91 22.47 28.06 33.20 34.48

Mintemp(℃) 11.125 ± 7.73 -1.18 1.91 8.25 15.95 22.40 26.42 27.01

http://data.cma.cn/
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Fig. 1  Time series of weekly Avetemp,Tmax, Tmin, RH and WTP, and number of HFRS from 2008 to 2020 in Taizhou City, China
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(WTP) with the number of HFRS case [22]. The general 
algebraical definition of the model are as follows:

Among them, t is the observation week; [E(Yt)] is 
HFRS cases observed in month Yt, βis the intercept 
of the entire model; cb (Kt, 16, and β1) is the cross-
basis function of K, and K is one of the meteorological 

Log[E(Yt)] = � + cb(Kt, 16, �1) + S1(x)

+ S2(z) + S3(m) + S4(n) + S5(week)

elements. S1–4 are factors such as Avtemp, Maxtemp, 
Mintemp, RH, and WTP; β1 is the estimated value of 
the effect of K in a specific lag week t; the maximum 
lag week is set to 16; Week is the ordinal variable of the 
week in the year; s() is the penalty spline function. This 
study uses cubic spline functions, s1–4, to adjust the 
confounding factors in the model, and s5(week) to adjust 
the weekly confounding factors.

Second, we analyzed the interaction between weekly 
Avetemp, Maxtemp, Mintemp, relative humidity, and 

Fig. 2  Boxplot of Avetemp, Mintemp, Max temp, RH and WTP

Table 2  Correlation analysis of meteorological factors and HFRS in Taizhou city,China from 2008 to 2020

Abbreviations: Avetemp Average temperature, CI Confidence interval, df Degree of freedom, DLNM Distributed lag non-linear model, GAM Generalized additive 
model, HFRS Hemorrhagic fever with renal syndrome, Maxtemp Maximum temperature, Mintemp Minimum temperature, RH Relative humidity, WTP Weekly total 
precipitation, RR Relative risk
* p < 0.05

Variable Cases Avetemp RH WTP Tempmax Tempmin

Cases 1 -0.08 * -0.03 0.02 -0.08* -0.07

Avetemp 1 0.40 * 0.20* 0.96 * 0.96*

RH 1 0.64* 0.32* 0.36*

WTP 1 0.19* 0.22*

Tempmax 1 0.98*

Tempmin 1
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accumulated rainfall with GAMs, and then analyzed the 
different effects of high and low values of the meteoro-
logical factors on the cases. The basic model as follows:

β2 is the intercept; K is one of the meteorological fac-
tors (Avtemp, Maxtemp, Mintemp, RH, and WTP), and 
X, Z, M, and N denote the other factors. s() means the 
penalty spline function. s1 (K and X) is the spline func-
tion of the interaction between variables K and X.

In the model, the number of cases was used as the 
dependent variable, and a cross-basis function was 
established for the number of cases and temperature. 
Spline interpolation was used to control the influence 
of confounding factors such as relative humidity, rain-
fall, and long-term trends. The best degree of freedom 
(df ) was selected based on the spline function results 
through sensitivity testing and generalized cross-valida-
tion criteria [23].

DLNM can describe the complex nonlinearity and 
hysteresis correlation of temperature-HFRS through 
the cross basis function. It is necessary to scientifi-
cally define the reasonable lag time of the model [21]. 
We chose one ns (natural cubic B-spline, df = 6) as the 
exposure–response. Two nodes are located at the 2.5th 
and 97.5th percentiles of the meteorological factor dis-
tribution, and the other is for the exposure–response 
relationship, based on high temperature [13, 15]. The 
assumption that Maxtemp and Mintemp may affect the 
incidence of HFRS is fixed (df = 6) and the maximum lag 
time was set at 16 weeks to capture the delayed effects 
of extreme temperatures. In this study, the degrees of 
freedom and maximum lag times for mean temperature, 
relative humidity, accumulated rainfall, mean maximum 
temperature and mean minimum temperature were 
set in order: (df = 6, lag = 16; df = 4, lag = 16; df = 3, 
lag = 10; df = 6, lag = 21; df = 4, lag = 20).

We performed sensitivity analysis by changing the df of 
the weather variables and time points. All analyses were 
performed using ArcGIS 10.2 (ESRI, Redlands, CA, USA) 
and R software (packages "dlnm" and "mgcv") (R Founda-
tion for Statistical Computing, Vienna, Austria).

Results
During the study period, a total of 1196 HFRS cases were 
reported in Taizhou City. Descriptive statistics collected 
over the past 13  years indicated that the highest weekly 
case distribution in Taizhou reached 12 cases (Table 1). The 
Avetemp, Maxtemp, and Mintemp in Taizhou City from 
2008 to 2020 all show a normal distribution and showed 
obvious periodicity and seasonality (Fig.  1). The average 
weekly temperature was 18.04  °C; Mintemp, 2.33  °C, and 

Log[E(Yt)] = β2 + S1(k, x) + S2(z)

+ S3(m) + S4(n) + S5(week)

Fig. 3  The lag-specific effect of meteorological factors on HFRS in 
Taizhou City
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Maxtemp, 30.33  °C. The weekly average Maxtemp and 
weekly average Mintemp were 19.3 °C and 11.13 °C, respec-
tively. The average weekly humidity was 77.88% and the 
average weekly rainfall was 38.54 mm (Fig. 2). HFRS inci-
dence was negatively correlated with the Avetemp and the 
highest Avetemp, while it didn’t significantly related to the 
weekly average relative humidity, weekly total precipitation, 
and the lowest Avetemp (Table 2).

In the DLNM, we used the median of each meteorolog-
ical factor as a reference and then calculated the relative 
risk of each variable. The impact of Avetemp on HFRS 
rapidly decreased and then slowly increased. In Lag 3, 
weekly Avetemp is most significant at 13  °C (RR = 1.28, 
95% CI = 1.04–1.57). In Lag 4, weekly Avetemp was 

most significant at 12 °C (RR = 1.41, 95% CI = 1.09–1.82) 
(Fig.  3A, B). In lag 3, Maxtemp is most significant at 
18  °C (RR = 1.32, 95% CI = 1.05–1.66) (Fig.  3C). In lag 
4, Maxtemp is most significant at 20 °C (RR = 1.12, 95% 
CI = 1.02–1.24) (Fig. 3D). There was no statistical differ-
ence between the high and low values of the Mintemp; 
the Mintemp of 1 °C had the same RR value in lag1 and 
lag2 (RR = 1.59, 95% CI = 1.02–2.47) (Fig. 3E, F).

The RR of the highest value of relative humidity in the 
97.5th percentile in lag2 and lg16 were 0.97, and 0.61, 
respectively (Supplementary Fig. S2G, H). A relative 
humidity of 31% was the most significant in lag 2 and a 
maximum relative humidity of 40% was the most signifi-
cant in lag 15 (Fig. 3G, H).

Fig. 4  RRs of meteorological factors on HFRS at different lags in Taizhou city from 2008 to 2020
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The highest WTP value of the 97.5th percentile had 
the largest RR in lag13 (RR = 1.35, 95% CI = 1.01–1.79) 
(Supplementary Fig. S2I, J); a cumulative rainfall of 
240  mm in lag3 was the most significant (RR = 1.91, 
95% CI = 1.16–2.73) (Fig.  3I). A cumulative rainfall of 
120  mm in lag10 was the most significant (RR = 1.27, 
95% CI = 1.08–1.49) (Fig. 3J).

We calculated the corresponding RR for the mini-
mum to the maximum lag of each meteorological fac-
tor (Fig.  4), and the Avetemp was between lag3–5 
(RR = 1.4, 95% CI = 1.09–1.81). The time effect of the 
Maxtemp was significant, and the risk of infection was 
the highest in the lag1–2 weeks. Regarding cumulative 
rainfall, the effect of lag was most significant during 
lag3–4 weeks. The maximum effect of relative humidity 
was the most significant at lag3–4 and lag12–15 weeks, 
respectively.

GAMs was used to explore the interaction between 
Avetemp, WTP, and RH, and the results are shown in 
Fig.  5. The left side of Fig.  5 showed the interaction 
between Avetemp and WTP. Obviously, the infection 
risk of HFRS was inversely proportional to Avetemp 
and directly proportional to the WTP. As showed in the 
middle of Fig.  5, the infection risk of HFRS is inversely 
proportional to Avetemp and directly proportional to 
RH. Figure 5 showed that as the WTP increased, the RH 
decreased and the risk of infection increased. The risk of 
HFRS infection increased with the decrease of Avetemp 
and the increase of WTP. These indicated that HFRS in 
Taizhou City increased when Avetemp decreased and 
WTP increased.

Discussion
In this study, we investigated the relationship between 
Avetemp, Maxtemp, Mintemp, WTP, relative humid-
ity and HFRS in Taizhou City from 2008 to 2020 using 
DLNM and GAMs. Our study found that weekly 

Avetemp and weekly maximum temperature were nega-
tively associated with HFRS incidence, which is consist-
ent with results from Shandong Province [24].

The lagged effects of WTP and relative humid-
ity were also most pronounced in Taizhou City, with 
a lag of 3–4  weeks. Rather than concentrating rodent 
control efforts only twice, in winter and spring [7, 19], 
the high incidence period identified in this study. Sev-
eral studies have confirmed that extreme weather has 
a significant impact on many diseases [18, 19]. We 
found that the effects of Maxtemp and Mintemp on 
HFRS were most pronounced at a lag of 1 week. Sev-
eral models have been used to study the effect of later 
factors on dengue fever, and similarly confirmed the 
existence of a lag period for climatic factors on local 
dengue incidence [25].

We found that the risk of infection increased with the 
increase of precipitation, which was similar with previous 
findings [26]. The effect of WTP on the risk of disease in 
Taizhou City was most pronounced at a lag of 1 month, 
and this effect persisted until a lag of 12  weeks. This 
study confirmed that infectious diseases in coastal areas 
such as Zhejiang Province were more affected by tropical 
cyclones [27]. For example, rainfall and relative humidity 
had a significant effect on severe fever with thrombocy-
topenia syndrome [28].

Conclusion
Meteorological factors had non-line relationship with 
HFRS and lag effects exist. HFRS mostly occurred 
when temperature and relative humidity were low and 
WTP was high. Our study results are indicative of the 
association of environmental factors with the HFRS 
incidence, probable recommendation could be use of 
environmental factors as early warning signals for ini-
tiating the control measure and response.

Fig. 5  The coefficients of meteorological factors on HFRS in Taizhou City



Page 8 of 9Zhang et al. BMC Public Health         (2022) 22:1097 

Limitations
HFRS incidence was directly associated with density and 
infection rate of rodents, but these data were not availa-
ble in this study. More over, other factors including social 
factors and environmental factors might also influence 
HFRS. Further research should be conducted to explore 
the contribution rate of different factors on HFRS.
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Hemorrhagic fever with renal syndrome; Maxtemp, maximum tempera-
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