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Abstract: Reactions of 5,5,5-trichloropent-3-en-2-one Cl3CCH=CHC(=O)Me with arenes in Brønsted
superacid CF3SO3H at room temperature for 2 h–5 days afford 3-methyl-1-trichloromethylindenes,
a novel class of indene derivatives. The key reactive intermediate, O-protonated form of starting
compound Cl3CCH=CHC(=OH+)Me, has been studied experimentally by NMR in CF3SO3H and
theoretically by DFT calculations. The reaction proceeds through initial hydroarylation of the carbon-
carbon double bond of starting CCl3-enone, followed by cyclization onto the O-protonated carbonyl
group, leading to target indenes. In general, 5,5,5-trichloropent-3-en-2-one in CF3SO3H acts as a
1,3-bi-centered electrophile.

Keywords: enones; indenes; Friedel-Crafts reaction; carbocations; triflic acid

1. Introduction

Superelectrophilic activation under the action of strong Brønsted and Lewis acids is a
useful tool in organic synthesis, giving access to a variety of compounds [1–8]. Protona-
tion (or coordination) of basic centers of organic molecules in Brønsted (or Lewis) acids
affords intermediate highly reactive cationic species. In particular, superelectrophilic acti-
vation of conjugated enones consequently gives rise to O-protonated and O,C-diprotonated
species. The latter takes part in electrophilic aromatic substitution reactions with arenes
(Scheme 1a) [9–18]. The formation of O,C-diprotonated species from various conjugated
enone structures, such as butenones [9,18], indenones [12], cinnamic acids, and their esters
and amides [13–16], was proved experimentally by NMR and theoretically by DFT calcu-
lations. It has been shown that these dications are key reactive intermediates in various
Friedel–Crafts processes [9–18].
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Scheme 1. Generating of O-protonated and O,C-diprotonated species from conjugated enones and
5,5,5-trichloropent-3-en-2-one 1 under superelectrophilic activation conditions [9–18].

Based on our recent studies on superelectrophilic activation of electron deficient
alkenes [19–21], we undertook this study on electrophilic activation of E-5,5,5-trichloropent-
3-en-2-one 1 (CCl3-enone). The presence of two electron withdrawing groups, COMe
and CCl3, at the carbon-carbon double bond increases its electrophilicity, especially under
protonation of the carbonyl oxygen-resulting O-protonated species A (Scheme 1b). The
second protonation of C=C bond in cation A may be hampered due to the strong acceptor
characteristics of substituents C(OH+)Me and CCl3. However, species A possesses enough
electrophilicity to react with aromatic nucleophiles.

The main goals of this study were to investigate the protonation of E-5,5,5-trichloropent-
3-en-2-one 1 by NMR and DFT calculations and study its reactions with arenes under the
action of strong Brønsted and Lewis acids.

2. Results and Discussion

Protonation of CCl3-enone 1 in various Brønsted acids (CH3COOH, CF3COOH, H2SO4,
CF3SO3H) was initially investigated by means of NMR. According to 1H and 13C NMR
data, CCl3-enone 1 gives stable O-protonated form A in these acids at room temperature
(Table 1, see original spectra in Supplementary Materials). Upon increasing the acidity in
the row CH3COOH→CF3COOH→H2SO4→CF3SO3H [1], signals of protons H3, H4 and
carbons C2, C4 are shifted more and more downfield. The corresponding differences in
chemical shifts (∆δ = δacid– δCDCl3) for atoms H3, H4 and C2, C4 are gradually increased
(Table 1). These data reveal that the positive charge is mainly localized on carbons C2 and
C4 in cation A, and both these atoms may act as reactive electrophilic centers in consequent
interactions with aromatic nucleophiles.
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Table 1. 1H and 13C NMR data of CCl3-enone 1 (in CDCl3) and its O-protonated form A (in Brøn-
sted acids).

Compound 1 and
Cation A Solvent

1H NMR, δ, ppm 13C NMR, δ, ppm

H1 H3 H4 C1 C2 C3 C4 5CCl3
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CH3CO2H a

∆δ b
2.29 6.56 7.06 27.6 198.4 128.1 144.3 92.4
−0.11 −0.05 0.01 −1.3 1.7 0.1 −0.1 −0.2

CF3CO2H a

∆δ b
2.62 6.85 7.34 31.7 210.8 131.9 153.4 96.2
0.22 0.24 0.29 2.8 14.1 3.9 9.0 3.6

H2SO4
a

∆δ b
3.03 7.11 7.86 26.4 221.8 123.9 158.5 89.3
0.63 0.5 0.81 −2.5 25.1 −4.1 14.1 −3.3

CF3SO3H a

∆δ b
3.22 7.31 8.14 27.5 226.7 124.3 163.2 89.9
0.82 0.7 1.09 −1.4 30.0 −3.7 18.8 −2.7

Notes. a CH2Cl2 was used as internal standard. b ∆δ = δacid − δCDCl3.

Then, DFT calculations of cations A–C derived from the protonation of CCl3-enone
1 have been carried out. The thermodynamics of their formation, such as Gibbs ener-
gies ∆G298 of protonation reactions, energies of HOMO/LUMO, electrophilicity indices
ω [22,23], charge distribution, and contribution of atomic orbital into LUMO of species
A–C have been estimated (Table 2, see full data in Supplementary Materials).

The formation of O-protonated species A is very favorable, as the ∆G298 value of the
protonation is negative (−35 kJ/mol). Secondly, the protonation of the C=C bond, both
onto carbons C3 and C4, which leads to dications B and C, is, correspondingly, extremely
unfavorable, due to the very high positive values of protonation Gibbs energies (Table 2).
Thus, the generation of O,C-diprotonated species B and C from CCl3-enone 1 is very
unlikely; that is, in accordance with NMR data (Table 1). Apart from that, it has been found
that dication B is extremely unstable. It is spontaneously rearranged into species B1 via a
shift of a chlorine atom.

Calculations show that the largest part of positive charge in species A is localized on
atom C2 (0.66 e). Apart from that, this carbon atom contributes significantly to LUMO
by 28%. There are similarities between the charge and orbital factors of the electrophilic
properties of carbon C2. Contrary to that, carbon C4 bears no positive charge (−0.06 e),
but it contributes significantly into LUMO by 21% (see LUMO visualization of cation A in
Table 2). Electrophilic properties of atom C4 can be mainly explained by orbital factors.

Reactions of CCl3-enone 1 with benzene under the action of various Brønsted and
Lewis acids have also been conducted (Table 3). The use of strong Lewis acids AlCl3 or AlBr3
yields complex mixtures of oligomeric materials (entries 1–3). Reaction in H2SO4 results in
the formation of alcohol 3 as a product of hydration of the carbon-carbon double bond; no
reaction with benzene occurs (entry 4). Reaction in Brønsted superacid CF3SO3H (triflic
acid, TfOH) at room temperature for 5 days affords indene 2a in yields 29% (entry 7). Under
other conditions (temperature and time) in CF3SO3H, the formation of 2a is unsatisfactory
(entries 5, 6, 8, 9), as is the reaction in stronger acid FSO3H at a low temperature of
−78 ◦C (entry 10). In weaker acids, CH3CO2H and CH3CO2H, the reaction does not take
place (entries 11–14). These data reveal that the formation of indene 2a in CF3SO3H is
accompanied by cationic oligomerization processes, which leads to a decrease in the yield
of the target compound. The formation of indene 2a points out that the starting compound
1 in CF3SO3H behaves as a precursor of the bi-centered electrophile, with reactive cationic
centers on carbons C2 and C4.



Molecules 2022, 27, 6675 4 of 10

Table 2. Selected calculated (DFT) electronic characteristics of the protonated forms A, B, C of
CCl3-enone 1, and values of Gibbs energies of protonation reactions (∆G, kJ/mol).
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Table 3. Cont.

Entry Acid Temperature Time Reaction Product, Yield, %

5 CF3SO3H room temperature 0.5 h quantitative isolation of starting compound 1

6 CF3SO3H room temperature 3 days 2a, 20% b

7 CF3SO3H room temperature 5 days 2a, 29% a

8 CF3SO3H 60 ◦C 0.5 h oligomeric material a

9 CF3SO3H 80 ◦C 1 h oligomeric material a

10 FSO3H −78 ◦C 2 h quantitative isolation of starting compound 1

11 CH3CO2H room temperature 2 days quantitative isolation of starting compound 1

12 CH3CO2H 80 ◦C 1 h quantitative isolation of starting compound 1

13 CF3CO2H room temperature 2 days quantitative isolation of starting compound 1

14 CF3CO2H 80 ◦C 1 h quantitative isolation of starting compound 1

Notes. a Full conversion of starting compound 1. b Incomplete conversion of starting compound 1.

Reactions of CCl3-enone 1 with other arenes (o-, m-, p-xylenes, pseudocumene, and
veratrole) in CF3SO3H, leading to indenes 2b–f, are presented in Scheme 2. These reactions
with electron donating arenes take much less time (2 h only) at room temperature compared
to the reaction with benzene (5 days, Table 1, entry 7). The yields of target indenes 2b–f are
moderate (20–47%) due to secondary cationic oligomerization processes.
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However, the same reactions with anisole (methoxybenzene) and 1,3-dimethoxybenzene
at room temperature for 2 h furnish compounds 4a,b as products of hydroarylation of the
carbon-carbon double bond of starting CCl3-enone 1 (Scheme 3). Running these reactions at
the higher temperature of 60 ◦C does not lead to the consequent cyclization of compounds
4a,b into the corresponding indenes 2.
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Scheme 3. Reactions of CCl3-enone 1 with arenes in CF3SO3H under different conditions leading to
compounds 4a,b.

The data obtained allow proposing plausible reaction mechanisms for transformations
of CCl3-enone 1 in Brønsted acids (Scheme 4). The formation of compounds 4 reveals that
the first interaction of arenes with cation A occurs at carbon C4 of the latter, leading to
species D. Hydrolysis of these cations affords compounds 4 (Scheme 3). In the case of
electron donating aryl groups, cations D undergo intramolecular cyclization into species E.
At this stage of the reaction, carbon C2 acts as an electrophilic center. Finally, dehydration of
E gives rise to indenes 2. Another reaction pathway takes place in H2SO4. The interaction
of cation A with hydrosulfate anion HSO4

− affords species F, which is hydrolyzed into
alcohol 3. We additionally examined the reaction of alcohol 3 with benzene in TfOH to
obtain indene 2a. However, only a mixture of oligomeric materials was obtained, with no
target indene 2a. In general, upon the formation of indenes 2, starting CCl3-enone 1 in
CF3SO3H behaves as a precursor of 1,3-bi-centered electrophilic synthon.
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It should be especially emphasized that the development of routes for the synthesis 

of novel indene derivatives such as compounds 2 is a highly important goal for organic 

chemistry. Indenes are valuable molecules for medicinal uses [24–26]. They are widely 

exploited as ligands in organometallic chemistry [27–31], as structural units in molecular 

machines [32] and organic photovoltaics [33]. 

3. Experimental Section 

3.1. General Information 

The NMR spectra of solutions of compounds in CDCl3 and in acids (CH3COOH, 

CF3COOH, H2SO4, CF3SO3H) were recorded on a Bruker 400 spectrometer (Billerica, MA,  

USA) at 25 °C at 400 and 101 MHz for 1H and 13C NMR spectra, respectively. The residual 

proton-solvent peaks CDCl3 (δ 7.26 ppm) for 1H NMR spectra, and the carbon signals of 

CDCl3 (δ 77.0 ppm) for 13C NMR spectra were used as references. NMR spectra in acids 

were referenced to the signal of CH2Cl2 added as internal standard: δ 5.30 ppm for 1H 

NMR spectra, and δ 53.52 ppm for 13C NMR spectra. HRMS-APCI was carried out using 

the instruments Bruker maXis HRMS-ESI-QTOF (Billerica, MA, USA). Preparative TLC 

was performed on silica gel 5−40 μm (Merck Co., Kenilworth, NJ, USA) with petroleum 

ether or petroleum ether-ethyl acetate mixture elution. 

3.2. DFT Calculations 
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It should be especially emphasized that the development of routes for the synthesis
of novel indene derivatives such as compounds 2 is a highly important goal for organic
chemistry. Indenes are valuable molecules for medicinal uses [24–26]. They are widely
exploited as ligands in organometallic chemistry [27–31], as structural units in molecular
machines [32] and organic photovoltaics [33].

3. Experimental Section
3.1. General Information

The NMR spectra of solutions of compounds in CDCl3 and in acids (CH3COOH,
CF3COOH, H2SO4, CF3SO3H) were recorded on a Bruker 400 spectrometer (Billerica, MA,
USA) at 25 ◦C at 400 and 101 MHz for 1H and 13C NMR spectra, respectively. The residual
proton-solvent peaks CDCl3 (δ 7.26 ppm) for 1H NMR spectra, and the carbon signals of
CDCl3 (δ 77.0 ppm) for 13C NMR spectra were used as references. NMR spectra in acids
were referenced to the signal of CH2Cl2 added as internal standard: δ 5.30 ppm for 1H
NMR spectra, and δ 53.52 ppm for 13C NMR spectra. HRMS-APCI was carried out using
the instruments Bruker maXis HRMS-ESI-QTOF (Billerica, MA, USA). Preparative TLC
was performed on silica gel 5−40 µm (Merck Co., Kenilworth, NJ, USA) with petroleum
ether or petroleum ether-ethyl acetate mixture elution.

3.2. DFT Calculations

All computations were carried out at the DFT/HF hybrid level of theory using hybrid
exchange functional B3LYP, by using GAUSSIAN 2009 program packages [34]. The geome-
tries optimization was performed using the 6-311+G(2d,2p) basis set (standard 6-311G basis
set added with polarization (d,p) and diffuse functions). Optimizations were performed
on all degrees of freedom and solvent-phase optimized structures were verified as true
minima with no imaginary frequencies. The Hessian matrix was calculated analytically for
the optimized structures in order to prove the location of correct minima and to estimate
the thermodynamic parameters. For solvent-phase calculations, the Polarizable Continuum
Model (PCM, solvent=water) was used.

3.3. Preparation and Characterization of Compounds 1–4

First, E-5,5,5-trichloropent-3-en-2-one 1 was obtained in a yield of 83% according to
the procedure shown in the literature [35]. Yellow oil. 1H NMR (CDCl3, 400 MHz) δ, ppm:
7.06 d (J 15 Hz, 1H), 6.62 d (J 15 Hz, 1H), 2.41 s (3H). 13C NMR (CDCl3, 101 MHz) δ, ppm:
196.58, 144.35, 127.95, 92.59, 28.85.

The general procedure for the synthesis of indenes 2, compounds 3 and 4 from
E-5,5,5-trichloropent-3-en-2-one 1 and arenes in CF3SO3H. Solution of compound 1 (50 mg,
0.27 mmol) and arene (1.2 equiv., 0.320 mmol) in 2 mL of CF3SO3H involved stirring at
room temperature for 2 h (or other temperature and time, see Table 3 and Scheme 3). Then,
the reaction mixture was poured into water (25 mL) and extracted with CH2Cl2 (3× 20 mL).
Combined extract was washed with water (20 mL), saturated aqueous solution of NaHCO3
(10 mL), water again (20 mL), and dried over Na2SO4. The solvent was distilled off under a
reduced pressure. The residue was subjected to preparative TLC using petroleum ether or
petroleum ether-ethyl acetate mixtures (20:1, vol.) as eluent.

Reactions under the action of other Brønsted (H2SO4, FSO3H) and Lewis (AlCl3 and
AlBr3, 5 equiv. in 5 mL of benzene) acids were carried out in the same way (Table 1).

3-Methyl-1-trichloromethylinden (2a), yield of 29% (Table 3). Yellow oil. 1H NMR
(CDCl3, 400 MHz) δ, ppm: 7.96 d (J 7.8 Hz, 1Harom), 7.44 d (J 7.4 Hz, 1Harom), 7.35–
7.27 m (2Harom), 6.32 br. s. (1H, =CH), 4.49 br. s. (1H, CR3H), 2.22 t (J 1.8 Hz, 3H, CH3).
13C NMR (CDCl3, 101 MHz) δ, ppm: 146.5, 144.1, 141.0, 128.6, 128.4, 125.8, 125.1, 119.4,
100.0 (CCl3), 67.5 (CR3H), 13.0 (Me). HRMS-APCI: m/z calc. C11H9Cl3 [M + H]+ 246.9848,
found 246.9843.

3,4,7-Trimethyl-1-trichloromethylinden (2b), yield of 20% (Scheme 2). Yellow oil. 1H
NMR (CDCl3, 400 MHz) δ, ppm: 7.04 d (J 7.8 Hz, 1Harom), 6.97 d (J 7.8 Hz, 1Harom), 6.25 br. s.
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(1H, =CH), 4.50 br. s. (1H, CR3H), 2.56 s (3H, Carom-CH3), 2.54 s (3H, Carom-CH3), 2.35 t
(J 1.6 Hz, 3H, Caliph-CH3). 13C NMR (101 MHz, CDCl3) δ, ppm: 146.3, 144.3, 132.8, 132.0,
131.2, 130.5, 129.1, 128.8, 101.8 (CCl3), 65.7 (CR3H), 22.6 (Capom-CH3), 19.5 (Capom-CH3),
17.8 (CH3). HRMS-ESI: m/z calc. C13H13Cl3 [M + Ag + CH3CN]+ 421.9399, found 421.9394.

3,5,6-Trimethyl-1-trichloromethylinden (2c), yield of 35% (Scheme 2). Yellow oil. 1H
NMR (CDCl3, 400 MHz) δ, ppm: 7.72 s (1Harom), 7.11s (1Harom), 6.22 br. s. (1H, =CH),
4.43 br. s. (1H, CR3H), 2.35 s (6H, Carom-CH3), 2.19 t (J 1.7 Hz, 3H, Caliph-CH3). 13C NMR
(CDCl3, 101 MHz) δ, ppm: 144.47, 143.88, 138.72, 136.85, 134.05, 127.53, 126.50, 120.70,
100.40 (CCl3), 67.28 (CR3H), 20.21 (Carom-CH3), 20.09 (Carom-CH3), 13.03 (CH3). HRMS-
APCI: m/z calc. C13H13Cl3 [M + H]+ 275.0161, found 275.0156.

3,5,7-Trimethyl-1-trichloromethylinden (2d), yield of 23% (Scheme 2). Yellow oil.
1H NMR (CDCl3, 400 MHz) δ, ppm: 6.94 s (1H), 6.92 s (1Harom), 6.29 br. s. (1H, =CH),
4.54 br. s. (1H, CR3H), 2.58 s (3H, Carom-CH3), 2.39 s (3H, Carom-CH3), 2.15 t (J 1.6 Hz, 3H).
13C NMR (CDCl3, 101 MHz) δ, ppm: 147.8, 144.4, 138.7, 136.56, 134.8, 129.9, 129.8, 118.0,
101.6 (CCl3), 66.6 (CR3H), 22.8 (Carom-CH3), 21.3 (Carom-CH3), 13.0 (CH3). HRMS-ESI: m/z
calc. C13H13Cl3 [M + Ag + CH3CN]+ 421.9399, found 421.9394.

3,4,5,7-Tetramethyl-1-trichloromethylinden (2e), yield of 47% (Scheme 2). Yellow oil.
1H NMR (CDCl3, 400 MHz) δ, ppm: 6.90 s (1Harom), 6.25 br. s. (1H, =CH), 4.44 br. s. (1H,
CR3H), 2.52 s (3H, Carom-CH3), 2.44 s (3H, Carom-CH3), 2.37 s (J 1.6 Hz, 3H, Caliph-CH3),
2.30 s (3H, Carom-CH3). 13C NMR (CDCl3, 101 MHz) δ, ppm: 146.4, 144.4, 138.2, 138.1, 132.1,
131.2, 130.8, 127.9, 102.0 (CCl3), 65.1 (CR3H), 22.4 (CH3), 20.2 (CH3), 18.8 (CH3), 14.8 (CH3).
HRMS-APCI: m/z calc. C14H15Cl3 [M + H]+ 289.0318, found 289.0312.

5,6-Dimethoxy-3-methyl-1-trichloromethylinden (2f), yield of 28% (Scheme 2). Yellow
oil. 1H NMR (CDCl3, 400 MHz) δ, ppm: 7.54 s (1Harom), 6.85 s (1Harom), 6.21 br. s. (1H,
=CH), 4.39 br. s. (1H, CR3H), 3.97 s (3H, OCH3), 3.94 s (3H, OCH3), 2.19 t (J 1.8 Hz, 3H,
CH3). 13C NMR (CDCl3, 101 MHz) δ, ppm: 149.7, 147.4, 143.6, 139.7, 133.4, 127.2, 109.6,
102.9, 100.3 (CCl3), 67.2 (CR3H), 56.4 (OCH3), 56.1 (OCH3), 13.2 (CH3). HRMS-APCI: m/z
calc. C13H13Cl3O2 [M + H]+ 307.0059, found 307.0054.

5,5,5-Trichloro-4-hydroxypentane-2-one (3) [36], yield of 75% (Table 3). Yellow oil. 1H
NMR (CDCl3, 400 MHz) δ, ppm: 5.03 d (J 9.3 Hz, 1H), 3.44 d (J 17.4 Hz, 1H), 3.24 dd (J 17.4,
9.3 Hz, 1H), 2.29 c (3H). 13C NMR (CDCl3, 101 MHz) δ, ppm: 201.9, 100.4, 67.2, 48.4, 30.6.

5,5,5-Trichloro-4-(4-methoxyphenyl)pent-2-one (4a), yield of 68% (at room temperature
for 2 h), 47% (at 60 ◦C for 0.5 h) (Scheme 3). 1H NMR (CDCl3, 400 MHz) δ, ppm:7.40 d
(J 8.8 Hz, 2Harom), 6.88 d (J 8.8 Hz, 2Harom), 4.32 dd (J 9.2, 3.5 Hz, 1H), 3.80 s (3H, OCH3),
3.41 dd (J 17.4, 3.5 Hz, 1H), 3.32 dd (J 17.4, 9.2 Hz, 1H), 2.11 s (3H, CH3). 13C NMR
(CDCl3, 101 MHz) δ, ppm: 204.2 (C=O), 159.7 (Carom-OCH3), 131.3 (Carom), 128.7 (Carom),
113.6 (Carom), 103.6 (CCl3), 59.7, 55.2, 46.5, 30.6 (CH3). HRMS-APCI: m/z calc. C12H13Cl3O2
[M + H]+ 295.0054, found 295.0054.

5,5,5-Trichloro-4-(2,4-dimethoxyphenyl)pent-2-one (4b), yield of 47% (at room tem-
perature for 2 h), 56% (at 60 ◦C for 0.5 h) (Scheme 3). 1H NMR (CDCl3, 400 MHz) δ, ppm:
7.39 d (J 9.3 Hz, 1Harom), 6.55–6.44 m (2Harom), 5.02 d (J 7.9 Hz, 1H), 3.89 s (3H, OCH3),
3.81 s (3H, OCH3), 3.38 dd (J 16.7, 3.6 Hz, 1H), 3.26 dd (J 16.7, 10.2 Hz, 1H), 2.09 s (3H,
CH3). 13C NMR (CDCl3, 101 MHz) δ, ppm: 204.6 (C=O), 160.8 (Carom-OCH3), 159.4 (Carom-
OCH3), 128.8 (Carom), 117.81 (Carom), 104.4 (Carom), 103.9 (Carom), 98.8 (CCl3), 55.1 (OCH3),
55.3 (OCH3), 50.7, 46.6, 30.2 (CH3). HRMS-APCI: m/z calc. C13H15Cl3O3 [M + H]+ 325.0165,
found 325.0160.

4. Conclusions

A novel method for the synthesis of 3-methyl-1-trichloromethylindenes has been
developed based on the reaction of 5,5,5-trichloropent-3-en-2-one with arenes in Brønsted
superacid CF3SO3H. In this transformation, the initial 5,5,5-trichloropent-3-en-2-one in
CF3SO3H behaves as a 1,3-bi-centered electrophile.
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