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Abstract

Introduction: Cardiovascular disease increases the risk of developing Alzheimer’s dis-

ease (AD), and growing evidence suggests an involvement of cerebrovascular pathol-

ogy in AD. Capillary dysfunction, a condition inwhich capillary flow disturbances rather

than arterial blood supply limit brain oxygen extraction, could represent an over-

looked vascular contributor to neurodegeneration.We examinedwhether cortical cap-

illary transit-time heterogeneity (CTH), an index of capillary dysfunction, is elevated in

amyloid-positive patients withmild cognitive impairment (prodromal AD [pAD]).

Methods:Weperformed structural andperfusionweightedMRI in22pADpatients and

21 healthy controls.

Results:We found hypoperfusion, reduced blood volume, and elevatedCTH in the pari-

etal and frontal cortices of pAD-patients compared to controls, while only the pre-

cuneus showed focal cortical atrophy.

Discussion: We propose that microvascular flow disturbances antedate cortical atro-

phy andmay limit local tissue oxygenation in pAD.We speculate that capillary dysfunc-

tion contributes to the development of neurodegeneration in AD.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia,

characterized by progressive cognitive decline and brain atrophy. The

definingpathological featuresofAD includeextracellular accumulation

of 𝛽-amyloid-42 (A𝛽) protein plaques and neurofibrillary tau tangles,1

but changes in neurovascular morphology and function are

also associated and could contribute to the development of the
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disease.2-4 While reduced cerebral blood flow (CBF) can be observed

in mild cognitive impairment (MCI) in the years before a clinical

diagnosis of AD is made,5,6 macroscopically, the nutritional blood

supply appears to be coupled to metabolic needs and does not fall

to ischemic levels. Microscopically, however, capillary flow hetero-

geneity may lead to local ischemia7 and currently the exact role

of cerebrovascular pathology in the development of AD remains

unclear.
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Cerebrovascular disease pathology is normally considered in the

context of flow-limiting arterial stenosis and occlusions causing hypop-

erfusion to the extent that brain oxygen availability becomes limited

and energy metabolism threatened. While CBF determines macro-

scopic tissue oxygen supply, the local extraction of oxygen is also

contingent on blood being homogenously distributed across capillar-

ies on a microscopic scale.7,8 Accordingly, disturbed capillary mor-

phology and function9 may limit blood flow through some capillaries,

while allowing a disproportionate fraction of the blood supply to be

“shunted” through others causing flow heterogeneity—so-called capil-

lary dysfunction. According to biophysicalmodels, the resulting impair-

ment of tissue uptake may be severe enough to cause local tissue

ischemia at amicroscopic level,10 even in conditions inwhichCBFmea-

sures above ischemic levels. Notably, as capillary function deteriorates,

the models also predict that tissue oxygenation can be maintained by

raising rather than lowering the blood’s capillary transit time, thereby

allowing greater blood-tissue diffusion exchange to occur. Observa-

tions of decreasing temporo-parietal CBF in prodromal AD (pAD) may

thus reflect an attempt to maintain oxygen extraction during capillary

dysfunction.11

To detect this capillary dysfunction and estimate its effects on local

oxygen availability, one can extend classical neuroimaging-based mea-

surements of tissue perfusion, such as CBF and mean transit time

(MTT),12 with information about the capillary transit-time heterogene-

ity (CTH)—the standard deviation of blood’s transit times as it flows

through the microvasculature.13 With estimates of capillary MTT and

CTH, the balance between local oxygen availability and metabolic

demands can be computed as the tissue oxygen tension (PtO2) that

results from cerebral oxygen utilization.7,10,14

We recently reported that CTH is elevated relative to MTT

in patients with AD compared to healthy, age-matched controls

with no history of vascular risk factors.15 Notably, elevated CTH

and reduced PtO2 were associated with more severe cognitive

symptoms in patients with AD, and regional changes in indices of

capillary dysfunction over a 6-month period were found to parallel

deteriorating cognitive scores.16 The current study examines whether

subjects with pAD—amyloid positive MCI—also show evidence of

capillary dysfunction (elevated CTH) and hypoperfusion (diminished

CBF, prolonged MTT), compared with healthy, age-matched control

subjects.

2 MATERIALS AND METHODS

This study is part of an ongoing longitudinal study designed to evaluate

relationships among cerebral neurodegeneration, perfusion, inflamma-

tion, and protein deposition in subjects with MCI and in healthy con-

trols. Subjects were recruited between November 2013 and March

2017. The Regional Ethics Committee for Biomedical Research in the

Central Denmark Region approved the study [1-10-72-116-13] and

participants provided informedwritten consent. The studywas carried

HIGHLIGHTS

• Elevated capillary transit time heterogeneity (CTH) limits

local oxygen extraction

• Patients withmild cognitive impairment had elevated cor-

tical CTH and amyloid load

• Hypoperfusion and reduced blood volume overlapped

regions of elevated CTH

• Elevated CTH and hypoperfusion jointly reduced cortical

tissue oxygen utilization

• Elevated CTHmay be an overlooked therapeutic target in

early Alzheimer’s disease

RESEARCH INCONTEXT

1. Systematic review: The authors used traditional

online search engines to identify published studies

on Alzheimer’s disease (AD) etiology and capillary

dysfunction—a condition wherein capillary blood flow

disturbances limit oxygen extraction, rather than blood

supply. The authors noticed that the condition could

be a hitherto overlooked vascular contributor to the

development of AD.

2. Interpretation: Their findings suggest that cortical

microvascular blood flow disturbances and concurrent

hypoperfusion combine to reduce tissue oxygenation,

putatively preceding cortical atrophy, in amyloid-𝛽

positive mild cognitive impairment patients.

3. Future directions: Replication of the findings in longitudi-

nal cohorts of healthy subjects at risk of developing AD

is required to determine the role of capillary dysfunc-

tion at presymptomatic disease stages. Because amyloid-

𝛽 oligomersmaycause capillary constrictionvia pericytes,

studies should interrogate the cause of capillary dysfunc-

tion with a particular focus on its association with cere-

bral amyloid-𝛽 accumulation and AD risk factors.

out subsequent to our previous studies on capillary dysfunction in sep-

arate and independent patient cohorts with dementia.15,16

2.1 Subjects

MCI subjects were recruited through newspaper advertisements and

from national dementia and memory clinics. Inclusion criteria were

a corroborated history by friends and carers of declining memory
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function for at least 6 months; age of 50 to 85 years; fulfillment of

the Petersen criteria17 for MCI (no strict memory score cut-off was

required); at least 7 years of education or a good working history; an

accompanying informant able to describe the subject’s memory con-

dition and assist in the Clinical Dementia Rating (CDR); Mini-Mental

StateExamination (MMSE) scoreof 24 to30; andamagnetic resonance

imaging (MRI) examination that excluded MCI arising from structural

lesions. Exclusion criteria were depression (Geriatric Depression Scale

[GDS-15] score above6); strokeor systemic diseases;modifiedHachin-

ski Ischemic Scale score above 4; contraindications to gadolinium

contrast agent andMRI; significant neurological or psychiatric disease;

history of alcohol and/or recreational drug abuse within 2 years;

significant reductions in serum B12, red cell folate, thyroid or renal

function; use of sedative medication and use of medication within

the past 3 months with either anticholinergic effects or a negative

influence on cognition.

Healthy age-matched control subjects were recruited through

newspaper advertisements, following enrolment criteria identical to

those forMCI butwithout complaints ofmemorydecline andno indica-

tions of significant cognitive impairments on their neuropsychological

screening.

2.2 Neuropsychological assessment

All subjects underwent standardized neuropsychological assess-

ments recommended for monitoring cognitive functioning in MCI

and dementia.18 Here, we present summary scores for MMSE,

CDR Sum-Of-Boxes, and for the GDS-15 depression-screening

tool. Trained research assistants conducted the neuropsycho-

logical assessments under the supervision of an experienced

neuropsychologist.

2.3 MRI acquisitions

MRI was performed on a 3T Skyra system (Siemens Healthcare, Erlan-

gen, Germany) using a 32-channel head coil.

Structural 3D T1-weighted (T1w) MP2RAGE (magnetization-

prepared two rapid gradient echo acquisitions)19 images were

acquired with 1.0mm isotropic voxels.

T2-weighted fluid attenuated inversion recovery (T2w-FLAIR)

images with 0.7 × 0.7 × 3.0 mm3 voxels were acquired to identify

white matter hyperintensities (WMH) and, in conjunction with the

MP2RAGE, to exclude structural abnormalities.

Dynamic susceptibility contrast (DSC) MRI with gradient echo (GE)

and spin echo (SE) acquisition was applied to measure total vascu-

lar and microvascular blood volume and hemodynamics. GE DSC-MRI

was acquired by echo-planar imaging (EPI; 300 volumes with 3 mm

isotropic voxels in 29 slices without gap). Then, SE DSC-MRI was con-

ducted byEPI (300 volumeswith 3mm isotropic voxels in 19 sliceswith

1 mm slice-gap); 0.1 and 0.2 mmol/kg gadobutrol (Gadovist, Bayer R© ,

HealthCarePharmaceuticals, Berlin)was injectedduring theGEandSE

acquisitions, respectively. The supporting information provides addi-

tional details regardingMRI acquisitions.

2.4 Positron emission tomography amyloid imaging
and amyloid status

Brain A𝛽 load were assessed with positron emission tomography

(PET) using a High-Resolution Research Tomograph (ECAT HRRT;

CTI/Siemens) and 11C-Pittsburgh Compound B (PiB). The supporting

information provides additional details regarding PET acquisitions and

preprocessing.

Utilizing MINC-tools,20 PET images were co-registered to the T1w

MRI scan and non-linearly transformed into MNI-space (Montreal

Neurological Institute) to achieve spatial normalization. PET images

were then summed from60 to90minutes post injection and the result-

ing images divided by themean cerebellar graymatter signal,21 to gen-

eratePiB standarduptake value ratio (SUVr)maps. Then, eachpatient’s

composite cortical PiB-SUVr levelwas calculated as theweighted aver-

age of PiB-SUVr levels across bilateral inferior/lateral parietal, infe-

rior frontal, middle/inferior temporal, posterior cingulate, and parahip-

pocampal cortices as defined by an atlas.21 Finally, patients were

defined as either amyloid positive (A𝛽+) or amyloid negative (A𝛽-)

based on their composite cortical PiB-SUVr lying above or below 1.5. A

threshold of 1.5 was selected as this naturally divided the bimodal dis-

tribution of composite cortical SUVrs into high and low subgroups.18

2.5 Structural image processing

Using the framework described by Aubert-Broche et al.,22 T1w images

were denoised, bias field corrected, registered toMNI space, and skull-

stripped. Brain tissuewas then segmented into graymatter, whitemat-

ter, and cerebrospinal fluid.

To detect cerebral atrophy in MCI subjects, their hippocampal vol-

ume and cortical thickness were compared to the means of age-

matched healthy controls. Total hippocampal volume was measured

from automatically defined23 bilateral hippocampus segmentations

(Figure 1A). Subject-specific total intracranial volumewasused for nor-

malization. Cortical thickness was determined as the perpendicular

distance between the inner and outer cortical boundary (Figure 1B),

automatically delineated24 on the T1w images.

WMH load was measured as the combined volume of periventricu-

lar and subcortical T2w-FLAIRWMHs (Figure 1C), relative to the total

intracranial volume.WMHswere automatically segmented using a his-

togram based method25 followed by a region growing algorithm. A

mask of normal appearing white matter (NAWM) was then defined by

removingWHMs from thewhite matter classification.

2.6 Perfusion analysis

DSC-MRI perfusion scans were slice-time and motion-corrected and

co-registered to the T1w image using SPM (The Wellcome Trust
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F IGURE 1 Cortical surface delineation and segmentation of hippocampi andwhite matter hyperintensities. Subject examples of A: the
segmentation used for hippocampal volumemeasurements (red= left hippocampus, green= right hippocampus), B: the delineated inner and outer
surfaces used tomeasure cortical thickness, and C: segmentation used for measuring white matter hyperintensity volume overlaid the
T2-weighted fluid attenuated inversion recovery (T2w-FLAIR) image

Centre for Neuroimaging, University College London). Maps of CBF,

cerebral blood volume (CBV), MTT, and CTH, were calculated by para-

metric deconvolution,13 using NAWM as reference for the normaliza-

tions of relativemetrics (CBF andCBV). Guided by an automated selec-

tion algorithm,27 arterial input functions,which account for the arterial

delivery of contrast medium, were manually selected within a region

containing themiddle cerebral arteries and its branches.

SE DSC-MRI is primarily sensitive to contrast medium in capillary-

sized vessels,28,29 whereas GE DSC-MRI is equally sensitive to con-

trast medium across all vessel sizes.28 Therefore, SE-based CBV is

often used as a surrogate for capillary density, whereas GE-based CBV

characterizes the entire blood volume. The relative transit time het-

erogeneity (RTH equal to CTH/MTT), tends to remain constant across

brain tissue types in healthy subjects.15,30 We generated maps of RTH

in our subjects to examine whether RTH is altered in MCI. While

GE-based MTT, CTH, and RTH measurements are expected to reflect

perfusion and perfusion heterogeneity across all levels of the vascu-

lar tree represented within an image voxel, SE-based measurements

reflect mainly capillary hemodynamics, which, in turn, determine oxy-

gen extraction efficiency. Notice that all the perfusion indices pertain

to single voxels. Hence, CTHandMTTcharacterizes blood transit times

across single voxels, rather than from say arteriole to exiting vein.

2.7 Estimating brain oxygenation

To index local, voxelwise oxygen availability, we applied a biophysical

model7 that estimates the tissue oxygen tension (PtO2) that would

result if local hemodynamics, as determined by SE-based MTT and

CTH values, were to support the normal resting oxygen utilization of

brain tissue, 2.5 mL/100 mL/min.31 Following,13 we assumed a capil-

lary blood volume of CBV = 4.0% and calibrated the biophysical model

to yield an oxygen extraction fraction = 0.3 and PtO2 = 25 mmHg in

NAWM.

2.8 Extraction of cortical data

We transformed subject-specific cortical surface-segmentations (Fig-

ure1B) intoperfusion imagenative space. Eachperfusionmapwas then

interpolated and mapped to a surface approximating the middle corti-

cal layer to minimize partial volume effects and noise caused by large

vessels at the cortical surface.

To statistically interrogate inter-subject changes, perfusion surface

values and cortical thickness values were mapped to a standard corti-

cal surface inMNI space and blurred using a 20mm full width halfmax-

imum geodesic Gaussian kernel to avoid blurring across gyri.32

2.9 Statistical analysis

We used R v.4.3 (R Foundation for Statistical Computing, Vienna, Aus-

tria) for statistical interrogation of data for A𝛽+ MCIs (pAD) and

healthy controls. Between-group differences in demographics, cogni-

tive test-scores, hippocampal volume, and WMH load were assessed

according to variable-class and sample distribution behavior. An inde-

pendent two-sample t-test was applied to compare means of nor-

mal distributed continuous variables, while skewed continuous or
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TABLE 1 Demographics, neuropsychological test results, hippocampal volume, andWMH load

Participant characteristics A𝜷+MCI (n= 22) Healthy controls (n= 21) P value

Age, years, mean± SD [range] 72.9± 6.4 [62–85] 69.4± 5.9 [59–79] .0687

Sex, females, n (%) 4 (18) 13 (62) .0051

Education, years, mean± SD 12.3± 2.9 13.5± 2.3 .1449

Subjects using NSAID, n (%) 7 (32) 4 (19) .4876

Subjects using antihypertensive drugs, n (%) 10 (45) 5 (24) .2027

MMSE score, mean± SD [range] 26.5± 2.1 [21–30] 28.3±1.4 [26–30] .0013

CDR sum of boxes, median [range] 1.5 [0.0–7.0] 0.0 [0.0–1.0] <.0001

Geriatric Depression Scale, mean± SD 2.0± 2.1 0.71± 1.62 .0301

Subjects with Fazekas score, 0/1/2/3, n 3/9/7/3 5/9/5/2 .2793

Whitematter hyperintensity volume, % ICV, median [Q1–Q3] 0.55 [0.3–1.3] 0.38 [0.2–0.7] .1736

Hippocampal volume, mL, mean± SD 5.16± 0.68 5.59± 0.53 .0291

PiB dose, MBq, mean± SD 383± 68 413± 23
a

.1440

NOTE: Four healthy controls did not complete the CDR because the required informant was not present. Based on an in-depth interview, their CDR sum of

boxes score was set to zero. Each hippocampal volumewas normalized to the subject total intracranial.

Abbreviations: A𝛽+, PiB-positive; A𝛽−, PiB-negative; CDR, Clinical Dementia Rating; ICV, total intracranial volume; MCI, mild cognitive impairment; MMSE,

mini-Mental State Examination; NSAID, non-steroidal anti-inflammatory drug; PiB, Pittsburgh Compound B; Q1, lower quartile; Q2, upper quartile; SD, stan-

dard deviation;WMH, whitematter hyperintensity.
aTwelve healthy controls had PiB-PET.

ordinal variables were interrogated using the Kruskal-Wallis test. Fis-

cher exact test was applied to categorical variables and P < .05 was

considered statistically significant. Cortical surface-based group com-

parisons of MRI-derived indices were conducted with a mass uni-

variate vertex-wise approach, using linear regression to correct for

possible age and sex differences. The resulting t-values for outcome

variables were rendered on the cortical MNI surface template for

P < .05 along with delineations of clusters surviving family-wise error

(FWE) correction33 at 𝛼 = .001. For each perfusion surface analy-

sis, we defined a “most significant area” by detecting the highest t-

value threshold that satisfied the cluster extend-threshold calculated

with the FWE-correction. The resulting cluster masks were applied to

extract mean parameter values within the “most significant area” for

visualization purposes. The regional mean cluster values are shown

using violin plots, includingmean and 95% confidence intervals.

3 RESULTS

Twenty-one healthy controls and thirty-five MCI cases were initially

included in the study. Based on PiB-PET findings, 22 MCI subjects

were classified as A𝛽+ (pAD) and 13 MCI subjects as A𝛽−. Two MCI

cases, both classified as A𝛽+, did not complete their SE perfusion MRI

scan due to technical problems. Twelve age-matched controls had PiB-

PET; two showing raised amyloid suggestive of preclinical AD while

the other ten were A𝛽−. Table 1 summarizes participant demograph-

ics for the resulting study population of 22 A𝛽+ MCI patients and 21

healthy controls. The two groups had similar mean years of education

and similar antihypertensive and non-steroidal anti-inflammatory drug

use. Moreover, the groups were similar with regard to vascular brain

lesion load; specifically, the Fazekas scale score andWMHvolume. The

A𝛽+MCI group was slightly older than controls though the difference

was not significant, comprised significantly fewer females, performed

significantly worse on the cognitive tests MMSE and CDR, and had

smaller hippocampi compared to the control group. Additionally, the

A𝛽+MCIs scored higher on the GDS test compared to controls.

3.1 Cortical thickness

We found a trend toward focal cortical thinning in the A𝛽+ MCI sub-

jects compared with the controls (Figure 2). Specifically, a significant

cluster of thinning located in the right precuneus close to the caudal

part of themarginal gyrus survived FWE-correction.

3.2 Perfusion and oxygenation group differences

Figures 3 and 4 show differences between the MCI group and the

healthy control group in GE- and SE-based perfusion indices and SE-

derivedoxygenation, respectively. Frontal, parietal, and temporal corti-

cal areas showed reducedCBFandCBV, andprolongedMTT in theA𝛽+
MCI cases comparedwith controls asmeasuredbyGEDSC-MRI,which

is equally sensitive tohemodynamics across all vessel sizes.MTTequals

CBV/CBF34 and is inversely related to regional perfusion pressure.35

Overall, these findings are thus consistentwith a relative vasoconstric-

tion and concomitant hypoperfusion across these brain regions.

SE-based perfusionmaps showed areas of reducedCBV inA𝛽+MCI

cases compared with controls. Situated in close proximity of areas dis-

playingGE-basedCBVreductions after FWE-correction, these findings

suggest that blood volume reductions include capillary capacity. Being

weighted toward capillary-sized vessels, these reductions in CBV are
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F IGURE 2 Cortical thickness in amyloid
positive (A𝛽+) subjects withmild cognitive
impairment (MCI) comparedwith healthy
controls. Statistical t-valuemaps are adjusted
for age and sex using linear regression, and
thresholded at P< .05. Negative t-values
indicate reductions (blue nuances), while
positive t-values indicate increases (red
nuances) in theMCI group. The white outlines
highlight clusters surviving family-wise error
correction for multiple comparisons at 𝛼 = .001.
A𝛽+was defined by an atlas based Pittsburgh
Compound B standard uptake value ratio above
1.5, usingmean cerebellar uptake for reference

consistent with capillary constrictions or even reduced capillary den-

sity. In A𝛽+ MCI, SE-based CBF was reduced and MTT and CTH ele-

vated acrossmost of the cerebral cortex, leaving only the occipital lobe

relatively unaffected.

There were no group differences in neither SE-based, nor GE-based

RTH—the CTH:MTT ratio.

Oxygenation, as indexed by the PtO2 estimated fromSE-basedMTT

andCTHmeasurements, was reduced in A𝛽+MCI across all major cor-

tical lobes (Figure 4), with the most prominent reductions situated in

the right lateral temporal cortex, and in the inferior prefrontal cortex.

Temporal lobe PtO2 reductions coincided with identified increases in

MTTandCTH,while theprefrontal reductions overlappedwith regions

of reduced CBF and CBV.

4 DISCUSSION

The first key finding of this study is that pAD (MCI with raised

amyloid load) is associated with widespread microvascular flow dis-

turbances in addition to macroscopic cortical hypoperfusion. Utiliz-

ing DSC-MRI sensitized to capillary-sized vessels, we found areas of

reducedmicrovascular bloodvolume inMCI compared to controls, sug-

gesting that these microvascular flow disturbances are arising from

capillary constrictions or capillary loss. The cause of these hemody-

namic changes is unclear, but we note that AD risk factors such as car-

diovascular ischemic disease and insulin resistance are associatedwith

changes in capillarymorphology and function,11 and that A𝛽 oligomers

constrict human capillaries by interfering with pericyte tone,36 pos-

sibly heralding the pericyte loss observed in AD.37 The MCI subjects

in this study were selected on the basis of their high PiB uptake, but

further studies need to examine the spatiotemporal relation between

cortical amyloid retention and changes inmicrovascular CTH and CBV,

respectively.

Our second key finding is that cortical microvascular flow distur-

bances in subjects with pAD are closely coupled to parallel increases

in MTT and reduced CBF. Accordingly, the cortical distributions of

the patients’ SE-based MTT, CBF, and CBV changes were similar to

that of their CTH changes, and their CTH:MTT ratios (RTH) remained

unchanged from those of controls. The causal relation between ele-

vatedCTHononehand, and thehypoperfusion inA𝛽+MCI subjects, on

the other, is less clear. Biophysical models predict that when capillary

flow disturbances, as indexed by CTH, reach a certain threshold, blood
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F IGURE 3 Elevated capillary transit time heterogeneity (CTH) accompanies reductions in cerebral blood flow (CBF) and cerebral blood volume
(CBV) in amyloid positive (A𝛽+) subjects withmild cognitive impairment (MCI) comparedwith controls. All measurements were acquired with
gradient echo (GE) based perfusion weightedmagnetic resonance imaging. Group differences in CBV extended across all four lobes with parietal
and frontal clusters surviving family-wise error (FWE)-correction. For CBF, a single cluster in the right frontal lobe survived FWE-correction.
Statistical t-valuemaps were adjusted for age and sex using linear regression and thresholded at P< .05. Negative t-values indicate reductions
(blue nuances), while positive t-values indicate increases (red nuances) in theMCI group. The red arrows and the white outlines highlight clusters
surviving family-wise error correction for multiple comparisons at 𝛼 = .001. Violin plots with groupmean (black dot) and 95% confidence interval,
show the region of interest means extracted from themost significant cluster or (in the case of no surviving clusters) themost significant region
fulfilling the requiredminimum cluster extent-threshold. The regions of interest are highlighted in red on the smaller binarymaps. A𝛽+was
defined by an atlas based Pittsburgh Compound B standard uptake value ratio above 1.5, usingmean cerebellar uptake for reference. MTT, mean
transit time; RTH, relative transit-time heterogeneity (RTH=CTH:MTT)

supply must be attenuated to limit capillary “shunting” of oxygenated

blood, to meet the metabolic demands of brain tissue.7,14 The vaso-

constriction observed in A𝛽+MCI subjects compared to controls may

therefore act to maintain uninterrupted oxygen use, as capillary dys-

function growsmore severe, at the expense of a falling PtO2.
11 Consis-

tent with the notion that deteriorating capillary function limits tissue

oxygenation in early AD, we have previously observed that CTH and

RTH, the CTH:MTT ratio, correlate with symptom severity in AD.15,16

Nevertheless, in the present study, A𝛽+MCI subjects’ RTHwas similar

to that of controls, despite their higher CTH. We speculate that this is

because theMTT increase that characterizesA𝛽+MCI subjects is asso-

ciated with increased CTH, which tends to initially “pseudo-normalize”

the CTH:MTT or RTH ratio before it subsequently riseswith increasing

capillary flow disturbances as pAD progresses to become dementia.

In microcirculations comprised by passive, compliant microves-

sels, MTT and CTH tend to change in proportion.38 Vasoconstric-

tion and prolonged MTT in A𝛽+ MCI subjects might therefore be a

primary event, rather than a compensatory adjustment to elevated

CTH. Nonetheless, both hypoperfusion and elevated CTH in A𝛽+MCI

subjects could result from cerebral amyloid angiopathy, a feature of

AD pathology that affects the morphology and function of both arte-

rioles and capillaries.39 While exogeneous amyloid aggregates act

as a powerful arterial and arteriolar vasoconstrictor,40 endogenous

amyloid does not stimulate arteriolar or venular constriction.36 How-

ever, recent findings suggest that amyloid oligomers preferentially con-

strict capillaries via their action on pericytes,36 reinforcing the need to

further explore the consequences of capillary dysfunction in early AD.

Studies of the spatiotemporal relation between cortical amyloid reten-

tion and changes in microvascular MTT and CTH, respectively, could

further elucidate the effects of amyloid on capillary function.

Our biophysical models of tissue oxygenation take both blood

supply (MTT and CBF) and its microscopic distribution (CTH) into

account when calculating the reduction in PtO2 as tissue oxygen

uptake becomes limited by microvascular shunting and constriction.7

Based on their hemodynamic changes, the models predict that A𝛽+
MCI subjects have widespread cortical reductions in PtO2 compared

with controls. This finding is consistent with reported upregulation of

serum 2,4-dihydroxybutanoic acid, a metabolite released as hypoxia

activates alternative energy production pathways,41 in MCI subjects

who progressed to AD,42 and with diminishing cerebral oxygen supply

in pericyte-deficient mice.43 It is of note that, comparing A𝛽+ MCI to

controls, we did not detect parallel cortical atrophy or extensive white

matter lesions to account for their reducedmemory function.

Our results are consistent with previous reports of elevated CTH

and abolished functional hyperemia in aged wild type mice and aged

mice with AD-like pathology, including A𝛽 plaques.44 Similarly, oth-
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F IGURE 4 Reduced tissue oxygenation (PtO2) accompanies increased capillary transit time heterogeneity (CTH) and decreasedmicrovascular
perfusion in amyloid positive (A𝛽+) subjects withmild cognitive impairment (MCI) comparedwith controls. All measurements were acquired with
spin-echo (SE) basedmicrovascular perfusion weightedmagnetic resonance imaging. For A𝛽+MCIs, increases in mean transit time (MTT) in the
frontal cortex and in the lateral temporal cortex survived family-wise error (FWE)-correction, while the largest increase in CTH and decrease in
PtO2 occurred in the right superior temporal gyrus andmedial inferior frontal cortex. Statistical t-valuemaps were adjusted for age and sex using
linear regression and thresholded at P< .05. Negative t-values indicate reductions (blue nuances), while positive t-values indicate increases (red
nuances) in theMCI group. The red arrows and the white outlines denote clusters surviving family-wise error correction for multiple comparisons
at 𝛼 = .001. Violin plots, with groupmean (black dot) and 95% confidence interval, show the region of interest means extracted from themost
significant cluster or in the case of no surviving clusters, themost significant region fulfilling the requiredminimum cluster extent-threshold. The
regions of interest are highlighted in red on the smaller binarymaps. A𝛽+was defined by an atlas based Pittsburgh Compound B standard uptake
value ratio above 1.5, usingmean cerebellar uptake for reference. CBF: cerebral blood flow, CBV: cerebral blood volume, PtO2: the tissue oxygen
tension required to sustain theminimummetabolic demand of resting brain tissue (2.5mL/100mL/min), given themeasuredMTT and CTH, RTH:
relative transit-time heterogeneity (RTH=CTH:MTT)

ers have reported regional reductions in CBF in MCI and in AD,45,46

and reductions in CBV in AD.47,48 Previous studies did not find CBV

reductions in MCI.47,48 As these studies did not establish the A𝛽 sta-

tus of their MCI subjects, we speculate that the inclusion of non-pAD

cases in this more heterogeneous sample may have contributed to this

discrepancy.

There are several limitations to our study. We were not able to

investigate perfusion in subcortical gray matter due to pulsation and

susceptibility imaging artifacts in the DSC-MRI data. Also, to achieve

a sufficient temporal and spatial resolution, the coverage of the SE

DSC-MRI scans was limited, leaving out inferior parts of the tempo-

ral lobe, the cerebellum and superior parts of the frontal and parietal

lobes. Therefore, we could not characterize the circulation in these

brain regions. Our experimental protocol also did not allow us to relate

our findings to any blood brain barrier breakdown present, which has

been reported in the hippocampus of subjects with MCI.49 Of note,

females were overrepresented in the healthy control group. Scrutiniz-

ing the recruitment procedure offered no clear explanation to this, but

we adjusted all statistical models accordingly. Our study also included

a relatively small series of subjects, limiting the statistical power of our

results. The disease effects we report in this exploratory study there-

fore need to be validated in larger cohorts, preferably using a longitu-

dinal design to follow the evolution ofmicrovascular flow disturbances

relative to amyloid deposition over time.

In conclusion, our study suggests that disturbances in cortical

microvascular flow patterns and concurrent hypoperfusion combine

to reduce cortical tissue oxygenation in subjects with pAD (A𝛽+MCI),

prior to cortical atrophy. We speculate that capillary dysfunction is an

early feature of the pathophysiological processes that precedes neu-

rodegeneration and contributes toward driving the conversion of pAD

todementia.Due to the intrinsic vasoconstrictiveproperties ofA𝛽 ,36,50

future studies should interrogate the cause of capillary dysfunction

with a particular focus on its associationwith cerebral A𝛽 accumulation

and AD risk factors.
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