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Understanding the mechanics of blood flow is necessary for
developing insights into mechanisms of physiology and vascular
diseases in microcirculation. Given the limitations of technolo-
gies available for assessing in vivo flow fields, in vitro methods
based on traditional microfluidic platforms have been developed
to mimic physiological conditions. However, existing methods
lack the capability to provide accurate assessment of these flow
fields, particularly in vessels with complex geometries. Conven-
tional approaches to quantify flow fields rely either on analyzing
only visual images or on enforcing underlying physics without
considering visualization data, which could compromise accuracy
of predictions. Here, we present artificial-intelligence velocime-
try (AIV) to quantify velocity and stress fields of blood flow
by integrating the imaging data with underlying physics using
physics-informed neural networks. We demonstrate the capability
of AIV by quantifying hemodynamics in microchannels designed
to mimic saccular-shaped microaneurysms (microaneurysm-on-a-
chip, or MAOAC), which signify common manifestations of dia-
betic retinopathy, a leading cause of vision loss from blood-vessel
damage in the retina in diabetic patients. We show that AIV can,
without any a priori knowledge of the inlet and outlet bound-
ary conditions, infer the two-dimensional (2D) flow fields from a
sequence of 2D images of blood flow in MAOAC, but also can infer
three-dimensional (3D) flow fields using only 2D images, thanks
to the encoded physics laws. AIV provides a unique paradigm that
seamlessly integrates images, experimental data, and underlying
physics using neural networks to automatically analyze experi-
mental data and infer key hemodynamic indicators that assess
vascular injury.

blood flow in microaneurysm | diabetic retinopathy | three-dimensional
flow fields | deep learning | image analysis

Human blood, primarily comprising plasma, red blood cells
(RBCs), white blood cells, and platelets, is a non-Newtonian

fluid exhibiting shear-thinning behavior (1, 2). The effect of this
non-Newtonian behavior becomes more pronounced in micro-
circulation (3). Understanding and quantifying the biorheology
of blood is essential for gaining insights into the mechanisms
that influence microcirculation in physiology and disease (4–6).
The characteristics of hemodynamics also determine the vas-
cular integrity and blood-cell transport in physiology, e.g., the
margination of platelets (7, 8). Platelet margination refers to
the phenomenon of formation of a cell-free layer near the ves-
sel wall in blood flow, as RBCs accumulate in the center of the
vessel. Compromised hemodynamics can result in pathologies
such as endothelial-cell inflammation and dysfunction, undesired
platelet activation, and the formation of clots within a blood
vessel (9–11).

Scientific research over the past several decades has led to
rapid advances in in vivo imaging techniques (12–14). Despite this
progress, it is currently not feasible to observe in real time many

in vivo biological processes in microcirculation, such as the rup-
ture of a microaneurysm (MA) in the retinal microvasculature and
the initiation and development of blood clots. To compensate for
this void in our ability to track the origins and progression of dis-
ease states, in vitro experiments of blood flow within microfluidic
channels have been developed to mimic in vivo circulation under
both physiologically and pathologically relevant conditions (see
reviews in refs. 15–17). Microfluidic devices and laboratory-on-a-
chip platforms offer advantages in exploring the biophysical and
biochemical characteristics of blood flow in microvessels. Benefits
of these devices include the need for only small volumes of blood
for analysis and precise control over temperature, concentrations
of gas, and chemicals in the blood (18). Another distinct advan-
tage of such microfluidic platforms is that they enable quantitative
determination of various key parameters associated with hemody-
namics, such as spatial distributions of velocity and stress fields,
under well-controlled experimental conditions so that mechanis-
tic insights could be extracted for transitions from healthy to
pathological states.

Significance

Microfluidics is an important in vitro platform to gain insights
into mechanics of blood flow and mechanisms of patho-
physiology of human diseases. Extraction of 3D fields in
microfluidics with dense cell suspensions remains a formidable
challenge. We present artificial-intelligence velocimetry (AIV)
as a general platform to determine 3D flow fields and a
microaneurysm-on-a-chip to simulate blood flow in micro-
aneurysms in patients with diabetic retinopathy. AIV is built
on physics-informed neural networks that integrate seam-
lessly 2D images from microfluidic experiments or in vivo
observations with physical laws to estimate full 3D veloc-
ity and stress fields. AIV could be integrated into imaging
technologies to automatically infer key hemodynamic metrics
from in vivo and in vitro biomedical images.
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A wide variety of experimental techniques are currently avail-
able to assess the hemodynamics of in vitro blood flow in
microcirculation. The state-of-the-art optical whole-field veloc-
ity measurement technique is microparticle image velocimetry
(µPIV) (19, 20), a nonintrusive method used to estimate flow
fields in microchannels. Various algorithms employing µPIV
have been well developed in recent years (21–23), and this
technology has been successfully applied to a broad range of bio-
logical problems (see reviews in refs. 24–26). µPIV can provide
measurements of blood velocity along channels in microcircu-
lation, with high spatial and temporal resolution, by analyzing
the motion of laser-induced fluorescence tracers seeded into
blood (27–29). However, the experimental apparatus requires
elaborate calibration and may not be amenable for wide or
easy deployment. Other approaches to monitor flow motion,
such as advanced PIV methods (30–32) or optical flow moni-
toring techniques (33–36), are able to quantify hemodynamics
from images of blood flow in the microchannels using RBCs and
platelets as tracers, thereby requiring less hardware. However,
their accuracy in providing near-wall flow measurements, which
is critical for inferring the pathogenic basis of blood rheology
and the estimation of wall shear stress, could be compromised,
owing to the formation of cell-free layers in the vicinity of blood
vessel walls.

Computational fluid dynamics (CFD) models have also been
employed to simulate blood flow in microvessels or channels
to investigate the pathophysiology of circulatory diseases (37,
38). By invoking laws of physics (e.g., Navier–Stokes equations)
and specific boundary conditions (such as no-slip conditions at
the blood-vessel wall), CFD models can simulate the flow field
and extract key hemodynamic indicators. Several studies have
employed CFD models to compute flow and stress fields in nor-
mal microvessels, as well as channels with various shapes, such
as stenotic channels [in which constricted flow from plaques
markedly alters flow characteristics (39, 40)], aneurysmal vessels
containing a bulge in the vessel as a result of a weakened ves-
sel wall (41, 42), and other vasculatures with complex geometries
(43, 44). However, results extracted from CFD models are very
sensitive to the flow-boundary conditions assumed at the inlets
and outlets, which can be patient-specific. Even moderate errors
in flow-boundary conditions could lead to large uncertainty in
the estimation of the flow fields (45). In addition, CFD simula-
tions could be computationally cumbersome for modeling flow
field with moving boundaries or geometric variation, such as the
hemodynamics changes due to accumulation of blood cells.

Problem Description
Accurate assessment of hemodynamics in microvessels requires
both experimental data extracted from controlled in vitro or

in vivo assays and application of relevant laws of physics. In
this work, we propose artificial-intelligence velocimetry (AIV),
a unique computational framework that infers velocity fields
and stress fields from two-dimensional (2D) images that are
interpreted by using artificial-intelligence techniques based on
underlying physical principles. In particular, AIV is developed
based on the physics-informed neural networks (PINNs) (47,
48), which can automatically infer these flow fields in arbitrary
domains by seamlessly integrating data from in vivo or in vitro
with the governing equations of fluid flow. As illustrated in Fig.
1, with spatial coordinates and time, (x , y , z , t), as inputs, AIV
uses a fully connected network to approximate the functional
solutions of image intensity I , velocity field (u, v ,w), and pres-
sure field p. The loss function for training the neural network
is composed of three terms: the mismatch between the net-
work predictions and data (Ldata); residuals of the governing
equations (Lres); and boundary conditions (Lbcs) on the chan-
nel surfaces. Here, we assume no-slip boundary conditions on
the channel wall as cell-free layers are observed in the vicin-
ity of the wall (see the bright-field images in Fig. 2 B and C).
This observation is also consistent with the finding from studies
of blood flow in a microchannel with similar dimensions (49).
Slip boundary conditions can also be employed in AIV by mod-
ifying the formulations of Lbcs in the case of blood flow in the
capillary (50), where the membrane of the moving blood cells
are constantly in contact with the vessel wall or when the per-
meability of the vessel wall needs to be considered, e.g., blood
flow through atherosclerotic plaques where deposition of choles-
terol could increase the permeability of the arterial wall (51, 52).
More details of the AIV model can be found in Materials and
Methods and SI Appendix.

To demonstrate the capability of AIV based on a sequence of
2D microscopic blood-flow images, we first apply it to infer the
velocity and stress fields in three-dimensional (3D) microchan-
nels. As shown in Fig. 2 A and B, we design a microfluidic sys-
tem, termed Micro-Aneurysm-On-A-Chip (MAOAC), to mimic
MAs, which are the earliest clinically visible signs of diabetic
retinopathy (DR), a complication of diabetes that could lead
to visual impairment and blindness in diabetic patients (53).
MAOAC contains eight straight microchannels intersecting with
various sizes of cavities to mimic saccular-shaped MAs, the most
prevalent shape of MAs observed in the retinal microvascula-
ture of DR patients (54, 55). A high-speed camera is used to
record blood flow in the microchannel (Fig. 2C). In addition,
laser-induced fluorescence is employed to track the motion of
platelets (Fig. 2D). More details of the experimental setup can be
found in Materials and Methods. We adopt AIV to quantify key
indicators of hemodynamics, such as velocity profiles, pressure,
and wall shear stress, for various MAs and investigate alterations
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Fig. 1. Schematic diagram of AIV. A fully connected neural network is used to approximate solutions to desired output parameters, (I, u, v, w, p), by
considering space and time coordinates as inputs (x, y, z, t). The governing equations are encoded in the network, where the derivatives are computed via
automatic differentiation in the TensorFlow code [Google (46)]. No-slip boundary conditions on the channel surfaces (including upper, lower, and lateral
walls) are also introduced, namely, u(∂Ω) = 0. The activation function for each neuron is σ(·) = sin(·). The parameters of the neural network are trained
by minimizing the loss function, which is composed of three terms: data mismatch, wall boundary conditions, and residuals of all conservation laws. More
details of the proposed framework are described in Materials and Methods and SI Appendix.
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Fig. 2. Design and microscopic images of the microfluidic platform, MAOAC. (A) Schematic diagram of the MA PDMS channels with different sizes. The
size of the MA is characterized by the BNR, which is defined as the largest dimension of the MA body (R2) divided by the diameter of feeding vessel (R1).
The BNR of MA on MAOAC is varied from 1.5 to 12. The cross-section of the microchannel at the inlet and outlet portions is a square with an edge size of
25 µm. (B) An overview of a bright-field image illustrating blood flow in the microchip. (More details can be seen in Movie S1.) (C) A higher-magnification
view of the bright-field image of two MA channels (BNR = 2 and BNR = 3.6). (D) A fluorescence-stained image of the same two MA channels shown in C.
(More details can be seen in Movie S2.) AIV is used to extract velocity and pressure fields from the bright-field video images focusing on MAs with three
typical sizes, namely, BNR = 2, 3.6, and 5, which are highlighted by the red rectangles in B. For MAs with BNR = 2 and 3.6, we perform platelet tracking on
the fluorescence-stained video (D) for validation of AIV.

in hemodynamics induced by the change in size of MAs. In order
to evaluate the performance of AIV, we compare the results
from AIV with those obtained from five different experimental
and computational methods: optical flow (36), Deep-PIV (56),
single-cell tracking, CFD (57), and DPD (58).

Results
Inferring 2D Flow Fields. To demonstrate the capability of AIV to
quantify the velocity and stress fields from microfluidic images
during blood flow, we first extract 2D flow fields, such as veloc-
ity profile, pressure, and wall shear stress, from a sequence of
2D images taken in MAOAC and obtain the critical hemody-
namic metrics. As shown in Fig. 2B, we select sequential images
from three channels (MA#3, MA#4, and MA#6), represent-
ing a small MA (body-to-neck ratio [BNR] = 2), an intermediate
MA (BNR = 3.6), and a large MA (BNR = 5). Since the depth
of these microchannels is only 25 µm, we assume that the move-
ment of RBCs captured by the microfluidic flow images occurs
at the middle plane in the channel-depth direction such that
the image data can be converted to a 2D spatiotemporal scalar
field I (x , y , t). Fig. 3 A–C show the 2D velocity fields, pressure
fields, and shear stress profiles in the three MA channels based
on the sequence of bright-field images in Fig. 2B. We observe
that the maximum flow velocities in the inlet regions of the three
MAOAC channels are about 1.5 mm/s, and the velocities drop
along with pressure and shear stress when the flow enters the

lumen of MAs. The decrease in velocity, pressure, and shear
stress becomes more pronounced as the size of the MA increases.
These alterations in hemodynamics are essential to gain a bet-
ter understanding of the pathophysiology of MAs, since prior
studies clearly suggest that reduced wall shear stress could cause
endothelial dysfunction (59), which serves as a catalyst for the
growth of aneurysms (60).

To further assess the reliability and accuracy of AIV, we
compare our estimates with results obtained from three other
independent approaches: the conventional optical flow method
(36), Deep-PIV [an advanced PIV method with convolutional
neural networks (32, 56)], and manual platelet tracking using
the fluorescent images in our experiments. The implementation
of the optical flow and Deep-PIV methods for predicting the
fields in the present geometrical arrangements is described in
SI Appendix. The velocity comparisons shown in Fig. 4 are per-
formed at two points along vertical cross-lines of the microchan-
nels: one located at the postaneurysm channel (Line #1, at
x =50 µm, as seen in Fig. 3) and the other one crossing the deep-
est region of the MA (Line #2, at x =130 µm as seen in Fig.
3). The velocity profiles along Line #1 for the three microchan-
nels (Fig. 4) show that our AIV model predictions of bulk flow
velocities are consistent with the results from Deep-PIV and are
less than 10% higher than the results from optical flow around
the center of the channels. As for the near-wall velocity esti-
mation, both Deep-PIV and optical flow techniques predict a
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Fig. 3. The 2D AIV predictions of velocity, pressure, and shear stress fields in MAOAC channels for BNR = 2 (A), BNR = 3.6 (B), and BNR = 5 (C). In Left, the
arrows indicate the direction of the flow, whereas the color represents the magnitude of the velocity. AIV results are averaged over 100 image frames. The
spatial distribution of the fields is represented by the colors in all of the plots.

nonvanishing velocity on the channel wall, whereas the AIV
model gives zero velocity on the wall due to the imposition of the
no-slip boundary condition. For velocity profile along Line #2,
the AIV model predictions of the bulk flow velocity are in good
agreement with the results of Deep-PIV and optical flow for all
three MAOAC channels, but only AIV achieves zero velocity for
near-wall predictions, as a consequence of the imposed boundary
condition.

In addition to the above comparisons, we also performed
a cross-validation of AIV by manually tracking the motion of
platelets from fluorescence-stained video. As shown in Fig. 5A,
four trajectories are identified for tracking the motion of four
different platelets or platelet aggregates, with platelet veloci-
ties calculated along each of these trajectories. We also extract
flow velocities along the same trajectories from velocity fields
estimated by AIV in Fig. 5B for further comparison. To ratio-
nalize our approximation of local flow velocities using platelet
velocities, we performed dissipative particle dynamics (DPD)
simulations to model the transport of RBCs and platelets in
channel MA#4 (BNR = 3.6), as shown in Fig. 6A. (Details of
DPD simulation can be found in SI Appendix.) The trajectories
of RBCs and platelets in Fig. 6B illustrate that in the straight
channel, RBCs mostly travel in the core, where the flow veloc-
ity is high. This validates the assumptions, discussed earlier, that
underlie our AIV framework. The platelets, however, flow in the

cell-free layer near the vessel wall where the blood flow velocity is
low, consistent with experimental and analytical studies (61–64).
As a result, the displacement of platelets in the straight channel
(Fig. 6C) is much smaller than that of RBCs during the same
time interval. On the other hand, Fig. 6 B and C also show that
the trajectories of RBCs and platelets overlap in the MA and that
their displacements are comparable during the same time inter-
val. These observations suggest that the velocities of platelets can
be used to approximate local blood-flow velocities when platelets
move within MAs.

Velocity estimates along the four trajectories are plotted in
Fig. 5C. These results show that the AIV predictions are in
good agreement with velocities calculated from the two tra-
jectories (Traj-3 and Traj-4) of platelets traveling in the MAs
in channel MA#4. This demonstrates the capability of AIV
to accurately infer flow fields in blood microcirculation. At
platelet trajectories further away from the perimeter of the MA,
such as those along Traj-1 and Traj-2, the differences between
AIV (on RBC trajectories) and platelet tracking become
more accentuated, as anticipated from the effect of platelet
margination.

Extracting 3D Flow Field from 2D Images. Next, we demonstrate
that AIV can infer the full 3D flow velocity profiles along the
entire depth of the microchannel using 2D images by invoking
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Fig. 4. Comparison of the velocity profiles predicted by AIV, conventional
optical flow, and Deep-PIV along two cross-lines in MAOAC channels with
BNR = 2 (A), BNR = 3.6 (B), BNR = 5 (C). Comparisons are performed along
two dotted lines marked at Fig. 3, Left. Line #1 is selected at the outlet
portion of the microchannel, whereas Line #2 crosses the deepest region of
the MAs. The symbols representing AIV predictions signify time-averaged
values from 100 image frames, and the shadows represent SDs.

the underlying physical laws of fluid flow. Such estimation cannot
be accomplished by using existing methods, such as Deep-PIV or
optical flow, due to the lack of data at different depths of the
channel. In order to obtain 3D velocity profiles, as shown in Fig.
7A, we extend our computational domain along the depth direc-
tion (z ) by 25 µm (z ∈ [−12.5, 12.5] µm), in line with the depth
of the MAOAC channels. We enforce the no-slip boundary con-
dition on the upper and lower surfaces (z =±12.5 µm) and the
lateral channel walls such that (u, v ,w)∂Ω =0. Similar to the 2D
case, we assume that the movement of RBCs occurs primarily
at the middle plane along the channel depth, so that data from
the images can be converted to a 3D spatiotemporal scalar field
I (x , y , z =0, t). A schematic of the AIV model, which is based
on 3D physics-informed neural networks, is illustrated in Fig. 1
and in SI Appendix. Note that while the image data correspond
to a 2D plane, the points for computing the residual loss Lres are
uniformly selected in the 3D domain. The training process for
the 3D cases is similar to that for 2D, which can be found in SI
Appendix.

Fig. 7 B and C illustrate the velocity and pressure fields inferred
by the AIV model at three different depth positions of the MA#6
channel (BNR = 5): z = 0 (middle plane) and z = ±7.5 µm.
These results show that the flow velocities measured at z = ±7.5
are significantly smaller than those at the middle plane, whereas
no notable changes are observed in the flow pressure here in the
depth direction. The shear stress on the channel wall is illustrated
in Fig. 7D, and it shows a sudden drop of the wall shear stress from
the parent vessel to the vessel wall of the MA. The wall shear stress
continues to decrease in the region further away from the feed-
ing channel, consistent with our 2D predictions and the findings
reported from prior studies (42, 59, 65).

To evaluate the 3D results from AIV, we perform a compan-
ion 3D CFD simulation using the same governing equations (Eq.
2 in Materials and Methods) and computational domain as in
the AIV method. We also employ the Carreau–Yasuda rheol-
ogy model (Eq. 3) to capture the shear-thinning behavior of the
blood. The governing equations are solved by using Nektar , a
fast CFD solver based on the spectral element method (57). We
use the pressure difference between the channel inlet and the
outlet from the AIV model to drive blood flow in the channel.
As shown in Fig. 8A, the velocity fields inferred from the 3D
AIV and those obtained from the CFD simulations for MA#6
are compared at two cross-sections of the microchannels, with
one located at the postaneurysm channel and the other one
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Fig. 5. Comparison of the velocities predicted by AIV and platelet track-
ing along four platelet trajectories in two MAOAC channels with BNR =
2 and 3.6. (A) Four platelet trajectories are tracked by using video images
capturing experiments with fluorescence-staining. The velocity is computed
as V = |xk+1− xk|/δt, where xk and xk+1 are the positions of a platelet at
two consecutive time steps with δt = 1/60 s. (B) The velocity magnitudes
along these four trajectories are also extracted with AIV using bright-field
video. (C) Magnitudes of velocity calculated along four trajectories using
AIV and platelet tracking. The symbols representing AIV predictions sig-
nify the time-averaged values from 100 image frames, and the shadows
represent the SDs.

Cai et al.
Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of
blood flow in physiology and disease

PNAS | 5 of 10
https://doi.org/10.1073/pnas.2100697118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100697118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100697118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100697118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100697118


A

B C

Fig. 6. Simulation of RBC and platelet transport in MAOAC channel with
BNR = 3.6. (A) Three sequential snapshots (from left to right) of RBCs
and platelets traveling in the microchannel. Red, RBCs; blue, platelets.
Solvent particles are not plotted here to preserve clarity of presenta-
tion. (B) Trajectories of RBCs and platelets in the microchannel, as well
as calculation of the displacements of RBCs and platelets based on their
trajectories. Red curves, RBCs; blue curves, platelets. (C) Displacements of
RBCs, platelets, and solvent particles as functions of time. The dotted lines
signify displacements of RBCs, platelets, and solvent particles that do not
travel into the MAs, whereas the solid lines designate the displacements
of RBCs, platelets, and solvent particles that travel into the MAs. Each
curve represents the average of 15 samples randomly selected from the
simulation, except that the solvent particles which do not travel into the
MAs were selected randomly around the centerline of the postaneurysm
channel.

crossing the deepest region of MAs. The velocity maps of these
two cross-sections in Fig. 8 B and C show that the predictions
of AIV agree with the results of the CFD simulations. The max-
imum relative L2-norm errors for these two cross-sections are
calculated to be 8.9% and 9.6%, respectively. We further plot the

velocity profiles at these two cross-sections along the lines of
z =0 µm and z =5.5 µm (Fig. 8 D and E). These results also
show good agreement between the AIV model and 3D CFD
simulation. In particular, Fig. 8 D and E demonstrate that 3D
AIV can capture the expected decay of the velocity along the z-
direction. There are some differences between the predictions
of the AIV model and the CFD model, although both models
invoke the same physical laws (Eq. 2), constitutive equation (Eq.
3), and boundary conditions. We also plot the AIV-prediction
and the CFD-simulation results of shear stress along two lines
on two different planes in the channel-depth direction (Z = 0 µm
and Z = 3.5 µm), which can be found in SI Appendix, Fig. S3. Our
results show that AIV predictions are comparable with the CFD
simulation results with an averaged error of∼10%. These differ-
ences are attributed to the fact that AIV directly incorporates the
flow-image data of RBCs in estimating the fields and thus pro-
vides a more realistic picture of blood flow in the microchannel
than CFD models. Similar trends are also observed for the 3D
velocity estimates for the MA#3 channel, which can be found in
SI Appendix.

Discussion and Concluding Remarks
In this work, we have developed a unique model to determine
the 3D velocity, pressure, and stress fields associated with human
blood flow in microcirculation by synergistically integrating the
underlying physics with sequential images from microfluidics
experiment and machine learning. The advantage of the pro-
posed AIV model is that the conservation laws of the physics
of blood flow and no-slip boundary conditions are encoded into
a deep-learning neural network to interpret direct experimen-
tal observations from a microfluidics platform. We note that the
flow velocity boundary conditions (slip or nonslip) on the chan-
nel wall in AIV can be specified by the user, depending on the
particular case of interest. Therefore, the predictions of near-
wall velocity by AIV are more physiologically relevant than those
measured from optical flow and µPIV. This feature is crucial
for evaluating the wall shear stress, a hemodynamic metric that
is associated with many vascular diseases (4, 6, 59). In distinct

Fig. 7. The 3D AIV predictions for MAOAC channel with BNR = 5. (A) A 3D computational domain is constructed by extending the 2D domain along
the depth direction (z) by 25 µm (z∈ [−12.5, 12.5] µm), consistent with the depth of the MAOAC channels. The images capture the motion of RBCs at
the middle plane of the channel depth direction (z = 0). (B and C) Velocity (B) and pressure fields (C) at three different cross-sections (z = 0,±7.5 µm)
along the depth of the channel. (D) Shear stress on the channel wall. AIV results are averaged over 100 image frames.
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Fig. 8. Comparison of 3D AIV predictions with results of CFD simulations for the MAOAC channel with BNR = 5. (A) The 3D velocity vectors inferred
from AIV. Two cross-sections along the x axis are selected for comparison with CFD simulations. (B) Velocity at the cross-section located at x = 15 µm in
the microchannel. From top to bottom: CFD simulation, AIV model, and absolute error. The relative L2-norm error at this cross-plane is 8.9%. (C) Velocity
magnitudes at the cross-section located at x = 130 µm in the microchannel. From top to bottom: CFD simulation, AIV model, and absolute error. The relative
L2-norm error is 9.6%. (D and E) Velocity profiles along two cross-lines at planes z = 0 µm and z = 5.5 µm. The symbols representing AIV predictions signify
the time-averaged values from 100 image frames, and the shadows represent the SDs.

contrast to CFD methods, whose results are very sensitive to
flow boundary conditions at the inlets and outlets, AIV does not
require a priori knowledge of these boundary conditions to esti-
mate flow fields. This unique feature overcomes the challenge
in many applications, where the exact pressure profiles at the
local inlet(s) and outlet(s) of an in vitro microfluidic device or
a capillary bed in vivo are difficult or even impossible to mea-
sure directly or approximate. Moreover, the AIV model is more
effective than CFD simulation when making a prediction of the
flow field undergoing dynamic changes due to moving bound-
aries, such as the prediction of blood flow within deformable
vessel wall or changes of hemodynamics in the MA due to blood
clotting, as observed from high-resolution adaptive optics scan-
ning laser ophthalmoscopy (AOSLO) images (42) and histology
studies (66).

To validate the present approach, we compare the predictions
of AIV models on the full spectrum of key hemodynamic param-
eters, such as pressure differential, shear rate, and wall shear
stress, with results obtained from five different experimental and
computational methods: optical flow (36), Deep-PIV (56), single
cell tracking, CFD simulations (57), and DPD (58). Our results
show that AIV predictions of bulk flow velocities in MAOAC
with different geometries are in agreement with results from
these other independent methods. In contrast to CFD models,
AIV is capable of inferring flow field on-the-fly in microchan-
nels because of its flexibility to incorporate data from sequential

experimental images, particularly with fluids, such as blood, with
a heterogeneous composition. On the other hand, we demon-
strate that AIV can infer, owing to the encoded physics laws,
full 3D flow fields along the depth of the microchannel from a
sequence of 2D images. This is difficult to achieve with conven-
tional µPIV or other methods to estimate particle movement,
which require advanced experimental apparatus, such as stereo-
scopic or holographic PIV (67, 68), to generate image data at
different depths of the channel.

The present experimental results also provide insights and
quantitative details to rationalize a variety of clinical findings
pertaining to MAs in DR. The predictions of the flow field using
MAOAC and AIV show reduced flow velocity and wall shear
stress in the MAs with different BNR. Particularly, as the BNR of
the MAs increases, the decrease in shear stress near the channel
wall of the MAs becomes more significant. These results provide
a rationale for the clinical finding that endothelial dysfunction,
which is manifested as increased von Willebrand factor expres-
sion on the endothelial cell, is more likely to occur in MAs with
larger BNR due to the reduced wall shear stress (59). We note
that AIV can assess the blood-flow velocity for different shapes
of MAs, such as focal bulging, fusiform, mixed saccular/fusiform,
and so on. In this paper, we designed the microchannels to
mimic various sizes of saccular-shaped MAs, because they are
the most prevalent shape of MAs observed in the retinal
microvasculature of DR patients. Future studies could employ
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additional microfluidic geometry designs to address different
types of MAs.

The altered hemodynamics in MAs also contributes to throm-
bosis in the vascular lumen of MAs, a recently documented
pathology of DR (42). In vivo images obtained from AOSLO
have been used to classify the MAs’ morphologies into different
groups (54), as well as to detect the blood clotting inside MAs
(42). The AIV model can potentially be used to interpret the
AOSLO images and predict the thrombus formation or rupture
of MAs by monitoring the key hemodynamic metrics, such as wall
shear stress, which is associated with the inflammation and dys-
function of endothelium cell, as well as the shear rate and the
platelet residence time in the MAs, which can be used to predict
the platelet activation and aggregation. We note that quantifi-
cation of hemodynamic parameters from in vivo measurements
in previous studies (42, 59, 65) were performed by using CFD
models with assumed and general inflow and outflow boundary
conditions since patient-specific inflow velocity was not readily
available from in vivo images. The present AIV model, which
does not require implementation of flow boundary conditions
and mesh generation, can potentially learn the flow fields directly
from in vivo video images and provide more accurate evaluation
of hemodynamic indicators.

The AIV model proposed in this work can also be extended to
accommodate various data sources through a multifidelity (MF)
framework (69, 70), where additional neural networks are used
to learn the correlation between the low-fidelity (e.g., simulation)
and high-fidelity (e.g., experimental) data. The MF framework
is very effective when there is a dearth of reliable, high-fidelity
data and, thus, could be particularly useful for learning from in
vivo images whose resolution and quality may be limited. For
example, when only a portion of the flow field can be observed
from in vivo images or only measurements of the velocity along
a limited set of trajectories are available (e.g., by tracking local
displacements of blood cells), we could first perform 3D CFD
simulations to evaluate the flow field. These simulation data are
considered low-fidelity data, as they are sensitive to the inflow
and outflow boundary conditions, which are not always available
from in vivo measurements. Following this, the 3D simulation
data (low fidelity) could be integrated with the partial velocity
field estimated by AIV based on in vivo images (high fidelity)
using the MF framework to predict the entire flow field.

Although we have demonstrated several advantages of AIV
over conventional methods, we also note some limitations of
the AIV model. First, the computational cost of training the
AIV model could be higher than the cost of optical flow or
µPIV methods because of the need to solve the governing
equations of the underlying physics laws. Application of multi-
graphics-processing unit training could help boost computational
efficiency. Moreover, the trained AIV model could be used as a
pretrained network to initialize the training of a new AIV model
for other microfluidic experiments, thereby reducing the compu-
tational cost for future tasks. In this work, we assume that the
flow of RBCs captured by sequential 2D images occurs at the
middle plane in the channel-depth direction (z =0). However,
the 2D measurement plane generally has a certain finite thick-
ness, which is determined by the depth of field of the objective
lens. Incorporating the movement of RBCs out of the mid-
dle plane could lead to an underestimation of cross-sectional
velocities. To extend the application of AIV to assess in vivo
blood flow, we may need to consider the flow pulsatility as well
as the dynamic deformation of the blood vessel wall. While
AIV can naturally learn the pulsatile flow from image data,
the underlying physics laws encoded in the AIV model need to
be revised to account for the effect of deformable flow bound-
aries. For example, we can encode fluid-governing equations
formulated on the basis of the arbitrary Lagrangian–Eulerian
method, which is a standard approach to solve dynamic problems

involving fluid–structure interaction and deformation of flow
boundary (71, 72).

In summary, we present AIV, a unique platform that is
capable of automatically inferring blood-flow field in microflu-
idic channels, and compute key hemodynamic parameters that
are associated with the pathophysiology of MAs, one of the
earliest clinically visible signs of DR. Encoded with physical
laws and constitutive equations and integrated with neural-
network training algorithms, AIV performs more effectively
compared to the existing methods, particularly when the exper-
imental data are limited. AIV also incorporates data from
visual images, which is particularly important for investigation
of blood flow (i.e., flow of RBCs and other blood compo-
nents such as platelets) under pathological conditions where
reliable constitutive laws may not be able to accurately describe
hematological properties of blood for patient-specific disease
states. AIV also can potentially facilitate scientific research
in laboratories where systematic experiments alone, even with
advanced tools, may not be sufficient to quantify all of the
key parameters responsible for the pathogenesis of vascular
injury. With continuous training, AIV offers a potentially pow-
erful pathway to infer hemodynamics from in vivo examination
and to develop quantitative metrics for patient diagnosis and
monitoring.

Materials and Methods
Experimental Setup.
MA PDMS channel fabrication. As illustrated in Fig. 2 A and B, eight
microchannels that contain various sizes of cavities are designed to mimic
different MAs. The BNR of the simulated MAs is defined as the largest
caliber of the MA body divided by the size of feeding vessels and varies
from 12 to 1.5. These MA channels were fabricated with polydimethylsilox-
ane (PDMS) using standard soft lithography. Each device was fabricated
by using a master mold, lithographically patterned with SU-8 negative
photoresist (Microchem Corporation) on a 4-inch silicon wafer (Silicon
Connection), which was later placed inside a Petri dish. Commercial ther-
mocurable PDMS (Sylgard 184, Dowsil) prepolymer was prepared by mixing
the base and curing agent at a 10:1 weight ratio, following which the
PDMS prepolymers were degassed under vacuum and cast onto the mold.
Thermal cross-linking of PDMS was performed by curing at 80 ◦C for 2
h. The cured PDMS was cut and peeled off from the channel mold, fol-
lowing which the inlet and outlet access ports were created by using
a 1.5-mm-diameter punch. Next, the PDMS channel was bonded with a
cover slide under 80 ◦C for 2 h. Experiments were conducted after plasma
pretreatment for 1 min.
Sample preparation. Peripheral blood was drawn from a healthy donor
by Venipuncture into a K2E EDTA tube, after which the whole blood was
centrifuged at 200 × g for 12 min to extract platelet-rich plasma (PRP).
The upper layer of PRP was further centrifuged at 1,200 × g for 5 min
to acquire platelets, which were washed three times with platelet-washing
solution and then resuspended in phosphate-buffered saline. The remain-
ing blood cells were stored at 4 ◦C for later use. The platelets were then
stained with DIOC6 (Sigma-Aldrich) (0.5 µg/mL) for 1 h at room tempera-
ture. After being washed five times, the stained platelets were remixed with
the remaining blood cells from the original whole blood at a 50% hemat-
ocrit for fluorescence imaging in the MA PDMS channels. The entire process
was completed within 4 h to minimize the risk of time-dependent platelet
malfunction.

All procedures on peripheral blood specimens were approved and per-
formed in accordance with the Singapore National Health Group Domain
Specific Review Board (the central ethics committee) and mutually rec-
ognized by Nanyang Technological University Institutional Review Board
(IRB#2018/00671). All blood specimens were de-identified prior to use in the
experiment.
Microfluidics experiment and visualization. The microfluidic device was
installed on a Nikon Eclipse T2000-U (Nikon) and visualized under a 40×
objective. A blood sample, 20µL in volume, was loaded into a reservoir
(outlet) of the PDMS channel. A negative pressure of about −5 mbar was
applied to the outlet, such that the blood cells flowed from the inlet into
the direction of the outlet, thus generating the flow pattern recorded by
the camera. Video images were recorded by a high-speed camera, FASTCAM
SA1.1 (Photron). Bright-field images (Fig. 2 B and C), which are recorded at
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500 frames per second (fps) and resolved with 1 µm/pixel, served as the
training data for the AIV model to infer velocity fields in microchannels.
The fluorescent images (Fig. 2D), where the platelets or platelet aggrega-
tion were visualized as bright spots, were recorded at 60 fps, and they were
used to perform cell-tracking measurements of platelets for AIV validation.

AIV Model.
Underlying physics laws. To estimate the velocity and pressure fields from
a sequence of images from microfluidic experiments (Fig. 2C), we follow
the optical flow constraint (35), a basic assumption widely used in computer
vision or fluid visualization. Here, it is assumed that the variation in the
image brightness represents blood flow, and the image intensity is a spa-
tiotemporal scalar field I(x, y, t), whose transport can be described by an
advection equation:

∂I

∂t
+ (u · ∇)I = 0, [1]

where u is the 2D velocity projected onto the image plane, and ∇ is the
spatial derivative operator. The fluid flow is taken to be governed by the
incompressible Navier–Stokes equations:

ρ(
∂u

∂t
+ (u · ∇)u) =−∇p +∇ · [µ(∇u + (∇u)T )],

∇ · u = 0,
[2]

where ρ (1,060 kg/m3) and p are the fluid density and pressure, respec-
tively; µ is the dynamic viscosity. We also implemented the Carreau–Yasuda
rheology model to capture the shear-thinning behavior of blood, which is
expressed as

µ(γ̇) =µ0 ·
[
η∞ + (η0− η∞)[1 +λγ̇

α
]
(n−1)/a

]
, [3]

where µ0 = 3.5× 10−3 Pa·s is the reference viscosity; η∞ = 1, η0 = 40, λ=

8.2 s, a = 0.64 and n = 0.2128, all of which are parametrized for human
blood (73). The shear rate, γ̇, which depends on the second invariant of the
stress–strain rate tensor E, is written as

γ̇=
√

2E : E,

E =
1

2
(∇u + (∇u)T ).

[4]

In order to extract relevant nondimensional parameters, we define the char-
acteristic length as D = 25 µm (which is equal to the channel width) and the
characteristic velocity as U = 1 mm/s (which is the mean velocity inside the
vessel). As a result, the Reynolds number representative of the fluid flow
problem considered here is Re≈ 7× 10−3.
Integrating physics with image data from microfluidic experiments using
AIV. The AIV technique employed here is based on PINNs, which were
originally developed for solving forward and inverse problems for partial
differential equations (47, 74) and were subsequently extended to solve
fluid-mechanics problems (48, 75–77). AIV is capable of seamlessly assimilat-
ing the Navier–Stokes equations and the experimental data, and thus allows
for the extraction of velocity and pressure fields by considering both the
underlying physics of blood flow and the microfluidics or in vivo image data.
As shown in Fig. 1, AIV contains a fully connected neural network, which is
used to approximate the solutions, i.e., (I, u, p) =FNN(x, t). This neural net-
work takes the coordinates and time as inputs and provides as outputs the
corresponding image intensity, velocity, and pressure. As the image intensity

in the spatiotemporal domain I(x, t) can be obtained from the image data,
the loss function of the neural network can be defined as

Ldata =
1

Nd

Nd∑
i=1

‖ Idata(xi , ti)− INN(xi , ti) ‖, [5]

where Idata and INN are the data from visual images and the output of
neural network, respectively; and Nd is the number of pixels in the inves-
tigated domain. In addition to loss from the mismatch between image data
and neural-network predictions (Ldata), AIV introduces a residual loss (Lres)
resulting from computing the residuals of the governing equations (Eq. 2)
on random points to take into account the underlying physics of blood flow.
Lres is expressed as:

Lres =
1

Ne

Ne∑
i=1

5∑
j=1

‖ ej(xi , ti) ‖, [6]

where Ne is the number of residual points (xi , ti) for evaluating the equa-
tions, which can be selected in the computational domain based on the
location of interest. The no-slip boundary conditions on the channel walls
are enforced by adding another loss term:

Lbcs =
1

Nb

Nb∑
i=1

‖ u(∂Ω) ‖, [7]

where ∂Ω denotes the boundaries of the channel wall; Nb is the total num-
ber of pixels on the boundary. As a result, the parameters of the AIV model
are obtained by minimizing the following total loss function:

L=λdLdata +λbLbcs +Lres, [8]

where λd and λb are the weighing coefficients to account for the relative
contributions of the three terms in the total loss function. We note that
for AIV, using large values of λd and λb can accelerate the optimization
because the image data can be quickly regressed, but it may also result in
overfitting. More details of how to select the appropriate weighing coeffi-
cients in the loss function for training PINNs can be found in refs. 76 and
77. In our simulations, we chose λd = 10 and λb = 100 through a trial-and-
run process. Details of the selection of these parameters can be found in SI
Appendix. We train the network using the Adam optimizer (78), an adaptive
algorithm for gradient-based, first-order optimization of stochastic objec-
tive functions. Once the training is accomplished, the AIV model can infer
the full solutions of (I, u, p) at any given point (x, t) inside the computational
domain and compute the shear rate and wall shear stress. More details of
the hyperparameters of the AIV model and the training strategy can be
found in SI Appendix.

Data Availability. The data and codes used in this manuscript are publicly
available on GitHub (https://github.com/shengzesnail/AIV MAOAC) (79).
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