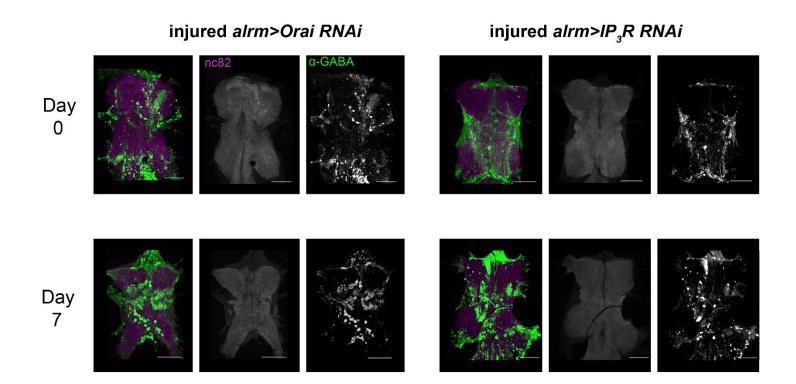
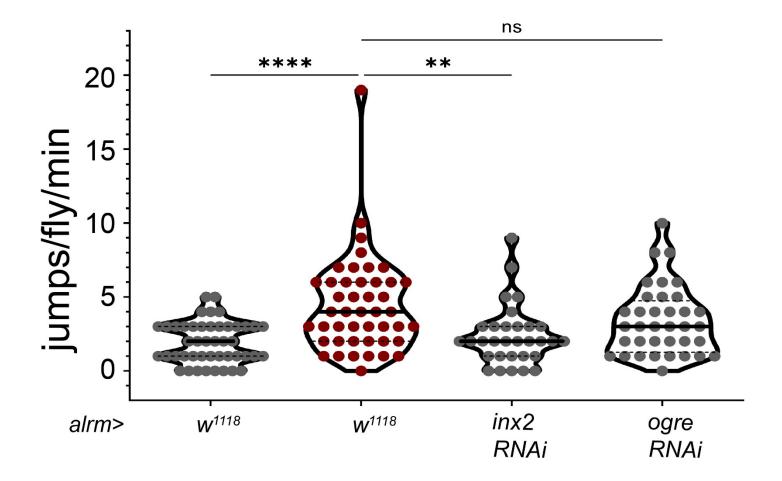
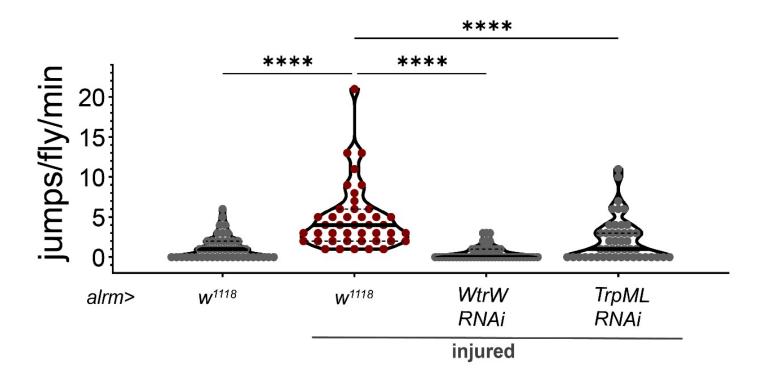

Supplemental Figure S1. Jumping response is antinociceptive and initiates at a threshold greater than 38° C in healthy flies. Plot of the number of jumps per fly per minute at 38° C for indicated genotypes and at indicated temperatures. All animals were uninjured. Each symbol represents the total number of jumps for a single animal (n=42 for 24°, n=93 for 38°, n=22 for 42° alrm-GAL4; w^{1118} controls and n=21 for ppk>TrpA1 RNAi). ****, P<0.0001; ns, not significant; Kruskal-Wallis with Dunn's multiple comparisons.


<u>Supplemental Figure S2.</u> Astrocyte Ca²⁺ signaling does not increase four days after injury if IP₃R or Orai is suppressed. Representative images of TRIC-mediated GFP fluorescence (green) and astrocyte-restricted RFP fluorescence (magenta) in VNCs from day 0 (uninjured) and day 4 post-injury *alrm-GAL4>Orai RNAi* and *alrm-GAL4>IP₃R RNAi* animals. Also shown are images of the product of GFP divided by RFP fluorescence, representative of the normalized Ca²⁺ signaling activity reported by TRIC.


Supplemental Figure S3. Suppression of astrocyte store-operated calcium entry components does not alter normal jumping activity or nocifensive response to high temperature. (A) Plot of the number of jumps per fly per minute at 24° C for uninjured flies with indicated genotypes. (B) Plot of the number of jumps per fly per minute at 38° C for uninjured flies with indicated genotypes. (C) Plot of the number of jumps per fly per minute at 42° C for uninjured flies with indicated genotypes. (D) Plot of the number of jumps per fly per minute at 38° C for sham or seven-day injured flies with indicated genotypes. *0.01 < P < 0.05; **0.001 < P < 0.01; ****P < 0.0001; ns, not significant; Kruskal-Wallis with Dunn's multiple comparisons, N = 101, H(3) = 22.08, P < 0.0001, N = 174, H(3) = 9.871, P = 0.0197, N = 94, H(3) = 3.267, P = 0.3523, N = 40, H(3) = 58.85, P < 0.0001 respectively.


Supplemental Figure S4. Grading of fly behavior 7 days after injury for cepstral linear discriminant analysis. (A) For every frame of video (1800 frames in 1 minute at 30 frames per second), each fly's behavior was binned according to an ordinal scale depending on intensity of reaction to the thermal stimulus. 1=all behaviors not considered anti-nociceptive, 2= jumping, 3=rolling, not able to recover on feet. (B) 1-minute time series generated after binning behavior presented cumulatively per injured controls, sham controls, and STIM RNAi group. Individual fly time series are used as model input with identified conditions (injured or sham) for the training and deidentified for the testing (C) Linear discriminant model predictions from the test groups. All test groups are injured animals; 15/21 alrm>GAL4 RNAi and 50/58 ppk>GAL4 RNAi controls were categorized correctly as injured, 31/45 alrm>1P3R RNAi, 17/24 alrm>Orai RNAi, and 31/38 alrm>STIM RNAi were predicted to be sham despite injury.

Supplemental Figure S5. GABAergic neuron loss following injury is prevented by astrocyte Orai and IP₃R suppression. Representative images of VNCs from day seven injured *alrm>Orai RNAi* (left) and *alrm>IP₃R RNAi* (right) animals labeled with antibodies to α-GABA (green) and Bruchpilot (magenta) to label synaptic active zones within the neuropil.

Supplemental Figure S6. Astrocyte gap junction subunit suppression prevents thermal hypersensitivity following injury. Plot of the number of jumps per fly per minute at 38° C for seven days following leg amputation injury ("injured") for the indicated genotypes. Each symbol represents the total number of jumps for a single animal (n=45 for alrm-GAL4; w^{1118} , n=31 for alrm>inx2 RNAi, n=36 for alrm>ogre RNAi, and n=45 for alrm-GAL4; w^{1118} sham controls) ****, P<0.0001; Kruskal-Wallis with Dunn's multiple comparisons, N=157, H(3)=24.63, P<0.0001.

Supplemental Figure S7. Suppression of astrocyte Waterwitch and TrpML channels attenuates thermal hypersensitivity following injury. Plot of the number of jumps per fly per minute at 38° C for seven days following leg amputation injury ("injured") for the indicated genotypes. Each symbol represents the total number of jumps for a single animal (n=43 for alrm-GAL4; w^{1118} , n=45 for $alrm>Wtrw\ RNAi$, n=46 for $alrm>TrpML\ RNAi$ injured groups and n=45 for alrm-GAL4; w^{1118} sham controls) ****, P<0.0001; Kruskal-Wallis with Dunn's multiple comparisons, N=179, H(3)=64.62, P<0.0001.

Supplemental Table 1. STAR Methods

Desgent on Descripes	Course	Idontifion
Reagent or Resource	Source	Identifier
Drosophila Stocks		
w[*]; P{w[+m*]=alrm-	BDSC	astrocyte-like glia
GAL4.D}3/CyO; Dr[1]/TM3,	RRID:SCR_006457	GAL4 driver
Sb[1]	https://bdsc.indiana.edu/	stock# 67031
w[*]; wg[Sp-1]/CyO;	BDSC	astrocyte-like glia
$P\{w[+m^*]=alrm-GAL4.D\}2$	RRID:SCR_006457	GAL4 driver
	https://bdsc.indiana.edu/	stock# 67032
$w[*]; P\{w[+mC]=ppk-GAL4.G\}2$	BDSC	pickpocket sensory
	RRID:SCR_006457	neuron GAL4 driver
	https://bdsc.indiana.edu/	stock# 32078
y[1] v[1]; P{y[+t7.7]	BDSC	UAS TrpA1 RNAi
v[+t1.8]=TRiP.JF02461}attP2	RRID:SCR_006457	stock# 36780
F43 F43 F43 F643	https://bdsc.indiana.edu/	XX1.0.0
y[1] sc[*] v[1] sev[21];	BDSC	UAS Orai RNAi
P{y[+t7.7]	RRID:SCR_006457	stock# 53333
v[+t1.8]=TRiP.HMC03562}attP4 0	https://bdsc.indiana.edu/	
UAS-dOrai(G170M)/cyo, GFP	internal	UAS dOrai G170M
UASt-dOrai+/TM6, Tb	internal	UASt dOrai+
y[1] v[1]; P{y[+t7.7]	BDSC	UAS Itpr RNAi
v[+t1.8]=TRiP.JF01957}attP2	RRID:SCR_006457	stock# 25937
	https://bdsc.indiana.edu/	
y[1] v[1]; P{y[+t7.7]	BDSC	UAS Stim RNAi
v[+t1.8]=TRiP.JF02567}attP2	RRID:SCR_006457	stock# 27263
513 P (513 513 40 XXX 1 0 XXX	https://bdsc.indiana.edu/	mn v c
w[*] P{y[+] w[+]=10XUAS-IVS-	BDSC	TRIC
mCD8::RFP}attP18 P{y[+]	RRID:SCR_006457	LexAop mCD8-
w[+]=13XLexAop2-	https://bdsc.indiana.edu/	tagged GFP, UAS
mCD8::GFP}su(Hw)attP8;		mCD8-tagged RFP;
P{y[+] w[+]=UAS-		UAS
MKII::nlsLexADBDo}attP40,		lexA(DBD)::CaMTP,
P{y[+] w[+]=UAS- p65AD::CaM}attP24/CyO;		UAS p65(AD)::CaM; UAS p65(AD)::CaM
M{w[+]=UAS-p65AD::CaM}ZH-		stock# 62827
86Fb		SIOCK# 02021
y[1] sc[*] v[1] sev[21];	BDSC	UAS GAL4 RNAi
$P{y[+t7.7] v[+t1.8]=VALIUM20-}$	RRID:SCR 006457	stock# 35783
GAL4.2} attP2	https://bdsc.indiana.edu/	5.00Kii 55 05
,	impon/odocimalana.edu/	
Immunohistochemistry	DCIID	Ca4# = 202 4/16/20
Mouse Bruchpilot nc82-s	DSHB	Cat# nc82, 4/16/20
Dalahit Limin a salama daDad	Talvana Dia	RRID:AB_2314866
Rabbit Living colors dsRed	Takara Bio	Cat#632496, Lot
		2103116

		RRID:AB_10013483
Rabbit anti-GABA	Sigma	Cat#0000154656
Chicken anti-GFP	Abcam	Cat#AB13970
Alexa fluor 488 goat anti-chicken	Invitrogen	Cat#A11039, Lot 1637891
Alexa fluor 568 goat anti-rabbit	Invitrogen	Cat#A11011, Lot 2379475
Alexa fluor 488 goat anti-rabbit	Invitrogen	Cat#A11008, Lot 2420731
Alexa fluor 568 goat anti-mouse	Invitrogen	Cat#A11004, Lot 2332536
Mounting Reagents		
Kodak Photo-Flo 200 Solution	Electron Microscopy Sciences	Cat#74257
Poly-L-lysine hydrobromide (PLL)	Sigma	Cat#P1524-25MG
DPX mountant for microscopy	Electron Microscopy Sciences	Cat# 13512
Ethanol >99.5% (200 proof)	Sigma	Cat# 459844-1L
Paraformaldehyde (PFA) 16% Aqueous Solution	Electron Microscopy Sciences	Cat#15710
Phosphate buffered saline (PBS) 1X	Cellgro	Cat#21-040
Triton X-100	Sigma	Cat#X100
Sylgard 184 silicone elastomer kit	Sigma	Cat# 761028-5EA
Schneider's Insect Medium (S2)	Fisher Scientific	Cat#21720-024
Fetal Bovine Serum		Cat#
Software		
MATLAB (R2019B)	www.mathworks.com/m atlab	RRID:SCR_001622
Fiji	http://fiji.sc	RRID:SCR_002285
R (4.2.2)	https://cran.r-project.org/	RRID:SCR_001905
CepLDA (R package)	(Krafty, RT, 2016)	
GraphPad Prism (9.5.0 (730)	www.graphpad.com	RRID:SCR_002798
Deposited data		
Raw and analyzed data	Figshare	
Analyzed data and codes	GitHub	
Equipment		
Nikon A1R Confocal Laser	www.microscope.healthc	RRID:SCR 020318
Microscope	are.nikon.com	
Thermal testing 3 mm ring	GitHub	
Vellum translucent paper	Staples	Cat#496755
Isoblock Dry Bath Incubator	Benchmark Scientific	SKU#BSH6000
Fisherbrand Traceable Infrared Thermometer Gun	Fisher Scientific	
	1	1

Wide 28 mm 77° f/1.7 lens video	https://store.google.com	Pixel 4
camera with Sony Exmor		
IMX363 12.2-megapixel sensor		
Dumont #5 forceps	Fine Science Tools	Cat#11252-20
Corning cover glass No.1	Fisher Scientific	Cat#12-553-451