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Abstract

Background: To-date modern drug research has focused on the discovery and synthesis of single active
substances. However, multicomponent preparations are gaining increasing importance in the phytopharmaceutical
field by demonstrating beneficial properties with respect to efficacy and toxicity.

Discussion: In contrast to single drug combinations, a botanical multicomponent therapeutic possesses a complex
repertoire of chemicals that belong to a variety of substance classes. This may explain the frequently observed
pleiotropic bioactivity spectra of these compounds, which may also suggest that they possess novel therapeutic
opportunities. Interestingly, considerable bioactivity properties are exhibited not only by remedies that contain high
doses of phytochemicals with prominent pharmaceutical efficacy, but also preparations that lack a sole active
principle component. Despite that each individual substance within these multicomponents has a low molar
fraction, the therapeutic activity of these substances is established via a potentialization of their effects through
combined and simultaneous attacks on multiple molecular targets. Although beneficial properties may emerge
from such a broad range of perturbations on cellular machinery, validation and/or prediction of their activity
profiles is accompanied with a variety of difficulties in generic risk-benefit assessments. Thus, it is recommended
that a comprehensive strategy is implemented to cover the entirety of multicomponent-multitarget effects, so as
to address the limitations of conventional approaches.

Summary: An integration of standard toxicological methods with selected pathway-focused bioassays and
unbiased data acquisition strategies (such as gene expression analysis) would be advantageous in building an
interaction network model to consider all of the effects, whether they were intended or adverse reactions.
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Background
Prior to the 20th century, medicine relied almost exclu-
sively on the use of natural products or botanically-
derived multicomponent therapeutics. Today, at least
25% of all pharmaceuticals are based on plant-derived
products. However, although the very earliest pharma-
ceutical products were botanical and/or natural multi-
component preparations, by now mainly purely isolated
monocompounds or synthetic analogues are commercia-
lized as conventional drugs [1,2]. The development of

pharmaceutical and chemical technologies facilitated the
economical production of semi-and fully-synthetic
monocompound drugs, saving resources, including time,
labor and delivery costs. Furthermore, characterization,
standardization, and quality control of active ingredients
became less difficult due to the absence of assay-inter-
fering compounds in complex mixtures [3].
The shift towards the favoured use of monocompound

drugs was supported by the finding that, in some plants,
single components were the basis for efficacy. The isola-
tion of these active substances enhanced their therapeu-
tic effectiveness and allowed for dose assessments. For
some time, the major demand of the pharmaceutical
industry has become the discovery of a new drug entity
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that interacts with a single, well-defined molecular tar-
get, preferably without disturbing other cellular func-
tions to avoid side effects [4]. Prominent druggable
targets are, for instance, key molecules that are responsi-
ble for disease development and/or progression. Thus,
drugs binding to such proteins should, in theory, lead to
alterations or inhibition of their activities.
Hence, a general limitation of in silico drug-target

interaction and activity modelling procedures is their
inability to mimic entire cellular processes. Despite the
use of sophisticated design strategies for selective drug
ligands, in analogy to the “lock and key” concept, only a
few of these monocompounds have been proven to be
successful in vivo [5]. Interestingly, Roth, Hopkins and
colleagues proposed that many modern anti-psychotic
drugs failed in the clinic because they were too selective
for their specific targets [4,6]. Furthermore, an analysis
of approved drugs indicates that the modulation of sev-
eral molecular targets is a frequent mechanism behind
drug efficacy [4].
An additional disadvantage of single drug therapies is

the development of resistance phenomena, which may
occur on a biochemical level, be acquired, and/or be
established on a genetic level. Multidrug therapy has
become especially important in the fight against infec-
tious diseases. Several approaches used to evaluate the
activities of antimicrobial drug and natural product
combinations have been reviewed extensively [7]. Addi-
tionally, there have been reports on the reduction in the
occurrence of resistance of antimicrobial strains to
crude rather than single active compounds, e.g. from
antimalarial drug research [7,8].
Often, the aetiology of diseases that involve a poly-

genic background and environmental factors remains
poorly understood. Consequently, this complicates the
selection of proper drug targets in drug design. Addi-
tionally, it results in the simultaneous use of multiple
drugs for the treatment of disease symptoms rather than
origins, involving therapeutics that have not been devel-
oped or analyzed with respect to drug-drug interactions.
The increasing demand for polypharmacology to
enhance treatment efficacy via multitarget interventions
is an attempt reflected e.g. by the search for synergistic
combinations of single drugs, or by the selective design
of non-selective, multi-target directed drugs or molecu-
lar entities containing two functionally distinct pharma-
cophores [4,6,9].
A strong interest in multicomponent phyto- or natural

product preparations is likely to arise from the observa-
tion that some of these multi-substance mixtures pos-
sess prominent pharmacological properties at low or
non-toxic concentrations. However, due to their com-
plex chemical composition, an understanding of the
underlying molecular activity mechanisms is, in most

cases, only superficial. Thus, a detailed ‘mechanisms of
action’ analysis is urgently required to unravel the
potent activity of phytochemicals and botanical reme-
dies, as well as to predict potential drug-drug interac-
tions that may result from multidrug treatments.
A glossary of terms frequently used is provided in

Table 1.

The mechanism(s) of phytochemical action can either be
direct or indirect
Most plant-derived bioactive substances are secondary
metabolites. These compounds are produced as chemi-
cal signals in response to environmental changes or as
defence mechanisms against pathogens, herbivores, and
environmental stress factors. The most important struc-
tural classes of secondary metabolites are nitrogen-con-
taining alkaloids, terpenoids, steroids, and phenolics
(mostly phenylpropanoids) [3]. Although a few of these
phytochemicals are now established as potent monosub-
stance drugs in modern medicine, most of them have
not been structurally characterized and/or explored
regarding their potential beneficial effects for human
health.
In general, most monosubstance phytodrugs exhibit a

rather specific mechanism of action. For instance, the
cardiac glycosides from Digitalis spp. are able to inhibit
membrane Na+/K+ ATPases. Conversely, according to
Wink, the pharmacological activity of multicomponent
mixtures cannot be assigned to a single substance, and
the contained phytochemicals typically act in an unspe-
cific and widespread manner [22]. Prominent bioactive
components might be part of the preparation, but in
some cases, there are no apparent single active compo-
nents, which are detectable and responsible for the net
effect. Interestingly, synthetically-developed multi-target
drugs are also sometimes low affinity binders, since the
multitude of low-affinity and/or transient interactions is
sufficient to achieve a significant modification [23].
Multicomponent activity spectra result from the com-

bined and simultaneous attack on various central cellu-
lar target structures. Examples of such non-specific
targets are biomembranes, gene regulatory elements,
and proteins. Proteins can be affected either by introdu-
cing covalent bindings, interfering through weak, but
multiple non-covalent interactions, or the deposition of
lipophilic compounds in hydrophobic regions of pro-
teins e.g. within substrate binding pockets, which may
cause loss of activity, total inhibition, or degradation.
Furthermore, changes in the activity of signalling mole-
cules or transcription factors can lead to an induction of
transcriptional responses. Lipophilic and amphiphilic
substances are poorly soluble in the cytosolic compart-
ment, and have the tendency to accumulate sponta-
neously on biomembranes, where they can influence
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membrane fluidity and density. If nucleic acids are tar-
geted, mutations can be initiated by the introduction of
covalent modifications or through intercalation mechan-
isms [22].
Thus, despite a very low molar fraction and weak

impact of individual phytochemicals in multicomponent
mixtures, the summation of activities leads to a poten-
tiation of effects, and promotes a prominent outcome.
This mechanistic view also explains why in many cases,
the fractionation or isolation of principal constituents
from extracts ends up with a loss of previously detected
activities [15].

Different types of joint actions contribute to the
potentiation of effects
Compounds exert their bioactivities by interacting with
other molecules rather than by acting alone. Numerous
theories propose that the interplay and interference of
single components in a mixture is the rationale for the
advantageous effects of multicomponents. The basic
concepts of joint actions and interactions can be

summarized as three core processes: addition, syner-
gism, and antagonism [13,14,24-26].
Additive interactions are based on either similar or

dissimilar non-interactive effects of chemicals. The net
response of a multicomponent may be attributed to the
sum of the individual compound doses or effects. Simi-
lar actions preferentially occur with structurally-related
substances, while dissimilar acting chemicals differ in
their mechanism of action, but share the resulting effect
[13]. In contrast to independent actions, synergistic and
antagonistic processes require direct interactions. These
interactions lead to an effect that is stronger, as
expected based on the dose or response of each compo-
nent. Antagonistic interactions result in an inhibition of
effects, while synergistic interactions lead to effect
potentiation. In both cases, the net effect exceeds the
additive/subtractive effects of each component [13,14].
Thus, using synergistically-acting compounds lowers the
amount of potentially harmful chemicals necessary to
achieve an optimal therapeutic efficacy. Furthermore,
interactions between components within a single plant

Table 1 Glossary

Active marker Constituents of pharmaceutical relevance, which contribute to or influence the activity of extracts [10].

Active substance/active
pharmaceutical ingredient

Substances that exert a biological activity, which provoke a specific effect in a biological system. Active
principles can exhibit activities comparable to that of synthetic active substances [10].

Analytical marker Chemically-defined substances used for quality control and standardization procedures, selected according
to their analytical value without dependence on potential therapeutic activities [10].

Botanical One or more plants, a plant part, or an extract valued for its nutritional, medicinal, or therapeutic properties.
Herbs are a subset of botanicals [11].

Botanical drug Highly, but not completely characterized, complex extracts from plants that are clinically evaluated for
safety and efficacy. Often, there is also a history of safe traditional human use [2].

Dietary supplement/functional food Consist of components that are supplemented in the diet or thought to be healthy, such as vitamins,
minerals, fats, botanicals, etc. [12].

Interaction/joint action Actions that describe an altered outcome arising from the presence of two or more compounds that could
be antagonistic, additive, or synergistic [13]. Potentiation results from additive and synergistic
interactions that intensify the potency of a bioactive product [2,14].

Multicomponent/complex
interventions

Either a mixing of pharmaceuticals, an intended administration of a multicomponent combination of
reference listed drugs, or the uptake of multicomponent preparations (e.g. botanicals, natural products or
dietary supplements). Keith et al. defined multicomponent drugs as a therapeutic regimen that consists of a
concerted pharmacological intervention of several compounds that interact with multiple targets [15].

Natural product All substances produced by living organisms, including microorganisms or fungi.

Nutraceutical(s) Provide medical or health benefits, including the prevention and/or treatment of a disease, in addition to
preventing nutritional deficiencies [12].

Nutrigenomics Studies the interaction between dietary components and/or nutrients and the genome by focusing on
changes in transcript, protein and metabolite levels [16,17].

Pharmacogenomics Combines conventional pharmaceutical and toxicology study designs with global genomics technologies
and appropriate disease model systems to provide a comprehensive view on the response of the genome
and the biochemical machinery of the cell upon treatment, and to identify efficacy and toxicity-related
mechanisms [18,19].

Phytochemical(s) Non-nutrient biologically active compounds in plants. A number of databases that e.g. contain information
on chemical structure, metabolic pathways or health-related properties in humans have been only recently
reviewed by Scalbert et al. [20].

Secondary metabolite Substances produced by plants or microorganisms that are not necessary for primary or energy
metabolism, but are important for ecological fitness. Evolutionary pressure on biosynthetic pathways
resulted in an inexhaustible chemical diversity of substances, and some of them have potent
pharmaceutical properties [21].
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species (endointeractions), and interactions between
components from different plants and/or non-plant
based compounds (e.g. synthetic drugs), which may be
ingested together (exointeractions), can be distinguished
[27].
The concepts of joint actions are helpful in the under-

standing of basic processes. The effectiveness of joint
actions may result from the local and spatial proximity
of components at the target site of action, which only
occurs if the substances possess similar absorption and
circulation kinetics [13,28]. Additionally, substances that
interfere with general cellular mechanisms, such as oxi-
dative stress or protein folding, can further interact in a
time-independent manner with compounds that act on
target molecules belonging to different pathways.
However, the response to substances of a highly inter-

connected biological system, such as the human organ-
ism, is very complex and rarely linear. There are a
variety of factors that can influence the therapeutic effi-
cacy of a substance, such as the effective intracellular
concentration of compounds at the target cell or organ
(e.g. bioavailability, bioconversion, pharmacokinetics),
the chemical and physical microenvironment (e.g. polar-
ity, viscosity) at the interaction site, the type of molecu-
lar target (e.g. single or multiple molecules, cellular
structures), and the general health of the target cells.

Multicomponent interventions for multifactorial diseases
Many of today’s illnesses are thought to result from
environmental and lifestyle changes, which favour an
undesirable functioning of biological systems that have
evolved over an evolutionary time course [29]. These
diseases are caused by multiple factors, unfold over an
extended period of time, and demonstrate a wide range
of pathophysiological manifestations.
One such example is atherosclerosis, a chronic inflam-

matory disease. Initial atherosclerotic events take place
long before its clinical manifestations within the vascular
system can be diagnosed [30,31]. According to Ramsey
et al, a more systems-based view on multifactorial disor-
ders, where disease progression requires the coordina-
tion of several cell types, organs, and organ systems at
various molecular levels, will contribute to a better
understanding of disease aetiology [32]. Of note, treat-
ment options for atherosclerosis-associated diseases,
which are discussed extensively in scientific literature,
also include the use of herbal extracts and mixtures that
contain, among others, phenolic antioxidants, which
serve as protective agents [33].
Also, several psychiatric and neurologic disorders are

the result of multifactorial interactions between environ-
mental influences and genetic mechanisms. A variety of
modern central nervous system targeting monocom-
pound drugs have been originally identified in

psychoactive plants and natural products, which are
components of many traditional medicinal systems [34].
As many traditional medicinal formulations are based
on the combined and synergistic activities of several
substances that enhance their pharmacological proper-
ties, investigations of the resulting mechanisms of action
could help to uncover new medications for the treat-
ment of diseases of the nervous system and mental ill-
nesses. Furthermore, other factors, such as the general
state of health or diet, should be considered [35]. For
example, disorders accompanied with cellular immune
activation such as infections, or persisting deficits in
nutrition, may diminish serum tryptophan levels, which
consequently results in the reduced production of sero-
tonin and may affect serotonergic functions [35,36].
Due to the broad range of activities possessed by

multicomponents, there may be numerous promising
candidate mixtures that achieve benefits in the treat-
ment of such multifactorial diseases likely by shifting,
rather than interrupting, cellular regulation towards a
healthy level [37,38]. The regulatory cellular and mole-
cular mechanisms in an organism have to be organized
by high interconnectivity to fulfil complex functions,
such as signal sensing, transduction and processing,
and thereby maintain systemic and cellular homeosta-
sis. The sophisticated organization of intra-and inter-
cellular communication facilitates an appropriate and
flexible response to disturbances and provides control
mechanisms through interlocking pathways, as well as
feedback, regulatory, and fail-safe mechanisms [29].
While initial quick signalling is mediated generally
through specialized sensory molecules or complexes, it
is then followed by transcription regulatory events that
lead to a prolonged reorganization of cellular status
[39]. The cellular environment is subject to continuous
and unpredictable changes. To deal with such changing
conditions, biological systems require robustness, a
ubiquitous property that allows cells to maintain their
central functions in the face of external or internal
perturbations [39,40]. Several redundancies and com-
pensatory mechanisms provide the system with suffi-
cient flexibility in response to various stimuli, and
support it to overcome even the most severe attacks
without becoming fragile.
Systemic chronic diseases can be seen as a manifesta-

tion of co-opted robustness, in which normal physiologi-
cal mechanisms are efficiently taken over to sustain and
promote an epidemic, and potentially a more progres-
sive disease status [40]. An optimal drug should render
the system fragile by performing perturbations for which
the system has not been optimized. Thus, the probabil-
ity of a system breakdown should correlate with the
number and diversity of the target-affecting agents
applied [41-43].
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Discussion
The enormous complexity of multicomponents is a
challenge for activity monitoring
Elucidating the risks and benefits of multicomponents,
in particular, with respect to their efficacy and safety, is
a prerequisite for their (re-)entry into standard thera-
pies. These requirements are not achievable via conven-
tional drug assessment strategies, since the plethora of
multicomponent-mediated effects does not make it fea-
sible to accomplish this via reductionist approaches.
Predictions of combinatorial effects of reference listed

drugs are typically extrapolated from classical monosub-
stance toxicity data. This approach was applied, for
example, by Borisy et al., who discovered new activities
using a systematic screening method for identifying
effective two-component drug combinations [9]. In
some cases, the molecular basis of newly emerged com-
bined effects could even be unravelled. However, such
descriptive theoretical approaches cannot be applied to
a combination of multiple compounds [15,28].
Botanical and natural product multicomponents, that

are integral parts of traditional medicine, have been dis-
covered mostly by serendipity and have been developed
and adapted to contemporary requirements over genera-
tions [6]. To-date, the best confirmations of their thera-
peutic efficacy are from their practical application. In
contrast to constituted synthetic combinations, many
traditional plant extracts or polyherbal remedies contain
not only substances that are responsible for targeting
the disease, but also components that are responsible
for reducing adverse effects and/or contribute only
indirectly to the net effect (e.g. by enhancing bioavail-
ability). Unfortunately, some of the active ingredients of
botanical multicomponents cannot be characterized, and
thereby make it impossible to exactly identify each and
every individual component. The multicomponent con-
cept of effect potentiation, as well as low doses of “prin-
ciple” constituents, is hardly feasible with the currently
available chemical and molecular biological approaches.
Therefore, an implementation of new strategies to
understand joint effects should be emphasized. This
demand is also supported by other multi-disciplinary
areas, such as nutrition or ecotoxicology sciences [44].

Multiple drug actions complicate risk-benefit assessment
strategies
The pharmacokinetics and pharmacodynamics of a drug
are usually evaluated by addressing toxicology and effi-
cacy of the main active compound(s) rather than by tak-
ing into account the combinatorial effects. Most
strategies for drug activity evaluation are hypothesis-dri-
ven and focus on confirming the primary function of an
active substance, which is frequently predicted by

structural comparative analysis. Furthermore, the
obtainable information from traditional toxicological
assays is limited due to their inability to recognize latent
toxicity.
Interdisciplinary approaches, which combine patho-

physiological and genetic information with biochemical
and cell biological assays, are increasingly being used to
study drug effects on one or more genes or proteins in
a single pathway [45]. However, these approaches are
still unsatisfactory in characterizing the multitude of
responses that occur in a perturbed system [46].
Furthermore, dosage and dose range, drug interac-

tions, and safety studies are much more complex for
mixtures [4]. Often, the requirement for additional data
on toxicology, mechanism(s) of action, pharmacoki-
netics, and drug-drug interactions, which would be
necessary for the commercialization of a multicompo-
nent as a drug, cannot be accomplished using conven-
tional methodologies in an economical way [3]. Due to
a more favourable regulatory environment, many herbal
remedies are commercialized as nutraceuticals or dietary
supplements, although the biological activity may be of
pharmacological relevance and goes far beyond the sup-
ply of nutrients, vitamins or minerals [12].
Activity monitoring of multicomponent drugs requires

a reconsideration of the conventional methods, and an
implementation of new strategies that allow for an inte-
grated overview of the participating molecular processes,
which in combination mediate activity and effectiveness.
Since in living systems molecules act in a non-linear
and concerted manner rather than isolated, it is neces-
sary to focus on multiple genes, proteins, and metabo-
lites [47]. Thus, the main activities of a complex
mixture have to be deduced from the functional changes
of a system in an unbiased and global manner. The inte-
gration of gene expression signatures and phenotypic
endpoints from in vivo data, in addition to chemical and
biochemical information, is also gaining importance in
drug research on monosubstances [5,48].

Network architecture and biological processes
Network biology gives further insight into the impor-
tance of a multiple target approach to override compen-
satory mechanisms [5]. Furthermore, it supports the
importance of focusing on the actions of drugs on cellu-
lar processes and biological functions rather than on a
single molecule in a pathway. New approaches that
include the use of large datasets on a transcript-, pro-
tein-, or metabolite-level have already started to become
part of the drug assessment process, where the main
goals are to define toxicological mechanisms, identify
biomarkers, and use expression signatures for predicting
drug effects.

Gostner et al. BMC Complementary and Alternative Medicine 2012, 12:18
http://www.biomedcentral.com/1472-6882/12/18

Page 5 of 11



Networks models, for example those that build up the
cellular interactome, are novel initiatives that aid in
visualizing the hierarchical structure of highly intercon-
nected biological functions. Such models can be gener-
ated from any type of large-scale datasets, and are usually
completed with building information that can be derived
from several interaction databases. A network is com-
posed of subnetworks or modules. Network cores are
built up of highly conserved and robust parts that are
connected with input and output subnetworks to provide
feedback and control loops. The connections between
the various components within a subnetwork, as well as
the inter-subnetwork connections, have to balance
between being too populated to enable information flow
and too sparse to counteract rapid genome-wide effects
[39]. Additionally, there is a functional redundancy of
certain components of a system to maintain its stability.
That is, in case of inactivation, a molecule’s function can
be compensated for by another molecule. Furthermore,
the modular architecture of cellular networks enables
them to restrict perturbations to a certain locale, and
thereby protect the global system. In general, the robust-
ness of a system can be affected by the removal of net-
work nodes or by sustaining malfunctions [29].
Multicomponent therapeutics may be advantageous as

they likely operate through multiple weak perturbations.
These signals may undergo parallel processing in quasi-
independent subnetworks prior to resulting in an inte-
grated effective response. Additionally, a multilateral
attack on the cellular system may also circumvent or
delay the development of resistance mechanisms
[23,29,39,49]. These multilateral perturbations can be
seen on both a cellular- and an organism-level. In some
diseases, the contemporary perturbation of many dys-
functional cell types, which are distributed throughout
the body, could help to control disease progression in a
systemic manner.

Network-based analysis of gene expression data in
multicomponent activity monitoring
High throughput screenings (HTS) using omics- (e.g.
transcriptomics, proteomics and metabolomics) and
functional genomic technologies are bio-analytical
approaches for detecting global molecular changes in a
cell system upon exposures to any kind of perturbation.
HTS data analysis can be used as a pragmatic approach
to systematically evaluate the activity of mono- and mul-
ticomponent drugs, and study combinatorial effects at a
molecular level [28,47]. In the recent past, there have
been attempts to utilize gene expression analysis to
define toxicological endpoints and to elucidate mechan-
isms of toxicity [49]. However, global technologies,
including cDNA microarrays, mass spectrometry, or
protein chip data, which may provide predictive gene

signatures of toxicity or carcinogenicity, proceed slowly
due to the high costs associated with such experiments,
the large amount of data that is generated, and the diffi-
culty of interpreting these data in an adequate manner
[18]. Additionally, a lack in standardization and valida-
tion experience is a hindrance for employing such alter-
native test methods in regulatory decision making
processes.
The starting point for the acquisition of global sets of

biological data may emanate from different levels of
analysis, starting from DNA or RNA to protein or meta-
bolites. In many cases, microarrays are used as a stan-
dard tool for studying global gene expression patterns in
response to a changed environment. Since transcription,
as the first step in gene regulation, is required for the
dynamic adaptation of the cells proteome to different
demands, a change at the transcriptional level would
also deliver information regarding their associated biolo-
gical processes [50,51]. However, information from gene
expression data is limited, and not all drug-induced
alterations can be monitored. Protective mechanisms
have to be initiated at the instance of a perturbation,
and therefore, have to be quicker than the biological
processes, which require active biosynthesis. Such
changes may include protein modification and redistri-
bution, or changes in intra- or extracellular metabolite
levels, and can be visualized only via proteomic or meta-
bolomic approaches. However, these processes are
usually followed by regulatory events at the transcription
level [28,51]. Long-lasting regulatory cascades are rare in
sensory and nutrient responses, as they need to react
robustly and rapidly against external signals. It has been
shown that a limited set of regulation patterns, which
carry out specific information-processing functions to
control gene expression spatially and temporally, occur
repeatedly throughout a network [51,52]. Thus, analyz-
ing the reorganization of gene expression signatures
may provide insight into initiated cellular programs, as
well as into the metabolic status of the cell.
To realize the full potential of global technologies in

risk-benefit assessments, the integration of expression
profiles with multiple data resources (e.g. conventional
toxicity data, toxico-and pharmacogenomic profiles, or
physical interaction maps available within public data-
bases), as well as iterative biological modelling is
required [18,53]. A compilation of bio-molecular net-
work structures would be helpful in reorganizing a vast
collection of data, and making them more accessible
and valuable with respect to their information on cellu-
lar functions and processes.

Analysing gene expression data
An extraction of bio-molecular subsets that are determi-
nants of cellular status from large datasets remains a
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major challenge in the interpretation of HTS data. Simi-
lar to other types of data, there are different strategies
available to uncover groups and patterns of co-regula-
tion or causal relationships. Herein, several important
secondary data analysis strategies for uncovering con-
served patterns from highly dimensional gene expression
data are briefly presented along with their advantages
and limitations (Figure 1).
Sorting target molecules according to expression levels

(relative to control) is the fastest and easiest way of ana-
lysis, but does not deliver much mechanistic informa-
tion. Differential expression of gene sets cannot
discriminate between directly regulated and secondary
targets. Since genes that belong to the same complex or
regulatory pathway tend to have correlated expression
profiles, an identification of patterns and expression
classes provides a much better insight into their biologi-
cal functions [51].

Principal component analysis (PCA)
Principal component analysis (PCA) is a method for
reducing high dimensional data spaces into lower
dimensional ones, while retaining most of the variation
in the dataset. Lower dimensional data spaces are easier
to visualize and interpret. Similarities and differences
between samples can be visualized by plotting. Since
standard PCA is based on a linear dimensionality reduc-
tion, modern variations of PCA are using non-linear
curves to overcome the limitations of linearity [54,55].
Clustering ("unsupervised learning”) and classification
("supervised learning”)
Clustering methods result in sets of genes that are asso-
ciated with a particular cellular state. Multivariate clus-
tering techniques calculate a measure of similarity
between gene expression profiles and are used for unsu-
pervised analysis of gene expression data (i.e. hierarchi-
cal clustering, K-means clustering, self-organizing maps)
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[56-59]. Supervised analysis strategies are used to assign
unknown members into known groups by using, for
example, linear discriminants, decision trees or neural
networks, while two-way clustering methods are used to
discover genes that are co-regulated only within a subset
of experiments [60].
Given the high number of clustering and classification

algorithms, it remains difficult to select an appropriate
algorithm based on distance measures, linkage rules and
many other parameters. Furthermore, the causality of
gene co-expression, and the functional relationships
between clusters are not explored, which makes it chal-
lenging to elucidate biological mechanisms [47,51].
Nevertheless, cluster information can be an effective
basis for further analyses based on a priori functional
knowledge.
Functional enrichment strategies and pathway analysis
To address the issue of causality in shared expression
patterns, biological knowledge accumulated in public
databases, such as Gene Ontology, can be used to dis-
sect genes that are involved in a specific biological pro-
cess, molecular function, or cellular component [61].
Many other similar tools are publicly available, and can
contribute to the functional analysis of larger gene sets
(i.e. Onto-Express, MAPPFinder, GOMiner, DAVID,
GeneMerge, FuncAssociate) [62-68]. Huang et al. classi-
fied bioinformatic enrichment tools according to their
underlying algorithms [62]. However, the development
of precise guidelines for choosing the most appropriate
enrichment tool is likely impossible, as research projects
differ in their needs and the questions being asked.
Mapping expression data into precompiled pathways is

one way of obtaining direct biological or toxicological
relevant information. However, it is important to keep
in mind that the activity of a pathway depends not only
on the abundance, but also the activity of its compo-
nents. Gene expression data may reflect mRNA abun-
dance, while proteins are further regulated through
turnover rate, activity, posttranslational mechanisms,
and interactions [69]. Furthermore, redundant and
divergent mechanisms contribute to a pathway’s activity
[15].
A limitation of functional enrichment strategies is that

they are restricted to annotated information that is
stored in the database and may be subject to change.
Although these methods enable the identification of
coherent expression changes, the discovery of new path-
ways of organizational units, which have no records in
the database, is not possible [47].
Network analysis
A better understanding of molecular relationships must
be obtained via the building, validation, and analysis of
mathematical models to gain insight into cellular pro-
cesses or even predict cellular behaviour from

transcriptional signatures [70]. The construction of gene
network architectures from expression profiles is also
often referred to as “reverse engineering” [51]. A net-
work topology cannot be easily derived from literature
on precompiled pathways, as networks are typically not
static and change within context and time, as well as
because cells constantly adapt to their internal condi-
tions in response to internal and external stimuli [71].
The construction of a network relies on information
regarding direct or indirect molecular relationships.
Aside from the topology of connections, different math-
ematical models and network constructing algorithms
can also include information on the causality from the
directionality of relationships, information on the type
of effect (i.e. activating, stimulatory, inhibitory), the
strength of the interaction, and, in some few models,
the kinetics and dynamics. For the last two points, a
high and often unpredictable number of experiments
are required to temporally resolve and untangle indivi-
dual interaction wires, as well as reconstruct the regula-
tory strengths of each component in relation to others
[70].
Network approaches, however, do allow for the inte-

gration of diverse types of data in the construction of a
biological model. Such a model may reveal important,
but not apparent, relationships, as well as identify which
non-differentially expressed molecules are actually regu-
latory molecules [51]. Furthermore, it is insufficient to
map only physical components and interactions for
assessing biological functions. It is also necessary to
evaluate how information propagates through a system.
A broad range of information is available from an inte-
gration of gene expression data and previous biological
findings, such as gene ontology (GO) categories or find-
ings from different cell types, organs, and even organ-
isms. However, this again depends on what scientific
question is being addressed, and what restrictions are
being imposed to get the most relevant biological infor-
mation out of the network.
The limitations of both functional enrichment and

network analysis are the quality and comprehensiveness
of databases available, including the nature of the stored
information (e.g. limited knowledge, interaction discov-
ered mainly in vitro), as well as their algorithms, which
do not or only very limited allow for dynamic network
modelling. Therefore, highly accurate mathematical
models for predicting network behaviour are only
applicable for certain situations.

Conclusion and perspectives
Every therapeutic intervention, either a mono- or multi-
component drug, results in changes of intra- and inter-
cellular signalling events, and finally leads to pleiotropic
effects that affect an organisms’ homeostasis. In
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particular, concerning multicomponent activity monitor-
ing, new concepts that overcome the limitations of con-
ventional risk-benefit assessment strategies are urgently
warranted.
Taking into consideration the main and adverse effects,

a strategy that combines both selected pathway-or inter-
action-based bioassays and unbiased analysis of expres-
sion signatures, would be useful to fully assess the
pharmacological properties of a multicomponent. As
shown in Figure 2, in general, some information on the
proposed effects of a multicomponent is required to gen-
erate hypotheses and design preliminary experiments.
This information can be either retrieved from traditional
application areas or deduced from the multicomponent’s
ingredients. Consequently, more detailed dose-effect rela-
tionships can be further analysed via assays that focus on
particular activities, and aid investigators in extracting
the necessary parameters for assessing large-scale quanti-
tative data. For instance, a respectable number of versa-
tile and reliable bio- and reporter gene assays are
available for elucidating the transcriptional activities of
particular signalling pathways [45].
Unbiased large-scale data acquisition strategies give

insight into transcriptomic, proteomic, and/or metabolo-
mic alterations, which provide more information on all
of the activated molecular processes in a system. The
integration of such datasets with comprehensive knowl-
edge bases containing direct and indirect molecular
interactions aids in deciphering the most prominent
modulated pathways. Furthermore, network analysis is a

useful tool for reorganizing a vast collection of data in a
way that affected functional modules in a cellular net-
work and biological information flow throughout the
system can be visualized. Also, key molecules or poten-
tial biomarkers can be identified within a network.
Finally, the evaluation of omic data may refine the
experimental model in order to make better predictions,
which will then be tested with new experiments [72].
Hence, the extraction of valuable information from large
datasets for multicomponent activity assessments
requires an iterative approach.
Aside from deciphering the main mechanisms of

action, if some of its components interfere with unex-
pected processes, side effects of the remedy can be also
detected. Furthermore, low dose extrapolations are sup-
ported and additional therapeutic opportunities or
effects specific to certain populations may be uncovered
[15,18,29]. To-date, transcriptional profiling is the most
frequently used large-scale data acquisition methodology
in clinical research. Currently, microarray technology is
less expensive and even more developed, in comparison
to other techniques applied in proteomic and metabolo-
mic research. However, it should be kept in mind that
mRNA levels detected on microarrays are steady-state
abundance levels, which also depend on transcription
and degradation rates [69]. Furthermore, direct and
indirect effects cannot be distinguished, and in some
cases, these discrepancies may interfere with the
deduced biological information.
To avoid pitfalls in applying omics approaches to multi-

component activity analysis, for example, by generating
datasets that are too large to deal with or by choosing
inadequate parameters, a rigorous experimental design is
necessary. The application of fractional factorial designs
and statistical methods, which consider the need for repli-
cating experiments and resources, may reduce experimen-
tal efforts [40,73,74]. However, there is still need for
improvements in experimental design that capture the
multivariate nature inherent to biological regulatory net-
works. At the moment, this can be addressed only through
the use of predictive mathematical models [75].
Thus, the application of large-scale data acquisition

technologies is limited, as they consume more time and
financial resources in comparison to biased assays. In addi-
tion, even the largest experimental setup would not pro-
vide sufficient information to construct a fully detailed
mathematical model with high statistical confidence. Con-
sequently, data interpretation is not always straightforward
and conclusive [51]. However, global systemic approaches
are highly recommended to generate new hypotheses, and
assist in the selection of potential biomarkers and addi-
tional focused analysis strategies.
Selecting an appropriate cellular model system may

also have a great impact on the results. For example,
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primary materials, such as donor blood cells, may pro-
vide a more in vivo-like situation regarding sensitivity
and behaviour than artificially immortalized cell lines.
Additionally, models that mimic a particular disease,
either via a genetic or chemically-induced manipulation,
could provide more relevant information on a specific
question. However, cellular model systems are limited in
that they cannot truly imitate an entire organism, where
the response to external stimuli is regulated on several
hierarchical levels (e.g. sensory organs, nervous signal
transduction system, organ systems, tissue, etc.). Thus,
knowledge regarding cellular targets, as well as their
robustness and fragility in disease onset and progression,
remains a fundamental factor that determines also the
success of new system-based strategies [28].
It should be noted that also nutritional sciences bene-

fit from multimixture analysis approaches. Metabolic
pathways and homeostasis are disturbed in many diet-
related diseases [13]. Additionally, beneficial drug-food
interactions may contribute to the therapeutic successes
of drugs not only by improving the patient’s general
condition, but also by reducing side-effects [76].
Omics technologies for multicomponent activity

assessments cannot only be applied for endpoint analysis
in mammalian systems, but can also be useful in plant
phenotyping and extract standardization. In addition to
improving phytochemical identification by coupling
bioassays to fractionation steps, metabolomic methods
are being more and more applied, as they allow for the
study of thousands of secondary metabolites in a com-
plex mixture, without the need for isolating active prin-
ciples. The chemical profile of a preparation can then be
linked to observations obtained through biological test-
ing systems [77].
Hence, the combination of both biased and non-biased

assays appears to be the most promising strategy for not
only risk-benefit assessments, but also drug design, iden-
tifying drug targets, and biomarkers. This concept may
aid in deciphering condition-specific regulations of a
system in response to a dynamic environment, as well
as contribute to the general understanding of the inter-
actions between genes, proteins, metabolites, nutrients,
drugs, and environmental factors in healthy and diseased
states.
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