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Abstract
In this paper, the investigation of the Electron–Photon Interaction Cross Sections 2017 (EPICS2017) library on the shielding 
characteristics of several glasses under various chemical systems is presented. The EPICS2017 library of ENDF/B-VIII was 
interpolated to calculate the mass attenuation coefficients (MACs) of selected glass systems. Results from EPICS2017 have 
been compared with values from experimental and theoretical methods used to evaluate the photon shielding properties. 
The EPICS2017 estimations strongly agreed with experimental MAC results. The MAC values from several Monte Carlo 
codes (Geant4, MCNP4C, MCNP5, and FLUKA) based on EPDL97 or EPDL89 strongly agreed with EPICS2017-based 
interpolation, within reasonable deviations. The obtained results indicate that EPICS2017 can be used to evaluate the MACs 
for any glass system in which there are no experimental values available at various photon energies. It was demonstrated 
that the linear EPICS2017 library can be a considerable tool in future photon shielding research and developments of glass 
systems, as a recent alternative to the widely used XCOM by NIST.

Keywords EPICS2017 library · Glasses · Gamma radiation · Shielding

1 Introduction

In the twenty-first century, technologies that utilize ionizing 
radiation like X-rays and gamma rays are becoming pro-
gressively more prominent. Ionizing radiation has become 
important in the dental and medical field, for instance, in 
X-ray imaging equipment for radiography. Several applica-
tions in medical treatment and medical diagnostics are reli-
ant on gamma radiation. For instance, gamma rays are used 
in the sterilization of human tissue, such as in connective 

tissue allograft. Furthermore, ionizing radiation is used in 
various fields such as in energy generation, chemistry and 
materials science, food industry, astronomy and agricul-
ture [1–5]. Although these radiations are excessively uti-
lized for their many advantages, human exposure to these 
kinds of radiations can have dangerous consequences. This 
is because ionizing radiations carry a lot of energy which 
dissipate through several ionization cascades. Due to their 
tiny wavelengths, they penetrate nearly all kinds of media. 
Hence, thick concrete blocks or lead is used to stop their 
penetration. The recent studies showed that the exposure to 
ionizing radiation for a long time may cause vomiting, nau-
sea, cancer, and death [6]. To protect patients and medical 
staff who deal directly with radiation, it is advised to remain 
as far away from the radioactive sources as possible, and it is 
advised to limit the exposure time to the radiation. In certain 
situations, it may not be applicable to limit the exposure 
time and distance. Accordingly, in order to provide more 
protection, radiation shields are utilized to absorb incoming 
radiations [7–9]. Ionizing radiation shields are special mate-
rials placed between the source of radiation and the person-
nel. The purpose of these shielding materials is to absorb or 
attenuate as much incoming radiation as possible to diminish 
the number of the incoming photons (i.e., intensity) to safe 
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levels [10, 11]. Thus, these reduce the harmful effects result-
ing from radiation that a person can be exposed to. Diverse 
kinds of materials are frequently utilized as ionizing radia-
tion shields depending on their applications. Researchers in 
the field of radiation protection have tended to develop new 
types of glasses as suitable materials for radiation protec-
tion uses [12–15]. Glasses have an excellent transparency, 
easy method of fabrication, variety of techniques available in 
manufacturing, and have radiation shielding characteristics 
that can be enhanced easily by incorporating heavy metal 
oxides in the glass’s formula. Accordingly, glasses are suit-
able materials to be used in X-ray rooms, and other medi-
cal facilities to allow employees to see the patients during 
medical treatments.

To evaluate the radiation shielding ability of a material, 
an experimental procedure can be undergone where the 
material is exposed to a beam of photons of known energy. 
The initial intensity, or number of photons, is first measured, 
and is compared to the amount collected at the detector. 
Through simple calculations, the linear and mass attenuation 
coefficient of the sample can be determined at these energies 
[16, 17]. This experimental method is often used; however, 
some restrictions are involved in this method. An expert in 
the field is necessary to undergo the experiment, and various 
types of equipment and radioisotopes are needed. Addition-
ally, other factors such as the spread of COVID-19, closing 
many universities and research centers, complicate this pro-
cess. Due to these factors, researchers use theoretical calcu-
lations to determine attenuation factors.

Theoretical estimations are essential before the prepara-
tion of the glasses, to ensure the samples are properly made 
and return appropriate results [18, 19]. This step is neces-
sary prior to conducting the experiment. The most widely 
used theoretical estimation method is by XCOM-NIST web 
program. Several simulation programs are also commonly 
used to theoretically determine radiation shielding param-
eters. These include MCNP, Geant4, and others which are 
Monte Carlo-based methods to determine the parameters. 

The Monte Carlo simulation method uses a photoatomic 
database and random sampling to simulate the shielding 
values. These simulations and codes allow researchers to 
easily determine the parameters of their samples. The results 
are then compared with the values obtained from experimen-
tal methods, and if they strongly agree with each other, the 
researchers can continue by calculating other parameters and 
analyzing the results [20, 21].

The Electron–Photon Interaction Cross Sections 2017 
(EPICS2017) provides the latest atomic data needed to per-
form coupled Electron–Photon transport calculations. This 
library provides partial cross sections for the elements, Z = 1 
to Z = 100, over the range of 10 eV to 100 GeV. It is the 
official ENDF/B-VIII electron and photon data [22–24]. It 
is distinguished from its predecessors by new binding ener-
gies that will translate to new partial cross sections espe-
cially of photoelectric effect. Furthermore, the application 
of this library towards new and unfamiliar users has been 
improved by the linearization of this library. Starting from 
EPICS2017, all partial cross sections are now Linear–Linear 
interpolable. Hence, EPICS2017 is a considerable system 
for comparison to other libraries. Some user-based assess-
ments of EPICS2017 have also been made [25]; nonetheless, 
these were assessments of the preliminary or replaced ver-
sion prior to the major April 2018 update [24].

In this paper, we present the investigation of the 
EPICS2017 library to the shielding features of several 
glasses under various chemical systems. The extraction 
of this library was described with consideration towards 
the new users. Furthermore, the EPICS2017 interpolation 
method was compared with several experimental and theo-
retical methods used for characterization of photon shield-
ing properties. With respect to Monte Carlo simulations, 
we mention the advantages of using the EPICS2017 library 
interpolations. The methods and results from this work can 
serve as a reference for the future photon radiation shielding 
evaluations.

Fig. 1  Illustration of the setup 
in Kumar 2017 [26] for PbO–
Li2O–B2O3 glass system

Source

NaI(Tl)
detectorGlass

Collimators

4-mm 6-mm 2-mm

150-mm 320-mm
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Table 1  Compositions of selected glass systems

a Kumar 2017 [26]
b Shamshad et al. 2017 [13]
c Sayyed et al. 2020 [27]
d Bagheri et al. 2017 [28]
e Aşkın et al. 2019 [29]
f Sayyed et al. 2019 [30]
g Sharma et al. 2019 [31]
h Aşkin et al. 2019 [32]

Glass code Elemental composition (wt%)

PbO–Li2O–B2O3 glass systemsa

PbLiB1 B(5.35); O(17.8); Pb(76.85)
PbLiB2 Li(0.46); B(5.69); O(18.93); Pb(74.93)
PbLiB3 Li(0.97); B(6.07); O(20.22); Pb(72.74)
PbLiB4 Li(1.57); B(6.51); O(21.69); Pb(70.23)
PbLiB5 Li(2.25); B(7.03); O(23.39); Pb(67.33)
PbLiB6 Li(3.06); B(7.62); O(25.39); Pb(63.93)
Li2O–SrO–Gd2O3–B2O3 and Li2O–SrO–GdF3–B2O3 glass systemsb

LiSrGdB1 Li(13.94); B(13.98); O(50.62); Sr(8.46); Gd(13.01)
LiSrGdB2 Li(13.94); B(13.98); O(48.63); F(3.99); Sr(8.46); Gd(11.01)
PbO- and Bi2O3-influenced glass systemsc

PbBiG1 B(6.21); O(49.64); Si(30.38); Pb(9.28); Bi(4.48)
PbBiG2 B(20.19); O(51.31); Al(5.29); Pb(23.21)
PbBiG3 B(3.11); O(35.77); Al(5.29); Si(18.7); Pb(37.13)
PbBiG4 O(29.59); Al(5.29); Si(18.7); Pb(46.42)
PbBiG5 B(6.21); O(21.09); Pb(27.85); Bi(44.85)
BaO–Bi2O3–Borosilicate glass systemsd

BaBiBS1 B(1.94); O(22.96); Na(1.88); Al(2.83); Si(7); K(1.47); Ba(61.92)
BaBiBS2 B(1.48); O(19.97); Na(1.43); Al(2.16); Si(5.34); K(1.12); Ba(52.51); Bi(15.99)
BaBiBS3 B(1.14); O(17.77); Na(1.11); Al(1.67); Si(4.12); K(0.86); Ba(45.58); Bi(27.75)
BaBiBS4 B(0.88); O(16.07); Na(0.86); Al(1.29); Si(3.19); K(0.67); Ba(40.27); Bi(36.77)
BaBiBS5 B(0.68); O(14.74); Na(0.66); Al(1); Si(2.45); K(0.51); Ba(36.06); Bi(43.9)
Li2O–B2O3–P2O5–TeO2 glass systemse

LiBPTe0 Li(8.82); B(2.75); O(56.94); P(31.49)
LiBPTe10 Li(7.2); B(2.24); O(50.15); P(25.7); Te(14.71)
LiBPTe20 Li(5.85); B(1.82); O(44.53); P(20.9); Te(26.9)
LiBPTe30 Li(4.72); B(1.47); O(39.78); P(16.85); Te(37.18)
LiBPTe40 Li(3.75); B(1.17); O(35.73); P(13.39); Te(45.96)
B2O3–Bi2O3–PbO–TiO2 glass systemsf

BBPT0.0 B(7.22); O(23.16); Pb(23.07); Bi(46.54)
BBPT1.0 B(7.28); O(23.44); Ti(0.27); Pb(22.1); Bi(46.92)
BBPT2.5 B(7.37); O(23.86); Ti(0.68); Pb(20.6); Bi(47.49)
BBPT5.0 B(7.52); O(24.59); Ti(1.39); Pb(18.03); Bi(48.48)
BBPT7.5 B(7.68); O(25.35); Ti(2.13); Pb(15.34); Bi(49.51)
BBPT10.0 B(7.85); O(26.14); Ti(2.9); Pb(12.54); Bi(50.58)
MoO3–B2O3–Bi2O3 glass systemsg

MoBiB1 B(5.32); O(23.6); Mo(9.44); Bi(61.65)
MoBiB2 B(4.36); O(21.5); Mo(8.6); Bi(65.54)
MoBiB3 B(3.56); O(19.75); Mo(7.9); Bi(68.79)
MoBiB4 B(2.88); O(18.26); Mo(7.3); Bi(71.56)
PbO–BaO–B2O3 glass systemsh

PbBaB10 B(15.53); O(39.36); Ba(35.83); Pb(9.28)
PbBaB20 B(15.53); O(39.04); Ba(26.87); Pb(18.57)
PbBaB30 B(15.53); O(38.71); Ba(17.91); Pb(27.85)
PbBaB40 B(15.53); O(38.38); Ba(8.96); Pb(37.13)
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2  Materials and Methods

2.1  Glass Systems

Several glass systems have been selected to compare the use 
of EPICS2017 library in the evaluation of photon attenu-
ation capabilities. For this, Kumar 2017 [26] evaluated 
photon shielding characteristics of six glass samples under 
the PbO–Li2O–B2O3 system using 133Ba, 137Cs, and 60Co 
gamma sources. A visual representation of the experimental 
setup is shown in Fig. 1, which describes a standard nar-
row beam geometry using lead collimators with significant 
source-detector distance.

On the other hand, Shamshad et al. 2017 [13] had evalu-
ated  Li2O–SrO–Gd2O3–B2O3 and  Li2O–SrO–GdF3–B2O3 
glass samples by the experimental method involving Comp-
ton scattering technique. This technique produces a spectrum 
of usable energies. In both aforementioned experimental 
methods, a NaI(Tl) detector was used with an approximate 
size of 2”.

Numerous studies have also evaluated photon shielding of 
glass systems using major Monte Carlo codes. For instance, 
Sayyed et al. 2020 [27] evaluated the influence of PbO 
and  Bi2O3 into several glass systems using MCNP5, while 
Bagheri et al. 2017 [28] evaluated five glass samples under 
BaO–Bi2O3–Borosilicate system using MCNP4C. Moreo-
ver, five glass samples under  Li2O–B2O3–P2O5–TeO2 system 
were evaluated by Aşkın et al. 2019 [29] and six glasses 
under  B2O3–Bi2O3–PbO–TiO2 system by Sayyed et al. 2019 
[30], both using Geant4 toolkit for narrow beam simula-
tions. Lastly, the FLUKA code was used by Sharma et al. 
2019 [31] to evaluate four glasses under  MoO3–B2O3–Bi2O3 
system. This code was also used by Aşkin et al. 2019 [32] to 
evaluate four glasses under PbO–BaO–B2O3 system.

Each aforementioned glass system was considered in this 
work for comparative evaluation. The chemical composi-
tions derived from each reference are detailed in Table 1.

2.2  EPICS2017 Extraction and Interpolation

The EPICS2017 library extraction was made using the 
version in the ENDF-6 format [33], retrieved from the 

IAEA-NDS. As an example, the format for the 1-H is illus-
trated in Fig. 2.

In this format, each partial or total cross section has its 
own energy grid. The partial or total cross sections (in blue) 
are in units of barns and are each paired with corresponding 
photon energies (in red) in units of eV. There are six col-
umns of energy and cross section grids. They are read from 
left to right. Following these columns, the element number is 
declared (in yellow) where 100 corresponds to 1-H (e.g., 200 
for 2-He). This number is directly connected to the type of 
cross section or scattering factors and functions (in green). 
In the illustrated example, this reads as 23/501 denoting 
that this is for the total atomic cross sections. Furthermore, 
23/502 and 23/504 are for coherent and incoherent scattering 
cross sections, respectively. The 23/515 and 23/517 are for 
pair productions in electron and nuclear fields. Lastly, the 
23/534 and above are for the individual photoelectric within 
each subshell.

It is worth mentioning that the sum cross sections in 
EPICS2017 can be interpolated directly, since the library 
has been converted into a linearized set of data. However, 
the total atomic cross section σT may also be derived as the 
sum of all available partial cross sections of photoelectric, 
coherent and incoherent scattering, and pair production in 
nuclear and electron fields, and neglecting photonuclear as:

The interpolations of each partial cross sections were 
executed by a program similar to the spreadsheet in Hila 
et al. 2020 [34] but built to use the recommended linear 
interpolation law of EPICS2017. In this program, the atomic 
masses are stored for use while the input material entry is 
supplied by the user. After the entry, the material’s partial 
cross sections are derived using the element partial cross 
sections available in the library, through the equation:

where i is each element that comprises the material (or glass 
for this work), f is the atom fraction for this element, σi is 
the partial cross section for the element, and σ is the partial 
cross section of the material.

(1)�T = �PE + �coh + �incoh + �PP−n + �PP−e

(2)� =

∑

fi�i

Fig. 2  A snippet of the data 
from EPICS2017 in ENDF-6 
format for 1-H (Line 170) …

(Line 171) 1.00000000 4.62084E-6 1.05924839 8.74720E-6 1.10597719 1.20021E-5 10023501 4
(Line 172) 1.14237171 1.45375E-5 1.19922131 1.84983E-5 1.25890000 2.26569E-5 10023501 5
(Line 173) 1.33350268 2.78564E-5 1.39234189 3.19580E-5 1.43816887 3.51530E-5 10023501 6
(Line 174) 1.50975292 4.01446E-5 1.58490000 4.53857E-5 1.67881736 5.19373E-5 10023501 7
(Line 175) …

ENDF-6 format for 1-H

Energy (eV) Cross section (barns) Element Data type
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Finally, the relationship of the total atomic cross section 
to the mass attenuation coefficient can be derived as follows:

where Ai is the atomic mass of the ith element and NA is 
Avogadro’s number.

3  Results and Discussion

A comparison of EPICS2017-based mass attenuation coef-
ficients and experimentally determined ones is described 
in Tables 2 and 3. The experimental data in Table 2 are 
from Kumar 2017 [26] who evaluated the PbO–Li2O–B2O3 
glass systems using a transmission beam geometry with sev-
eral cascaded lead collimators. An agreement was shown 
between the EPICS2017-based interpolated results and the 
experimental values. For this comparison, the deviation was 
found to be highest at 2.2% for the 356 keV gamma ray inci-
dent in PbLiB5 glass. Furthermore, the experimental data 
in Table 3 show the evaluated mass attenuation coefficients 
for  Li2O–SrO–Gd2O3–B2O3 and  Li2O–SrO–GdF3–B2O3 by 
Shamshad et al. 2017 [13]. Their study used the Compton 
scattering technique to vary the gamma ray energies. Hence, 
the energies reported were inevitably subjected to uncertain-
ties which will translate in the comparison of attenuation 
coefficients. As shown by Table 3, there is a larger differ-
ence for this comparison due to the additional uncertainties. 
The maximum deviations were 6.5% in 229.96 keV for LiS-
rGdB1 and 3.8% in 569.74 keV for LiSrGdB2. Majority of 
the experimentally determined mass attenuation coefficients 
were lower than the theoretical due to counting statistics, 
sample density and geometry, and the deviations from nar-
row beam geometry. Nevertheless, reasonable agreements 
were found between the EPICS2017-based values in com-
parison with the experimental results.

Comparisons of simulated mass attenuation coefficients 
using MCNP codes are described in Tables 4 and 5. In 
Table 4, comparative results are shown between EPICS2017 
interpolated results versus MCNP5 simulations, for several 
PbO- and  Bi2O3-influenced glasses taken from Sayyed et al. 
2020 [27]. This comparison is made in a broad energy range 
of 15 keV to 15 MeV. Good agreements were derived from 
these results for most of the energies considered. Further-
more, Table 5 shows comparisons for BaO–Bi2O3–Boro-
silicate glass systems using MCNP4C taken from Bagheri 
et al. 2017 [28]. This comparison is for the gamma energies 
of 133Ba, 137Cs, and 60Co. There are slightly higher values 
for the simulated attenuation coefficients as compared to 
the EPICS2017 which may be due to deviations from nar-
row beam geometry of the simulation models used. It is 
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notable that the MCNP5 is based on the EPDL97, while the 
MCNP4C is based on EPDL89. Both are officially super-
seded by the EPICS2017, and hence the values derived from 
the latter are considered more accurate in general.

A second comparison of simulated mass attenuation 
coefficients toward the EPICS2017-based interpolations is 
shown in Tables 6 and 7, for several gamma ray energies 
using the simulation toolkit Geant4. Table 6 shows the mass 
attenuation coefficients using the  Li2O–B2O3–P2O5–TeO2 
glass systems from Aşkın et al. 2019 [29], while Table 7 
shows evaluations for  B2O3–Bi2O3–PbO–TiO2 from Sayyed 
et al. 2019 [30], taken for several discrete gamma energies. 
These results show comparable agreement between both 
methods. Nevertheless, it is important to note that the cur-
rent Geant4 low energy electromagnetic is also derived from 
the Livermore data library EPDL97.

The FLUKA code which also derives from the EPDL97 
has been compared to EPICS2017 based results. Tables 8 
and 9 show the FLUKA simulated attenuation coeffi-
cients in several gamma energies for glass systems of 
 MoO3–B2O3–Bi2O3 and PbO–BaO–B2O3, respectively. The 
set of comparison for these glasses show the best agree-
ment between all simulated attenuation coefficients versus 
the EPICS2017 derived values. Since FLUKA uses simi-
lar photoatomic libraries as most of the codes previously 
described, the closeness of the FLUKA comparison is likely 

attributed to good geometry of the simulation models as well 
as large quantities of simulation source particles used.

Several glass systems have been studied and proposed in 
the literature, which have certain advantages and disadvan-
tages over others particularly in cost, optical transparency, 
mechanical properties, toxicity, and gamma ray shielding 
characteristics. In glass chemical compositions, the incor-
poration of heavy oxides generally increases the shielding 
capabilities at the possible expense or degradation of other 
characteristics. Conveniently, several characteristics of these 
materials can be theoretically tested, such as its radiation 
shielding characteristics. Hence, an efficient and accurate 
method of obtaining the gamma shielding characteristics is 
of importance for these widely used materials.

The intercomparisons showed an overall good agreement 
between the latest EPICS2017 library and several experi-
mental and theoretical methods. It is notable that the val-
ues derived from EPICS2017 may present desirable results 
for these glasses. This is because most Monte Carlo codes, 
under the commonly used simulation models, may also 
derive deviations from narrow beam geometry. Further-
more, the Monte Carlo random sampling method involves 
obtaining the mean free paths of the glasses prior to simula-
tions, using the built-in photoatomic data library. However, 
the photoatomic data libraries installed in modern Monte 
Carlo codes are likely the predecessors of EPICS2017. In 

Table 5  Comparison of MAC 
from EPICS2017 (ENDF/B-
VIII) and MCNP4C simulations 
in Bagheri et al. 2017 [28] for 
BaO–Bi2O3–borosilicate glass 
systems

Glass code 662 keV 1173 keV 1332 keV

EPICS2017 MCNP4C %D EPICS2017 MCNP4C %D EPICS2017 MCNP4C %D

BaBiBS1 0.0771 0.0763 1.08 0.0546 0.0543 0.47 0.0509 0.0505 0.76
BaBiBS2 0.0828 0.0816 1.41 0.0558 0.0555 0.52 0.0518 0.0512 1.14
BaBiBS3 0.0869 0.0857 1.40 0.0567 0.0560 1.23 0.0525 0.0519 1.07
BaBiBS4 0.0901 0.0888 1.44 0.0574 0.0570 0.69 0.0530 0.0523 1.26
BaBiBS5 0.0926 0.0909 1.85 0.0579 0.0575 0.77 0.0534 0.0527 1.26

Table 6  Comparison of MAC from EPICS2017 (ENDF/B-VIII) and Geant4 simulations in Aşkın et al. 2019 [29] for  Li2O–B2O3–P2O5–TeO2 
glass systems

Glass code 356 keV 662 keV 1173 keV 1332 keV

EPICS2017 Geant4 %D EPICS2017 Geant4 %D EPICS2017 Geant4 %D EPICS2017 Geant4 %D

LiBPTe0 0.0980 0.1021 4.15 0.0755 0.0817 8.28 0.0574 0.0554 3.43 0.0537 0.0525 2.32
LiBPTe10 0.1033 0.1024 0.84 0.0754 0.0756 0.32 0.0565 0.0542 4.13 0.0529 0.0536 1.27
LiBPTe20 0.1076 0.1080 0.36 0.0753 0.0761 1.09 0.0558 0.0569 1.89 0.0522 0.0503 3.73
LiBPTe30 0.1113 0.1152 3.53 0.0752 0.0773 2.77 0.0553 0.0552 0.11 0.0517 0.0510 1.31
LiBPTe40 0.1144 0.1114 2.62 0.0752 0.0733 2.47 0.0548 0.0554 1.16 0.0512 0.0517 1.00
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retrospect, some amount of time is needed to adopt new 
libraries into existing Monte Carlo software. Codes such as 
PHITS, FLUKA, and Geant4 are still based on the preceded 
EPDL97, and the latest MCNP6.2 is based on EPICS2014. 
Apart from accuracy of cross sections and absorption edge 
energies, one major difference between EPICS2017 and 
its predecessors is its construction as a linearly interpola-
ble library. Hence, it is made easier for unfamiliar users to 
extract this new system with less risk of producing inac-
curate data. Furthermore, the EPICS2017 is freely down-
loadable at present, and is hence favorable for users who do 
not have license to the major Monte Carlo software. Since 
glass systems are currently prevalent in scientific research, 
this therefore makes the EPICS2017 a progressive tool for 
photon radiation shielding and developments for this widely 
used material.

4  Conclusion

This study has compared the interpolated mass attenua-
tion coefficients from experimental and theoretical simula-
tion methods with the library interpolation method via the 
EPICS2017 system. The EPICS2017 has been interpolated 
using the recommended linear scheme, using a built pro-
gram that stores the partial cross sections. The details of 
the extraction have been described for unfamiliar users. The 
results for the experimental method were shown to be in 
agreement with the EPICS2017-based interpolations. This 
includes the comparison using a discrete energy gamma 
source transmission setup, as well as a variable energy 
gamma source produced via the Compton scattering tech-
nique. Furthermore, the results for multiple glass systems 
evaluated using different Monte Carlo codes have shown 
good agreement with EPICS2017. However, several diver-
gences were found between simulated and interpolated mass 
attenuation coefficients. Nevertheless, this is rooted from 
the deviations from narrow beam geometry of the simu-
lation models, from Monte Carlo sampling statistics, and 
deviations from the photoatomic libraries of the simulation 
codes versus EPICS2017. Since the latter is designed spe-
cifically to replace Monte Carlo code libraries, it is there-
fore concluded that the EPICS2017 system is a progressive 
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instrument in future photon shielding research and develop-
ments of glass materials.
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