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Abstract

The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse 

transcriptase and retain potency against drug-resistance mutations. Our discovery that water 

molecules play an essential role in the drug binding is reported. Femtosecond experiments and 

theory expose molecular level dynamics of rilpivirine bound to HIV-1 reverse transcriptase. The 

two nitrile substituents (-CN), one on each arm of the drug, have vibrational spectra consistent 

with their protein environments being similar in crystals and in solutions. Two-dimensional 

vibrational-echo spectroscopy reveals a dry environment for one nitrile while unexpectedly the 

other is hydrogen-bonded to a mobile water molecule, not identified in earlier X-ray structures. 

Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray 

structure indeed reveals a water-drug interaction network. Maintenance of a crucial anchoring 

hydrogen bond, despite the enlargement and structural variation of the binding pocket, may help 

retain the potency of rilpivirine against the pocket mutations.

Reverse transcriptase (RT) is an essential enzyme in the replication of the human 

immunodeficiency virus (HIV). HIV-1 RT is a 117 kDa heterodimer composed of two 

subunits, p66 and p51. Nonnucleoside RT inhibitors (NNRTIs) bind to a pocket of the p66 

subdomain where drug-resistance mutations occur.1,2 The NNRTI rilpivirine (TMC278/

Edurant), a potent diarylpyrimidine (DAPY) inhibitor of wild-type (WT) and NNRTI-

resistant viruses, recently received FDA approval as an anti-AIDS drug. Previous studies 

have shown that rilpivirine could retain potency against mutant HIV-1 viruses through a 

combination of torsional flexibility, ability to reposition, and hydrogen bonding between 

drug linker atoms.1 However, a complete and detailed map of molecular interactions by 

which the inhibitor maintains its potency in mutated binding pockets has remained unclear.

Rilpivirine has distinct structural elements, in particular, the two nitrile (CN) groups which 

are required for the creation of an effective and potent drug.1 By a fortunate coincidence, 

these CN groups have readily observable characteristic vibrational spectra3 that allow them 

to serve as vibrational probes4–6 of structure and dynamics inside the binding pocket of RT7. 

The current work has successfully used these two CN groups to provide comparative 

information on the dynamics inside the pocket for rilpivirine in complexes with WT-RT and 

two clinically important double mutant RTs, namely M1-RT (RT51A; L100I/K103N-RT) 

and M2-RT (RT55A; K103N/Y181C-RT), which are known for significantly lowering the 

potency of other NNRTIs.1 The results are both unexpected and remarkable in that a special 

role for water in drug binding and mobility was discovered.

This work follows basically three lines of approach: linear vibrational spectra of the nitrile 

groups of the drug in crystal and solution to observe equilibrium features of the nitriles 

environments; two dimensional vibrational echo (2D-IR) spectra8–11 of the drug complexes 

to extract dynamic properties of the vibrational frequency distributions for the nitrile groups; 

and molecular dynamics (MD) simulations and density functional theory (DFT) 
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computations to interpret the spectral features/changes of the nitrile groups in relation to the 

dynamic and structure of the RT/drug complex. The IR spectrum of the RT/drug complex 

shows two bands in the stretching vibrational region of nitrile7 and each is assigned to a 

single nitrile group, as strongly indicated by the similarity of the solution and single crystal 

IR spectra and by the single conformation of the protein backbone observed in the X-ray 

structure.1 2D-IR spectroscopy allows one to experimentally monitor and measure the 

equilibrium dynamics of the vibrational frequency distributions of nitriles in the drug due to 

fluctuations of its environment. The decays of the resulting frequency-frequency correlation 

functions (FFCF) cannot be detected from conventional IR spectra yet they contain essential 

information regarding the dynamics of the changing local environments and prompt strong 

inferences regarding the equilibrium fluctuations of the structure of the NNRTI binding 

pocket. Finally, the dynamics results are brought into relation with a very high-resolution 

(1.51 Å) X-ray crystal structure and classical MD simulations.

Results

The drug inside the WT-RT7 shows two resolvable, but slightly overlapped, vibrational 

absorption bands in the same region (Figure 1b–c). Naturally, the two bands are attributed to 

the two nitrile groups of the drug.7 The first band is located at 2215 cm−1 and has a full 

width at half maximum (FWHM) of ~7 cm−1 and the second is centered at ~2225 cm−1 with 

FWHM ~12 cm−1. The ratio of the peak absorptivities of the low to the high frequency 

transition is ~2. While the overall IR spectral shape of the drug/enzyme complex for 

different mutants are similar (Figure 1d–e), a significant change in the width of the high 

frequency band and in the ratios of integrated transition dipoles (area) is observed (see Table 

S1 of Supplementary Information). The FWHM of the high frequency transition increased 

from ~12 cm−1 for the WT-RT to ~14 cm−1 for the M1-RT and to ~18 cm−1 for the M2-RT. 

Similarly, a change in the ratio of areas of the broad to narrow bands is observed in the 

different complexes: 1.10:1 in the WT-RT, 0.95:1 in the M1-RT, and 0.90:1 in the M2-RT. 

A key result concerns the vibrational spectra of the WT-RT/rilpivirine complex in a single 

crystal (Figure 1b). Vibrational spectra are very sensitive to the local environment of the 

vibrational mode so the similarity of the spectrum of the drug in the crystal (Figure 1b) and 

aqueous solution (Figure 1c) establishes that the local environment of the nitrile groups in 

the binding pocket, as deduced from the X-ray crystal structure, are maintained in solution. 

Remarkably the vibrational spectra (Figure 1a) of rilpivirine7 in bulk solvents display only a 

single, unresolved, and broad transition (FWHM ~8–14 cm−1) that shifts from 2216 cm−1 in 

dimethylsulfoxide to 2225 cm−1 in methanol and is always ~30 percent broader than any 

model compounds12,13 in the same solvent (see Table S1 of Supplementary Information).

The 2D-IR spectra of M1-RT/rilpivirine and M2-RT/rilpivirine complexes are shown in 

Figure 2 as plots of coherence, ωτ, versus detection, ωt, frequency for particular population 

times (T). They show a positive band along the diagonal (ωτ = ωt), which corresponds to the 

v=0→1 transitions, and its negative band corresponding to the v=1→2 transitions which is 

anharmonically shifted along ωt. In both mutants, the positive and negative bands are 

composed of two distinct diagonal transitions located at ~2215 cm−1 and ~2225 cm−1 in ωτ. 

The negative band is anharmonically shifted from the positive band by 24.0 cm−1 which is 

consistent with previous reports on nitriles.7 The nitrile T1 vibrational lifetimes estimated 
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from the peak 2D IR signal decay were 3.8±0.5 ps for M1-RT and 4.1±0.5 for M2-RT 

benzonitriles in agreement with the value reported for WT-RT7 and 3.2±0.5 ps for M1-RT 

and 4.0±0.5 ps for M2-RT cinnamonitriles. These lifetimes are not considered to be 

significantly different and they are all much longer than the frequency relaxation. To 

estimate and compare the changes, without considering the vibrational lifetime, occurring in 

the 2D-IR spectra for the different enzyme/drug complexes, the traces of their signals along 

the diagonal were least square fitted with two Gaussians (see Table S2 of Supplementary 

Information). The 2D-IR modeling showed that the 2215 cm−1 transition always has the 

higher peak intensity, the 2225 cm−1 transition is always the broader, and the peak height of 

the 2215 cm−1 transition is twice that of 2225 cm−1 for any mutant or waiting time (T). 

However, statistically significant differences in the FWHM of the high frequency peak and 

peak area ratio are observed for the different mutants. Their FWHMs are 13.4 ± 2.3 cm−1, 

14.8 ± 2.2 cm−1, and 10.5 ± 2.3 cm−1 for the M2-RT, M1-RT, and WT-RT complexes, 

respectively. These differences are also apparent in the ratio of the integrated areas of the 

low to high frequency peaks, which are 1.4 for M2-RT, 1.1 for M1-RT, and 2.1 for WT-RT. 

In contrast, the widths of the low frequency peak do not differ statistically (6.9 ± 0.9 cm−1 

for M2-RT, 7.6 ± 0.8 cm−1 for M1-RT, and 8.8 ± 1.3 cm−1 for WT-RT). Furthermore, 

neither the spectral line shape nor the peak position nor the FWHM, for any of the enzyme/

drug complexes, shows any waiting time evolution. Finally, the FFCF decay time of ~1 ps, 

determined from the waiting time dynamics of the integrated echo peak signal14,15, is 

observed for either the WT and mutant complexes (Figure 3). Although the dynamics of a 

water grating signal16 will interfere with the nitrile signal in the integrated echo thereby 

making it zero at long waiting times, the peak shift dynamics is only slightly influenced 

(Figure 3b,d). Moreover, the noise in the 2D IR spectra has negligible influence on the 

dynamics of the integrated echo (Figure 6).

The interactions and spectral signature of the nitrile groups of rilpivirine were computed 

from classical MD simulations of the drug/RT complexes immersed in a classical bath of 

water. The similarity of the FTIR spectra of WT-RT/rilpivirine complex in solution and in 

single crystal provides confidence in basing the simulation on the crystal coordinates. Figure 

4 shows calculated radial distribution functions gNCNOW(r) between the nitrogen atom of 

nitrile (NCN) in the cinnamonitrile and benzonitrile arms and oxygen atoms of water (OW) 

from our MD simulations. For all three studied drug/enzyme complexes, the g(r) functions 

show that there is water at H-bond distance to the nitrile of the cinnamonitrile arm (Figure 

4b). Also, the water accessibility to the cinnamonitrile end of the pocket, as seen by the 

gNCNOW(r) in the region of 4–6 Å, is very different for the different mutants and follows the 

trend: WT-RT<M2-RT<M1-RT (where < means less accessible). In contrast, the 

benzonitrile arm does not have water at conventional H-bond distances (Figure 4a).

We report a very high-resolution (1.51 Å) X-ray crystal structure of WT-RT/rilpivirine 

complex achieved by developing a new sample preparation (see Supplementary 

Information). The refinement converged with an R and Rfree of 0.154 and 0.193, 

respectively (see Table S3 of Supplementary Information). In this structure, the 

conformation of rilpivirine is similar to the previously reported 1.80 Å structure of the 

complex.1 Remarkably, this new structure shows a crystallographic water molecule at a H-
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bonding distance (2.7 Å) to the nitrile of the cinnamonitrile arm, whereas the benzonitrile 

arm is in a water-free environment, in complete agreement with the 2D-IR data and MD 

simulations. Note, that the water H-bonded to the cinnamonitrile is apparent in the very 

high-resolution structure whereas it was not evident in the previous structures of the drug 

complexes with WT-RT, M1-RT, and M2-RT at lower resolutions.1

Discussion

Rilpivirine shows two completely different IR spectra when dissolved in bulk solvents and 

when complexed with the HIV-1 RT enzyme. While the benzonitrile and cinnamonitrile 

(Figure 1) vibrational bands of rilpivirine cannot be distinguished in bulk solvents (Figure 

1a), two very distinct bands are observed in the solution of the enzyme/drug complex. 

However, the single absorption band in bulk solvents blue-shifts and widens with increasing 

solvent polarity, like many other reported CN stretch bands4–6,12,13. Moreover, the CN 

stretch band of rilpivirine is always broader than the typical CN stretch in protic and aprotic 

solvents.17 This is consistent with the single IR band being composed of two overlapping 

transitions with similar transition dipole moments where the environment sensed by each 

nitrile group is so similar that it fails to spectrally separate the two CN stretch transitions 

(see Supplementary Information). DFT calculations also agree with this result and show that 

the two drug CN stretches have similar transition dipole moments and are only separated by 

4 cm−1 (see Table S4 of Supplementary Information).

Interestingly, the drug bound to the RT mutants shows two resolved transitions where the 

frequency separation between bands is caused exclusively by the drug being positioned 

inside the enzyme.7 Moreover, mutations in the pocket significantly modify the IR 

bandwidths without altering the transition dipoles. In the mutant RT/drug complex, the 

broader, higher frequency band resembles the CN stretch in an aqueous environment and the 

narrower, low frequency, transition has parameters similar to model compounds in polar 

aprotic solvents. Therefore, the spectral parameters of the two nitrile CN stretches in the 

mutant complexes indicate that one arm of the drug is in a water-free cavity while the other 

occupies a water-containing environment. These spectral changes in the CN bands of the 

drug for the two mutant complexes reinforce the idea that each nitrile group of the inhibitor 

senses the differences in the surrounding environment caused by different mutations in the 

pocket. However, an assignment of the two transitions to the benzonitrile and cinnamonitrile 

ends of the drug is not certain from the analysis of the linear spectral data alone. Thus, the 

FFCF of the vibrations is used to achieve this assignment. A correlation time of ~1 ps 

suggest the CN group is undergoing hydrogen bond rearrangements from water or charged 

side chains (0.8–1.5 ps18–21). This contrasts with the slower correlation times found in 

aprotic solvents (5–10 ps20,22), which was previously measured in the low frequency CN 

stretch transition of the WT-RT/drug complex7. Although the echo peak shift does not 

distinguish the two CN groups, simulations show that it will be dominated by the component 

that decays fastest and hence has the widest transition. Therefore, the fast correlation time 

decays of the two mutant RT/rilpivirine complexes are attributed to the relaxation of the 

higher frequency transition at ~2225 cm−1, corresponding to the frequency dynamics of the 

cinnamonitrile end of the drug as inferred from MD simulations and X-ray structure. 

Although in a given solvent, the CN stretch of model cinnamonitriles always have lower 
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transition frequencies than benzonitriles, in a protein environment constituted from a 

specific sequence of amino acid side chains, all bearing different type of interactions with 

the drug, the ordering could be easily reversed. Moreover, it has been observed that through 

different side chain interactions the frequency of the benzonitrile CN stretch can vary within 

18 cm−1.23 Given that the cinnamonitrile group is interacting with water (Figure 5), it is 

expected that its CN stretch frequency will be blue-shifted by the H-bonding as is usually 

observed in the CN stretch modes of nitrile model compounds,5 including rilpivirine. Even 

when the CN group is in contact with only one water molecule, its CN stretch frequency can 

shift significantly depending on the angle and distance between the CN and the OH 

groups.17 On the contrary, the CN stretch transition of the benzonitrile arm inside the 

enzyme is down shifted by 3–4 cm−1 from its typical frequencies for aprotic solvents such as 

tetrahydrofuran (THF). The assignments made here do not follow the direct comparison with 

model compounds in bulk solvent as it was assumed in Ref. 7. The vibrational frequencies 

of CN in structurally defined pockets of a protein may not conform to those in bulk solvents 

because of spatial variations in the dielectric constants or specific interactions arising from 

the unique pocket structures. Thus the ordering of benzo- and cinnamonitrile CN frequencies 

need not be those of the model compounds. The signatures presented by nitrile groups of 

their local environments in proteins are also evident from the peak heights observed in the 

FTIR and 2D-IR diagonal traces. An oscillator immersed in water will have comparatively 

large frequency fluctuations that do not remain correlated for more than ~1 ps6,19,20,24 

because of the fast dynamics of H-bond making and breaking25,26. Thus, the water induced 

frequency fluctuations translate into a broadening of the IR lineshape, which decreases the 

peak intensity to maintain its transition dipole magnitude. This hypothesis is supported by 

theoretically modeling the frequency fluctuations of the nitrile groups of rilpivirine in 

various environments. In bulk solvents, the distributions of frequency fluctuations for both 

CN stretches have very similar standard deviations (σ) consistent with each group sensing 

the same type of environment, but both are strongly solvent dependent: σ = 9 cm−1 for water 

and σ = 3.5 cm−1 for THF (see Figure S1 of Supplementary Information). Inside the protein, 

the frequency fluctuations are distinctly different for each nitrile group: σ = 6 cm−1 and for 

cinnamonitrile and σ = 3 cm−1 for benzonitrile. Also, the simulation indicates that the main 

contribution to the vibrational frequency fluctuations in the enzyme is from the water 

interacting with the nitrile group (see Figure S2 of Supplementary Information). The through 

bond effects on the CN mode caused by other groups, such as -NH2 H-bonding to water, 

have not been considered but the through-space effects would be expected to be negligible. 

Future experiments on other vibrations of the drug such as the 15N-H stretch would also add 

understanding to the dynamics of the pockets. The experimental probes of the pocket 

dynamics are limited to the spectral densities of the nitrile vibrations which we assume are 

not influenced by other parts of the drug undergoing hydrogen bonding although additional 

experiments are needed to prove this statement.

From the analysis of the linear and nonlinear experimental results, we propose a spectral 

model for the bound rilpivirine which is tested by simulations of the FTIR and 2D-IR using 

response functions27 and the parameters observed in these and previous experiments7 (see 

Table S5 of Supplementary Information), where the FFCF is represented by an exponential 

decay of the form: . The simulation leads to a 2D-IR spectrum of 
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WT-RT/rilpivirine at different waiting times (Figure 6) which reproduces well the observed 

elongated spectral shape of positive and negative peaks with the two distinctive peak 

maxima and their diagonal peak height ratio of ~ 2:1. However, these spectral features have 

reduced discernibility because of the noise contribution (Figure 6). They also correctly 

predict the frequency dynamics giving rise to the peak shift (Figure 6). These same 

parameters reproduce the linear IR spectrum of the WT-RT/rilpivirine complex (see Figure 

S3 of Supplementary Information).

Structural changes of the binding pocket are clearly seen in the M1-RT and M2-RT mutants 

as reported from X-ray studies1 and by vibrational spectroscopy. The crystal structure data 

indicate that the drug undergoes significant conformational and positional rearrangements 

inside the M1-RT mutant when compared to the WT-RT complex.1 Vibrational 

spectroscopy supports, through changes in their spectral features, these structural 

modifications and shows that even when the pocket is mutated the cinnamonitrile end of the 

drug maintains its H-bond to water. The MD simulations also predict an enlargement of the 

binding pocket that increases the access of water to the pocket and the mobility of the drug. 

The pocket widening is clearly seen in the RMSD of drug coordinates in the computed 

trajectories for the complex with RT (see Table S4 of Supplementary Information). It will be 

interesting to determine whether the highly mobile waters found so readily by the 2D IR 

method in the mutants will be discernible in the X-ray diffraction electron density maps 

when they are obtained at high resolution. Moreover, MD simulations predict that the 

benzonitrile group of the drug bound to the M1-RT also interacts with a water molecule 

although with a significantly smaller probability than with cinnamonitrile (see Figure 4). All 

experimental spectral effects are reproduced by the simulation. Although the structural 

changes within the binding pocket in the mutants are significant, the drug maintains its 

position through a network of hydrogen bonds of which the newly discovered interaction 

between water and the cinnamonitrile group is essential. This interaction prevents the drug 

from being ejected from the binding pocket even when confronted with significant structural 

modifications (mutations). Thus, this interaction of the cinnamonitrile with water explains 

not only why the cinnamonitrile containing drugs are less susceptible to common mutations 

of the binding pocket, but also their strong potency.

In summary, 2D-IR experiments and MD simulations of two double mutant RT/rilpivirine 

complexes show that the spectral signature of the drug CN vibrations reveals essential, 

functional, and structural changes within the binding pocket which are not readily seen by 

other methodologies. In combination with MD simulations, 2D-IR experiments show that 

mutations producing M1-RT and M2-RT variants significantly affect the water accessibility 

to the binding pocket in the presence of rilpivirine. Because of increased flexibility, the 

DAPY class of NNRTIs have better properties overall than the first generation NNRTIs. 

However, the presence of the cinnamonitrile group has also enhanced the potency of 

rilpivirine by ~3-fold compared to its predecessor, dapivirine/TMC1201. The current study 

using IR, MD, and crystallography shows that the conserved interaction of the 

cinnamonitrile with a water molecule contributes to the enhanced binding of rilpivirine, and 

the interaction may be exploited in designing new NNRTIs.
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Methods

Sample preparation

RT constructs were expressed and purified as previously described.28 Complexes of 

rilpivirine with L100I/K103N RT (RT51A) and Y181C/K103N RT (RT55A) in 10 mM Tris 

buffer, 75 mM NaCl at pH 8 were originally prepared in 2.5% DMSO and 1% β-octyl 

glucoside whose molar ratios were reduced to less than 0.002% by buffer exchange. The 

final concentrations of rilpivirine bound to RT were determined to be 1.29 mM (L100I/

K103N) and 1.55 mM (Y181C/K103N). The engineered forms of the RT used for the 

solution phase studies were identical to those in the X-ray studies both for wild-type and 

double mutant samples. Sources of chemicals are given in SI.

Protein crystals were grown28 from drops (see Supplementary Information) on CaF2 then 

placed into a cell with two CaF2 windows separated by a Teflon spacer of 56 μm thickness. 

The integrity of crystals grown on CaF2 windows was verified by X-ray diffraction analysis. 

The dimensions of each single crystal in the plane of the windows were less than or equal to 

200 × 300 μm with a solvent content of approximately 56%. The concentration of rilpivirine 

in the crystal is ~3.5 mM based on the Matthews coefficient.

2D-IR and linear IR spectroscopy

The FTIR spectra were recorded on a Nicolet 6700 spectrometer. The 2D-IR signals were 

collected and processed by interferometry as previously described.29 An IR pulsed source of 

70 fs duration centered at 4.5 μm with a spectral band width of ~210 cm−1 was generated 

from a home made OPA pumped with a home made ultrafast Ti:Sapphire amplifier. The IR 

source was divided into three beams of approximately 300 nJ energy and a fourth beam of 

~30 nJ. The three 300 nJ pulses (labeled as k1, k2, and k3) were focused onto the sample and 

the IR photon echo field in the −k1+k2+k3 phase matching direction was collinearly 

overlapped with the local oscillator pulse (kLO) preceding k3 by a time delay of ~1 ps. The 

interferometric signal was dispersed off of a 100 grooves/mm grating and detected using an 

amplified 64 element MercuryCadmiumTelluride detector. After Fourier transformation the 

signals along the ωτ and ωt (detection frequency) intervals of the two-dimensional spectrum 

were obtained. A detailed description of the two-dimensional analysis can be found 

elsewhere.29 The 2D-IR spectra are plots of coherence, ωτ, versus detection, ωt, frequency.

X-ray crystallography

Crystallization was performed using the hanging-drop method with EasyXtal DG-Tools 

(Qiagen, Valencia, CA) crystallization trays (see Supplementary Information). Data 

collection was performed at the National Synchrotron Light Source (NSLS) X29 beamline. 

The diffraction data were indexed, processed, scaled and merged using HKL2000I30. 

Structure refinement and model building were performed using PHENIX31 and Coot32, 

respectively. The data processing and refinement statistics are listed in Table S3 of 

Supplementary Information and the coordinates and structure factors have been deposited in 

the Protein Data Bank (PDB; accession code 4G1Q).
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Molecular dynamics simulations and frequency calculations

Simulations of all three RT/inhibitor complexes were performed using AMBER 1133 with 

the AMBER ff9934 force field for the protein, the GAFF35 force field for the drug and THF, 

and the TIP3P36 model for water. Both the drug and THF parameters were built with the 

antechamber software from AMBER tools. The X-ray crystal structures of rilpivirine bound 

to the hydrophobic pocket of wild-type and two double mutant RTs (PDB: 2ZD1, 2ZE2, 

3BGR), including crystallographic water, was solvated in a truncated octahedral periodic 

container, with a minimum distance of 8 Å between any protein or drug atom and the closest 

container edge. Chloride counterions established charge neutrality. The ~130,000 atom 

system was energy minimized using steepest decent and conjugate gradient methods to 

remove any steric conflicts produced during the solvation. In the first step of the 

minimization, the protein-drug complex was restrained with a 500 kcal/(mol.Å2) harmonic 

potential, while the water and counterions were allow to move freely during the 2000 steps 

of this minimization. After the restrained minimization, an unrestrained energy minimization 

was performed on another 2500 steps. In all of the minimization steps, the converge gradient 

was set to 10−4 kcal/(mol.Å). The system temperature was then raised from 0 K to 298 K 

during a constant volume MD simulation (NVT) of 20 ps with a Langevin thermostat and 

where the RT-TMC278 complex was restrained (10 kcal/(mol.Å2)). The NVT step was 

followed by a 100 ps fully unrestrained run at constant pressure (NPT) using a Berendsen 

barostat (taup = 2.0 ps) to maintain the constant pressure. During this NPT step, the system 

was checked to achieve constant density. The next run involved a 100 ps constant volume 

MD (NVT) trajectory after which the temperature control was switched off and a final run of 

5 ns under NVE conditions was performed. In this NVE run the RMS of protein was 

checked to confirm sample stability. The production runs were obtained after the latest NVE 

run by running a 1ns trajectory at NVE conditions in which each snapshot was recorded 

every 20 fs. The following parameters were used during the MD simulations: a 2 fs step, a 

SHAKE algorithm to constrain all bonds involving hydrogen atoms, periodic boundary 

conditions, and a particle-mesh Ewald summation method with a cutoff of 8 Å to compute 

the long-range electrostatic interactions. Frequency calculations of the two nitrile groups 

were performed according to the ab initio methodology developed by Cho et al.17

DFT calculations

DFT calculations were performed with the Gaussian 09 software package. In the 

computation of frequencies and transition dipole magnitudes, the structure of rilvipirine and 

other compounds was first fully optimized (energy minimized) at the B3LYP/6-31++G(d,p) 

level. The frequencies were later computed from all the optimized structures with the same 

level of theory. The correction factor for the ab initio frequencies of the drug was computed 

from the experimental frequency of four other model compounds listed in the SI (Table S2) 

in THF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental linear IR spectra of rilpivirine in solution and in complex to the different RT 

enzymes. (a) FTIR and fits of inhibitor in methanol (black circles, green line), THF (black 

squares, red line), and DMSO (black triangles, blue line). (b) FTIR of the rilpivirine 

complex to the WT-RT in a single crystal (black squares), and its fit (redline, dash blue and 

dash green), (c) FTIR of the rilpivirine complex to the WT-RT in solution (black squares), 

(d) FTIR of the rilpivirine complex to the mutant M2-RT (Y181C/K103N) in solution (black 

squares), (e) FTIR of the rilpivirine complex to the mutant M1-RT (L100I/K103N) in 

solution (black squares), and their corresponding fits (red, dash blue, and dashed green 

lines).
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Figure 2. 
Absorptive 2D IR spectra of the two investigated mutant-rilvipirine complexes at different 

waiting times. The left and right columns correspond to the spectra of M1-RT (L100I/

K103N)/rilpivirine and M2-RT (Y181C/K103N)/rilpivirine, respectively. The waiting time 

of each spectrum is indicated in the figure.
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Figure 3. 
Experimental peak shift decays extracted from 2D-IR data as a function of waiting time. 

Left and right columns correspond to the M1-RT (L100I/K103N)/rilpivirine and to the M2-

RT (Y181C/K103N)/rilpivirine complexes, respectively. Panels (a) and (c) show the peak 

shift of the total signal and panels (b) and (d) to the peak shift with water signal subtracted. 

Red lines correspond to their fit as mentioned in the text.
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Figure 4. 
Calculated radial distribution function g(r) highlighting differences between the two nitrile 

groups of rilpivirine. The radial distribution functions between the nitrogen of the nitrile 

group and the oxygen of water for: (a) benzonitrile arm and (b) cinnamonitrile arm of the 

inhibitor. Black, blue, and red lines correspond to the WT, M1-RT, and M2-RT enzymes, 

respectively.
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Figure 5. 
Snapshot of rilpivirine in the NNRTI-binding pocket as observed in our MD simulations and 

X-ray crystal structure. Left and middle panels correspond to the different views of the 

pocket from the MD simulation where cyan, blue, red, and white correspond to carbon, 

nitrogen, oxygen, and hydrogen atoms, respectively, and the grey surface to the protein. 

Right panel corresponds to the thermal ellipsoid representation of rilpivirine in the NNRTI-

binding pocket; the ellipsoids represent anisotropic thermal parameters of individual atoms 

that were refined using 1.51 Å resolution X-ray diffraction data. Two water molecules that 

interact with rilpivirine are represented as red ellipsoids.
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Figure 6. 
Simulated absorptive 2D-IR spectra and peak shift dynamics of WT-RT/rilpivirine complex 

with (right column) and without (left column) Gaussian noise for different waiting times as 

indicated in the Figure. Top left panel peak shift dynamic calculated directly from the 

response functions. Top right panel peak shift dynamics calculated from a window in the 

simulated 2D IR spectrum. Squares and red line corresponds to simulations with and without 

noise, respectively. Parameters are presented in the Supporting Information (Table S5). No 

2D-IR cross peak between the two nitrile transitions is located in the spectra for any of the 

mutant/drug complexes either in theory or experiments.
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