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Abstract: Asthma is one of the most common respiratory disease that affects both children and adults
worldwide, with diverse phenotypes and underlying pathogenetic mechanisms poorly understood.
As technology in genome sequencing progressed, scientific efforts were made to explain and pre-
dict asthma’s complexity and heterogeneity, and genome-wide association studies (GWAS) quickly
became the preferred study method. Several gene markers and loci associated with asthma suscep-
tibility, atopic and childhood-onset asthma were identified during the last few decades. Markers
near the ORMDL3/GSDMB genes were associated with childhood-onset asthma, interleukin (IL)33
and IL1RL1 SNPs were associated with atopic asthma, and the Thymic Stromal Lymphopoietin (TSLP)
gene was identified as protective against the risk to TH2-asthma. The latest efforts and advances in
identifying and decoding asthma susceptibility are focused on epigenetics, heritable characteristics
that affect gene expression without altering DNA sequence, with DNA methylation being the most
described mechanism. Other less studied epigenetic mechanisms include histone modifications and
alterations of miR expression. Recent findings suggest that the DNA methylation pattern is tissue
and cell-specific. Several studies attempt to describe DNA methylation of different types of cells
and tissues of asthmatic patients that regulate airway remodeling, phagocytosis, and other lung
functions in asthma. In this review, we attempt to briefly present the latest advancements in the field
of genetics and mainly epigenetics concerning asthma susceptibility.
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1. Introduction

Asthma is a complex, heterogenous but one of the most common respiratory diseases
that affects both children and adults worldwide, with diverse phenotypes and underlying
pathogenetic mechanisms poorly understood [1]. In the last decade, several genome-wide
association studies (GWAS) have identified numerous genetic variants responsible for
asthma susceptibility [2]. These mainly non-coding variants play a regulatory role in gene
expression and asthma heritability [3]. Despite these results, genetics could not fully explain
asthma development and are of limited value. The novel field of epigenetics has recently
attracted the attention of researchers. Epigenetic changes such as DNA methylation, histone
modifications, and microRNA expression have already been studied in several research
projects, which could lead to a better understanding of the disease’s mechanisms [4]. In this
review, we will present the latest advances of genetic and epigenetic studies in asthma
susceptibility and discuss further implications. Moreover, we present current knowledge
on DNA methylation of different types of immune cells in peripheral blood as well as the
alterations in gene methylation in nasal and bronchial epithelium of asthmatic patients.
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2. Genetics in Asthma

Nowadays, it is widely accepted that asthma susceptibility has a strong genetic com-
ponent, as shown by multiple studies. Identifying the specific genetic loci associated with
asthma and uncovering the molecular mechanism in which those loci affect the risk of
developing asthma will help the scientific community unravel and better understand the
biological pathways implicated in asthma pathogenesis. The first real scientific effort to
pinpoint the association between specific genes and asthma susceptibility began with
the first publications of human genome sequencing. The two main approaches used are
linkage studies and GWAS. Linkage studies aim to identify DNA patterns that correspond
to the phenotype of asthma in family members with and without asthma, while GWAS use
microarrays of single nucleotide polymorphism (SNP) chips. The aim is to identify DNA
patterns or variations associated with asthma phenotypes or characteristics by comparing
the complete DNA sequence of individuals with disease to ethnically matched individuals
without disease [5,6]. As GWAS are large-scale population studies that identify polymor-
phisms in the human genome without the need to genotype the entire genome, they have
become the preferred study method in asthma genetics throughout the last decades [7].

2.1. GWASs of Asthma

The first real effort to identify all important loci that correspond with asthma suscepti-
bility was The Collaborative Study on the Genetics of Asthma (CSGA), published in 1997 [8].
This was the first study to consider the heterogeneity of asthma and the hypothesis that dif-
ferent genes regulate asthma characteristics in individuals of different racial backgrounds.
The study analyzed asthmatic sib pairs from 3 different racial groups (African-Americans,
Caucasians, and Hispanics) and identified six loci: 5p15 and 17p11.1—q ll.2 in African
Americans; 11p15 and 19q 13 in Caucasians; 2q33 and 21q21 in Hispanics [8].

As technology in genome sequencing progressed, the number of GWAS studies rose
exponentially, with various loci being associated with asthma susceptibility [9]. There are 8
meta-analyses concerning genetics in asthma susceptibility and the results are presented in
Table 1. The genes most frequently studied and replicated are discussed in the text below.

Table 1. Presentation of the results of 8 significant meta-analyses concerning genetics in asthma susceptibility published on
the GWAS Catalog and the loci associations that were identified.

Author and Study
Accession

Discovery Sample
Number and Ancestry

Replication Sample
Number and Ancestry

Variant and Risk
Allele p-Value Mapped Gene

Himes BE et al., 2010
GCST000768 [10]

- - 0

Himes BE et al., 2009
GCST000389 [11] 1205 European

1776 Hispanic or Latin
American rs1588265-C 3 × 10−8 PDE4D

1776 European,
Hispanic or Latin

American

5264 African American
or Afro-Caribbean

15339 European

Dahlin A et al., 2019
GCST007596 [12] 54543 European

26475 European rs17843604-? 1 × 10−18 HLA-DQB1, HLA-DQA1

NA NR rs9269080-? 1 × 10−8 HLA-DRB9

rs1420101-T 8 × 10−15 IL1RL1, IL18R1

Dahlin A et al., 2019
GCST007599 [12]

2526 African American or
Afro-Caribbean

26475 European
0

NA NR

Dahlin A et al., 2019
GCST007598 [12] 6227 Asian unspecified

NA NR
0

26475 European

Dahlin A et al., 2019
GCST007597 [12]

5327 Hispanic or Latin
American

26475 European
0

NA NR
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Table 1. Cont.

Author and Study
Accession

Discovery Sample
Number and Ancestry

Replication Sample
Number and Ancestry

Variant and Risk
Allele p-Value Mapped Gene

Barreto-Luis A et al.,
2016 GCST003176 [13] 889 European 2206 European

rs9866261-G 1 × 10−7 ADAMTS9

rs10197862-? 2 × 10−6 IL18R1, IL1RL1

Myers RA et al., 2014
GCST002445 [14]

3606 European

-

rs2549003-G 9 × 10−7 AC116366.3

3015 African American or
Afro-Caribbean

rs17642749-G 4 × 10−7 RAB11FIP2, AL513324.1

rs1012307-C 8 × 10−7 LINC01931, MMADHC-DT

2428 Hispanic or Latin
American

rs4673659-C 9 × 10−7 ERBB4

rs2675724-A 2 × 10−7 C6orf118, AL136100.1

rs9895098-C 3 × 10−7 RAP1GAP2

Ferreira MA et al., 2011
GCST000910 [15] 2832 European 604 European

rs6503525-C 5 × 10−7 AC090844.2

Demenais F et al., 2018
GCST005212 [16]

5215 East Asian

-

rs1348135-C 9 × 10−6 AL358875.1, AL355862.1

1398 Hispanic or Latin
American

rs10773588-G 5 × 10−6 NLRP9P1, TMEM132D

rs10157802-G 7 × 10−6 LINC02238

8204 African unspecified,
African American or

Afro-Caribbean

rs4268898-C 2 × 10−7 ITSN2

rs9870718-C 9 × 10−6 STAC, RFC3P1

rs10141207-A 4 × 10−6 RNU6-8, AL136298.2

rs10924970-C 3 × 10−6 ARID4B

127,669 European rs992969-A 7 × 10−20 GTF3AP1, IL33

rs2952156-A 2 × 10−30 ERBB2

rs20541-A 5 × 10−16 TH2LCRR, IL13

rs11071558-A 1 × 10−9 RORA

rs2325291-G 2 × 10−12 BACH2

rs2589561-A 4 × 10−9 AC044784.1, LINC00709

rs17806299-G 3 × 10−10 CLEC16A

rs12543811-G 1 × 10−10 AC034114.2

rs167769-T 4 × 10−9 STAT6

rs17637472-A 7 × 10−9 AC091180.6

rs7705042-A 8 × 10−9 NDFIP1

rs1233578-G 6 × 10−7 RPSAP2, NOP56P1

rs12634582-C 9 × 10−6 THRB

rs2855812-T 9 × 10−12 MICB

rs7927894-T 2 × 10−14 EMSY, AP001189.2

rs2033784-G 7 × 10−15 SMAD3

rs1420101-T 4 × 10−21 IL1RL1, IL18R1

rs10455025-C 9 × 10−26 TSLP, AC010395.1

rs9272346-A 6 × 10−24 HLA-DQA1

rs4129267-C 8 × 10−7 IL6R

rs4938096-T 1 × 10−6 AP002518.1

rs16989837-T 3 × 10−6 AL035660.2, AL035660.1

rs10233459-G 4 × 10−6 GLI3

rs1122396-G 2 × 10−6 TMEM9

rs10951405-T 3 × 10−6 BMPER

rs3758697-A 2 × 10−6 ARHGAP42

rs12542922-A 2 × 10−6 LINC00536

rs2825968-T 6 × 10−6 LINC02573, LINC01683
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Table 1. Cont.

Author and Study
Accession

Discovery Sample
Number and Ancestry

Replication Sample
Number and Ancestry

Variant and Risk
Allele p-Value Mapped Gene

Demenais F et al., 2018
GCST005212 [16]

-

rs2073617-A 5 × 10−6 TNFRSF11B, RNU6-12P
rs12521260-T 3 × 10−6 GDNF-AS1

rs2352521-T 5 × 10−6 ADGRL4, AC104837.1

rs6694672-G 9 × 10−6 AL139418.1, CFHR5

rs6084352-G 7 × 10−6 C20orf194

Demenais F et al., 2018
GCST005213 [16]

20,762 European

-

rs4988958-T 5 × 10−13 IL1RL1, IL18R1

1398 Hispanic or Latin
American

rs1295685-A 2 × 10−9 IL13, TH2LCRR

rs2596464-C 1 × 10−8 LINC01149, AL645933.5

5215 East Asian rs12551256-A 3 × 10−8 IL33

rs8069176-G 4 × 10−26 ZPBP2, GSDMB

Demenais F et al., 2018
GCST006862 [16]

127,669 European -
rs7705042-A 9 × 10−10 NDFIP1

rs1233578-G 5 × 10−9 RPSAP2, NOP56P1

rs2325291-A 9 × 10−13 BACH2

rs167769-T 6 × 10−9 STAT6

rs17637472-A 3 × 10−9 AC091180.6

rs2596464-C 2 × 10−13 LINC01149, AL645933.5

rs1663687-A 2 × 10−10 LINC00709, AC044784.1

rs10957979-G 2 × 10−8 AC034114.2

rs17806299-A 2 × 10−10 CLEC16A

rs3771180-T 2 × 10−20 IL18R1, IL1RL1

rs10455025-C 2 × 10−25 TSLP, AC010395.1

rs20541-G 1 × 10−14 TH2LCRR, IL13

rs9272346-A 2 × 10−28 HLA-DQA1

rs992969-A 4 × 10−29 GTF3AP1, IL33

rs2155219-T 3 × 10−15 EMSY, AP001189.2

rs11071558-G 8 × 10−11 RORA

rs17293632-T 9 × 10−16 SMAD3

rs2305479-T 3 × 10−24 GSDMB

rs2855812-T 3 × 10−10 MICB

rs2844510-T 2 × 10−6 AL645933.5, LINC01149

rs1420101-T 9 × 10−20 IL1RL1, IL18R1

rs6893213-T 8 × 10−11 AC008782.1, SLC25A46

rs6894249-G 2 × 10−11 AC116366.3, IRF1-AS1

rs3763309-A 1 × 10−18 TSBP1-AS1, HLA-DRA

Daya M et al., 2019
GCST007266 [17]

5136 Hispanic or Latin
American

-

rs13277810-T 3 × 10−8 AC246817.2

rs114647118-C 3 × 10−7 TATDN1

9518 African American or
Afro-Caribbean

rs3122929-T 9 × 10−7 STAT6

rs10519067-G 2 × 10−7 RORA

rs907092-G 4 × 10−12 IKZF3

chr6:145053377-C 8 × 10−7 -

chr4:130040437-T 2 × 10−7 -

chr18:42607527-G 8 × 10−7 -

chr19:54192692-G 5 × 10−7 -

chr1:234597720-A 9 × 10−7 -

chr17:38040119-C 3 × 10−11 -
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2.1.1. ORMDL3/GSDMB, PYHIN1

ORMDL3 is the third member of a class of genes that encode transmembrane proteins
anchored in the endoplasmic reticulum (ER) and regulate sphingolipid synthesis while
GSDMB gene encodes a member of the gasdermin-domain containing protein family
and is implicated in the regulation of apoptosis in epithelial cells. Markers near the
ORMDL3/GSDMB genes on chromosome 17q21 were first associated with childhood-
onset asthma by Moffatt MF et al. in a GWAS in a European sample in 2007 (rs7216389
was the marker most strongly associated with disease) [18]. The GABRIEL Consortium,
mainly composed of the same group of investigators, expanded the GWAS sample in 2010,
confirming the association with the 17q21 locus and identifying five additional genes (IL33
and IL1RL1, IL18R1, SMAD3, and IL2RB) [19]. The ORMDL3/GSDMB locus association
was replicated in the EVE Consortium in the United States. However, later studies failed to
replicate the most significantly associated SNPs among African ancestry subjects [20–23].
On the other hand, the EVE Consortium identified a susceptibility locus for asthma in the
PYHIN1 gene on chromosome 1q23 (pyrin and HIN domain family member 1; a major
mediator of the tumor suppressor activity of IFN in breast cancer cells) that was unique in
individuals of African descent with the marker rs1102000 being most strongly associated
with asthma [20]. This constitutes the first indication that ancestry-specific associations
also contribute to the complex genetic architecture of asthma.

2.1.2. Association between Asthma Risk Loci and Immune Cell Enhancer Marks (IL-33,
IL1RL1, TSLP, IL33)

The EVE Consortium replicated the association between asthma susceptibility and
SNPs near IL33 (rs2381416) and IL1RL1 (rs10173081) [20], although later studies showed
a strong association with atopic asthma but not with non-atopic asthma [24], while also
identifying a susceptibility locus near the TSLP gene (an epithelial-cell-derived cytokine
that regulates allergic inflammation), where a single SNP (rs1837253) showed to be protec-
tive against the risk for TH2-asthma. This association led to the development of anti-TSLP
agents to treat TH2-asthma [20].

In a meta-analysis of GWASs by Demenais et al. in 2018, a susceptibility locus (rs20541)
near IL13, RAD50, and IL4 genes associated with Th2-asthma phenotype was identified.
The critical role of IL-13 in the IgE production and the eosinophilic pathway, along with the
association between IL-13 and asthma severity, led to a shift in focus of the pharmaceutical
society to the development of anti-IL-13 agents to treat asthma [16].

2.1.3. GWASs of Different Racial Populations

Demenais et al. combined data of European, African, Japanese, and Latino populations
included in the Trans-National Asthma Genetic Consortium (TAGC), and identified 18
genome-wide significant loci, including nearly all preciously reported loci. The meta-
analysis identified as the 5 most significant loci on chromosomes 17q12-21 near PGAP3 and
ERBB2, 6p21.32 near HLA-122 DRB1/-DQA1, 5q22.1 near TSLP, 2q12 near IL1RL1/IL18R,
and 9p24.1 near IL33 in both the whole sample and in the subset that included only subjects
with early-onset asthma [16]. In the latter subset, the significant variants at the 17q12-21
locus were nearest to GSDMB and ORMDL3 [19,20,25], findings that were in agreement
with earlier GWASs. The meta-analysis also showed large overlaps in genetic variants with
autoimmune and inflammatory diseases [16], but also with diseases that are characterized
as allergic or immune-mediated [26].

2.1.4. GWASs of Asthma Age of Onset

Early-onset asthma and adult-onset asthma represent distinct asthma phenotypes with
differences regarding severity, remission of symptoms, comorbidities, and sex ratios [27,28].
The Pividori et al. [29] and the Ferreira et al. studies [30] used genotype and phenotype
data from the UK Biobank and performed several GWASs: subjects with asthma, including
childhood-onset cases (onset before age 12) and adult-onset cases (onset between ages 26
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and 65), subjects without asthma (controls; older than age 38) and two GWASs (childhood
and adult-onset cases, respectively) in an effort to describe novel loci (additional to the
highly replicated locus at 17q12-21) associated with various ages of onset.

The Pividori et al. study identified 61 independent asthma loci, out of which 23 were
childhood-onset specific and one was adult-onset specific, while 37 were shared between
the subsets. Interestingly, 28 of the 61 identified loci had not been previously described as
associated with asthma in previous studies. The study also suggests that there is a greater
role for genetic risk factors in childhood-onset asthma than in adult-onset asthma, and as a
more heterogeneous condition, the role for non-genetic risk factors appears to be of greater
significance [29].

The Ferreira et al. study also identified 98 independent genetic associations for
childhood-onset asthma and 34 for adult-onset asthma, as well as 109 likely target genes
of the risk variants. As with the Pividori et al. study, 28 of the 132 replicated variants
loci had not been described in previous studies as associated with asthma. Ferreira et al.
also confirmed the greater role of genetic factors of childhood-onset asthma in contrast
with heterogeneity of adult-onset asthma, where genetic risk factors are shared with
environmental factors and comorbidities [30].

2.2. Whole Genome Sequencing

One of the major limitations of GWAS is the observation that most SNPs associated
with asthma susceptibility are located in non-coding regions of the genome. This was also
confirmed in the TAGC meta-analysis [20]. The most optimal way to resolve this issue
is by using whole-genome sequencing (WGS), which seems to be superior in accurately
determining genotypes of copy number variants (CNVs) and low-frequency variants
missed by genome-wide association studies. In a study published by Hoglund et al. 72
inflammatory biomarkers were analyzed and 18 novel associations were identified when
using GWAS approach on WGS data, that were not detected when analyzing the same
biomarkers with genotyped or imputed SNPs. This study suggests that we can enhance
the power and accuracy of GWAS when using WGS data by having the ability to identify
quantitative trait loci and nucleotides (QTNs) [31,32]. A few programs, including the
Consortium of Asthma in African Populations of the Americas (CAAPA) and the Trans-
Omics for Precision Medicine program (TOPMed) have begun using WGS, and several
CNVs, structural variants, and rare coding variants have already been identified [33–35].

3. Epigenetics in Asthma

Epigenetics are heritable characteristics that affect gene expression without altering
DNA sequence in contrast to genetics [36]. Prenatal environmental factors such as maternal
smoking and other factors after birth such as traffic-related or air pollution, nutrients and
drugs could be the triggering factors of epigenetic changes [37]. Epigenetic modifications
occur during prenatal development, early childhood and adolescence as these are the
periods during life that people are susceptible to several asthma triggers [38]. Apart from
the skin, the respiratory tract is directly exposed to the external environment and as a
result buccal mucosa, nasal and bronchial epithelium are firstly subjected to epigenetic
alterations [38]. Moreover, approximately 17 studies and meta-analyses have identified
the methylation patterns of immune cells in whole and peripheral blood of asthmatic
patients [39].

DNA methylation, post-translational histone modifications and microRNA expression
are the most common epigenetic mechanisms identified and have a regulatory role in
immune responses and gene expression in asthma. Moreover, it is important to note that
epigenome is distinct for each cell type [4].

Several studies like epigenome-wide association studies (EWAS), experimental and
observational projects, have been conducted and published the previous years in an effort
to clarify the interaction between environment and specific immune pathways that undergo
epigenetic regulation [2,37].
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3.1. DNA Methylation

Among epigenetic mechanisms, the most described in literature is CpG-DNA methy-
lation which refers to the addition of a methyl group to a cytosine in a CpG dinucleotide
and thus, cytosine is converted to 5′-methylcytosine [38]. The methylation is catalysed by
DNA methyltransferases (DNMT1, DNMT2 and DNMT3) [39]. DNA methylation in CpG
islets near the promoter region of the genes usually leads to the repression of transcription,
whereas hypomethylation has as a result the upregulation of gene expression [39].

The EWAS are mainly cross-sectional studies and for that reason, they cannot dis-
tinguish whether the epigenetic change precedes the development of the disease and
has a causal relationship or is just a consequence [2]. Notably, the EWAS performed in
nasal epithelium present higher degree of reproducibility in other cohorts than EWAS
in blood. According to current data, blood-based EWAS is mainly representative of the
eosinophilic part of the disease, while EWAS of nasal epithelium reflect the methylation
changes and dysregulation of airway epithelial cells in the respiratory tract [2]. All these
recent findings imply that the methylation pattern is cell and tissue-specific [4]. On the
other hand, a significant overlap of methylation changes in nasal cells with those observed
in bronchial epithelial cells, that are difficult to obtain especially in children, has been
noted [2]. Some genes were common in both blood-based EWAS and in nasal epithelium
such as ACOT7, EPX, GJA4, and METTL1 [2]. These results lead to the conclusion that
apart from cell-specificity of CpG sites of methylation, there is also cross-tissue epigenetic
effect [40].

DNA Methylation patterns are discussed below, divided in two separate sections
including blood immune cells and airway epithelial cells.

3.1.1. Immune Cells
Granulocytes

The best studied type of cells is eosinophils. The target genes of eosinophils for
epigenetic modification implicated in the pathophysiology of asthma are hypomethylated
and this fact affects the immune functions of eosinophils, the interaction with other PBMCs
and certain lung functions [40,41]. For instance, genes implicated in airway remodeling
(COL15A1, RB1, FOXP1, CCDC19), surfactant secretion (ACOT7, PPT2) and nitric oxide
production in airways (ACP5), as well as genes associated with cytokine production and
signaling (IL5RA, DICER1) and phagocytosis in blood (SERPINC1) are characterized by
decreased methylation in asthmatic subjects [39].

Few data are available for other granulocytic cells. For instance, hypomethylation of
histidine decarboxylase gene (HDC) of basophils and mast cells is associated with increased
histamine formation, a significant inflammatory mediator in allergic asthma [42].

Mononuclear Cells

Blood monocytes differentiate into tissue macrophages in vitro by demethylating
phagocytic genes by TET enzymes [43]. A study has been conducted in order to assess
alterations in DNA methylation of blood monocytes in individuals with distinct asthma
phenotypes (eosinophilic, neutrophilic and pauci-granulocytic), and nine common loci, all
hypermethylated, were discovered [44]. These nine loci, for instance NRG1, SYNM, TBX5,
FAM19A4, are all involved in airway remodeling and disruption as well as macrophage
function [44]. On the other hand, several methylation changes were found and corre-
lated with specific asthma inflammatory phenotypes and could be used as biomarkers
to diagnose or guide treatment in the future [44]. Naïve CD4+ T-cells differentiate into
Th1 cells by methylation of the promoter region of IL-4 and demethylation of CpG sites
within the interferon gamma (IFN-γ) gene, while differentiation into Th2 cells is associ-
ated with demethylation in IL-4 and IL-13 promoters that allows binding of transcription
factors STAT6 and GATA3 [45,46]. However, Th2 cells could reactivate the production of
IFN-γ by demethylating the gene promoter and this fact proves the epigenetic plasticity
of the production of IFN-γ in these cells mediated by STAT4 and T-box expressed in T



Int. J. Mol. Sci. 2021, 22, 2412 8 of 14

cells (T-bet) [47]. Moreover, demethylation of the forkhead box protein 3 (FOXP3) gene is
required so as to activate the suppressive role of regulatory T-cells [48,49]. High levels of
air pollution lead to hypermethylation of FOXP3 in peripheral blood Treg cells and their
functional impairment in asthmatic individuals [50].

Th17 cells, a third subset of CD4+ T-cells, are crucial for the defense of the immune
system against fungi and extracellular bacteria and are also implicated in asthma patho-
genesis [37]. Mukasa et al. demonstrated that Th17 cell lineage is subjected to epigenetic
plasticity through the remodeling of the chromatin structure [51]. DNA methylation is also
important for the differentiation of naive CD8+ T-cells into effector cells in non-pathological
conditions, while studies in asthma epigenetics need to be designed [52].

In an experimental study, house dust mite allergic subjects had a different epigenome
of B+ cells from non-allergic with 451 differentially methylated loci [53]. A subset of
lymphocytes B produces IgE in allergic asthma and the most important genes associated
with antigen presentation and IL-4 signaling such as CCDC80, DAPK3, LOXL1, PROC,
FUCA2, SP100, ITCH, present increased methylation [53]. Furthermore, the promoter of
CYP26A1 gene involved in retinoic acid clearance presents hypermethylation in B cells of
asthmatic individuals [53]. No data available on DNA methylation of dendritic and natural
killer cells of asthmatic patients [39].

3.1.2. Airway Cells

The respiratory tract is the target of the immune system in bronchial asthma and
consists of airway epithelial cells, goblet cells, fibroblasts and airway smooth muscle
cells [54]. Nasal epithelial cells are more easily accessible than the bronchial epithelial cells
and less invasive techniques are needed to obtain samples from nasal cells [39]. For these
reasons, the information concerning DNA methylation of airway cells in childhood asthma
mainly derives from studies of nasal epithelium. Forno et al. defined a panel of 30 CpGs in
their cohort of 483 school-aged children in Puerto Rico that could be used to predict atopy
and atopic asthma [55]. Moreover, no studies are available from sputum samples and only
one small study have been performed in saliva samples of atopic children [56].

3.2. Histone Modifications

DNA is packaged by core histones to form an organized chromatin structure. The core
histones consist of H2A, H2B, H3 and H4 [57]. Post-translational histone modifications,
such as acetylation, methylation, phosphorylation, ubiquitination, SUMOylation, and ADP-
ribosylation on the tails of core histones, represent another important classical epigenetic
mechanism in numerous diseases including bronchial asthma, although it is not as widely
studied as DNA methylation [57]. Histone acetylation by histone acetyltransferase (HAT)
usually results in a loose structure of chromatin, easily accessible to transcription factors
that leads to the activation of gene expression. On the other hand, histone deacetylation by
histone deacetylase (HDAC) results in gene silencing. HAT activity is elevated in biopsies
in both adults [58] and in children [59] and the HAT/HDAC ratio alters according to
asthma severity. HDAC inhibitors, particularly HDAC2, are potential targeted therapies
against asthma but the results of the clinical trials so far are controversial [57,60,61].

HDACs are implicated in T-cells development and their inhibition could lead to
allergic airway diseases. Moreover, defective HDAC2 activity is found in corticosteroid-
insensitive severe asthma phenotypes [62,63] and mice with HDAC1- deficient T-cells
present increased eosinophil recruitment and Th2 cytokine production [61]. HDAC1 plays
an important role in airway epithelial repair and remodeling and is found increased in
severe asthma characterized by airway remodeling compared to mild asthma [64].

Histone H3 lysine 18 (H3K18) acetylation increases the expression of EGFR and STAT6
as it is expected to be in the epithelium of asthmatic patients [65].

Moreover, histone methylation is associated with CD4+ T-cell differentiation [4].
Histone H3 lysine 4 trimethylation (H3K4me3) is linked to increased transcription of
both IFN-γ and IL-4 [66]. H3K27me3 can have various functions on gene transcription
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based on the location of the histone compared with the location of the gene [4]. For
instance, H3K27me3 inhibits the production of IL-4 in TH1 cells whereas in TH2 cells,
H3K27me3 represses IFN-γ [67]. A decrease in H3K27me3 by JMJD2D demethylase at the
promoter of the VEGF gene has been observed in asthmatic airway smooth muscle cells [68].
The location of H3K4me3 and H3K27me3 around genes of dendritic cells contributes to
the determination of their inflammatory state and their transition to antigen-presenting
cells [69].

It is widely acceptable that post-translational histone modifications play a key role in
asthma pathogenesis and more studies need to be conducted to clearly understand their
contribution to immune responses, the interaction with transcription factors and between
different modifications.

3.3. MicroRNA (miR) Expression

MiRNAs are approximately 20 nucleotides long non-coding, highly conserved RNA
that act as regulators of gene expression by controlling the translation of as many as 60%
of mRNAs via mRNA destabilization [57,70]. There are differences in miR expression in
asthma compared to healthy controls, mainly in a cell-specific manner [4]. MiRNAs, such as
MiRNA let-7f, MiRNA-9, MiRNA-17-18-19-20-92, MiRNA-26a/b, MiRNA-27a/b, MiRNA-
125b, MiRNA-155, polarize macrophages towards a pro-inflammatory M1 phenotype while
miRNA let-7a/b/c/d/e, MiRNA-21, MiRNA-34, MiRNA-124, MiRNA-146a/b, MiRNA-223-3p,
MiRNA-511-3p promote the polarization towards an anti-inflammatory M2 phenotype [71].

In specific, miRNA-19 is upregulated in the epithelium of severe asthmatic patients,
targets TGFB2 mRNA, thus contributing to airway remodeling [72]. Furthermore, IL-13
induces the decrease of miRNA-34/449 in bronchial epithelial cells [73] and increases
in vitro the expression of miR-21 and miR-126 [74]. MiR-21 and miR-126 are upregulated in
asthmatic patients compared to control, especially in patients without treatment [74]. More-
over, miR-21 contributes to eosinophilic production and proliferation whereas miR-223
suppresses it [75]. Overexpression of miR-21 is associated with the in vitro differentiation
of Th2 cells, while miR-27 and miR-128 reduce IL-4 and IL-5 production from CD4+ T
cells [75,76]. MiRNA-21 is the best studied miR in asthma and its high levels are linked to
IL-12p35 repression in serum of asthmatics and to steroid-insensitivity and that implies
that it could be used as biomarker to monitor the response to steroid treatment [77].

Also, miR-15a, miR-15b, and miR-20a are downregulated in CD4+ T -cells from atopic
pediatric patients with asthma in contrast to atopic and non-atopic subjects [78]. The
downregulation of miR-15a leads to the overexpression of the vascular endothelial growth
factor A (VEFGA) in sputum and serum of asthmatics [78].

In peripheral blood of asthmatics, miR-625-5p, miR-22-3p, and miR-513a-5p were
downregulated compared to controls. The target genes of these miRNAs (CBL, PPARGC1B,
and ESR1), inversely upregulated in blood, belong to the PI3K-AKT and nuclear factor κβ
(NF-κβ) signaling pathways and could be related to the lower concentrations of IFN-γ,
TNF-α, IL-12, and IL-10 in plasma [79]. In miR-155 -deficient mouse models, an increase in
airway remodeling was observed [80] and in vitro miR-133a inhibition in human bronchial
smooth muscle cells has as a consequence the upregulation of RhoA, a key protein in
contractility of airway muscle cells [81]. The findings of miR studies are summarized in
Table 2.
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Table 2. Results of miR studies in association with asthma risk.

miRNA Author Role in Asthma Levels in Asthma Mice/Human Biofluid/Tissue

miR221 Qin et al., 2012 [82] induces airway inflammation increased mice BALF/lung tissue

induces cytokine production - - -

Mayoral et al. 2011 mast cell degranulation increased mice bone marrow mast
cells

[83] mast cell cytokine production - - -

miR21 Wu et al., 2014 [74] positive correlation with
IL-13 Increased human bronchial epithelial

cells

Lu et al., 2011 [84] induces Th2 response - OVA-mice -

eosinophilic accumulation - - -

miR19 Simpson et al.,
2014 [85]

promotes IL13 and IL5
production increased human airway T cells

Haj Salem et al.,
2014 targets TGF-b R2 mRNA increased human lung biopsy

[86] contributes to airway
remodeling - - -

miR145 Collison et al.,
2011 [87]

HDM exposure increases
miR145 levels involved in

allergic inflammation
- HDM-sensitized

mice airway tissue

miR146 Comer et al.,
2014 [88] anti-inflammatory increased human human ASM cells

negatively regulates IL1β
and COX2 - - -

miR126 Mattes et al.,
2009 [89]

anti-mir126 reduces Th2
cytokines - HDM-sensitized

mice
lung tissue and
lymph nodes

Wu et al., 2014 [74] increases AHR and immune
cell migration increased human bronchial epithelial

cells

4. Conclusions

Asthma is a complex disease with multiple phenotypes based on underlying genetics
and interactions with environmental factors. Using WGS on GWAS will help identify
new genetic loci that predict asthma risk and severity. Epigenetic markers will be used to
predict treatment response to novel therapies and guide treatment. Altered miRNA levels
lead to modulation of cytokine signaling that orchestrates allergic airway inflammation
and asthma. Thus, the development of miRNA targeted therapies could be a promising
therapeutic measure. Future directions of clinical management are heading towards
personalized therapy via pharmacogenetics and pharmacoepigenetics, although further
studies and progress in these fields are required.
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