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Abstract

A greater understanding of the causes of human disease can come from identifying characteristics that are specific to
disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the
premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis
that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those
related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout
phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as
essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum
of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-
represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and
developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction
networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes.
Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute
to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from
semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality
status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in
protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be
ignored as candidates for causing diverse human diseases.
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Introduction

Much effort has been invested in identifying the set of genes

that when mutated have a causal relationship with human

disease. While many characteristics of genes associated with

disease have been examined, prior studies have presumed that

these disease genes form a homogeneous group sharing particular

characteristics, distinct from non-disease genes [1,2,3,4]. Further

studies that classified disease genes based on their requirement

during development, or essentiality, led to the conclusion that the

majority of disease genes are non-essential [5,6,7,8]. This

conclusion is drawn from the analysis of human disease genes

based on the phenotypes of their mouse orthologs. Disease genes

whose mouse orthologs produce lethal phenotypes when deleted

were considered essential, and all other genes considered non-

essential. This classification, however, over-estimates the size of

the non-essential gene group, due to the inclusion of genes with

no reported knockout data. As currently only approximately 9%

of mouse genes have been knocked out (Dataset S1), it is very

likely that disease genes with no known mouse knockout

phenotype would include both lethal and viable genes. Therefore,

to include genes with no knockout data in the viable gene group

confounds the analysis, and could lead to erroneous conclusions

about the relative importance of lethal and viable genes in human

disease.

It has also been proposed that mutations in the human

orthologs of essential mouse genes will cause lethality in human

pregnancies, accounting for spontaneous miscarriages [5,9]. The

authors of one study therefore conclude that essential genes are not

human disease genes [9], as mutations prevent viability. However,

this assumption fails to consider the impact of alleles on gene

function. Genes have been defined as essential due to the

phenotype of mouse knockouts, which result from a deletion of

the protein-coding region of the gene from the genome. These

mouse mutants therefore are null alleles, and represent the

phenotype caused by complete absence of functional protein.

However, point mutations in these same genes do not necessarily

fully remove protein function. Gene alleles with reduced function,

called hypomorphic alleles, therefore can generate different

phenotypes from those of null alleles. Although null or severe

loss-of-function mutations in essential genes may indeed contribute

to spontaneous miscarriages, hypomorphic mutations in the same

genes can contribute to less severe abnormalities that are

recognized as human disease. Therefore, the human orthologs of

genes required for embryonic development in the mouse can cause

disease in mutated forms through a variety of mechanisms. For
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example, some orthologs of mouse essential genes cause human

congenital birth defects in a manner that resembles their mouse

knockout phenotypes [10,11,12,13]. Other orthologs of mouse

essential genes show haploinsufficiency in the human, such that

they cause an abnormal phenotype in the heterozygous state

[14,15,16,17]. Embryonic lethal mouse genes can also have

disease-associated orthologs in the human due to the presence of

hypomorphic mutations in the human population, which represent

a less severe loss of gene function than that observed in the mouse

knockouts [18,19,20]. Alternatively, embryonic lethal genes can

also undergo gain-of-function mutations, causing over-expression

or increased activity, which contribute to human disease in a

manner different from their mouse loss-of-function phenotype

[21,22,23].

Given that several genes known to cause lethality in mouse

knockouts also cause human disease due to point mutations or

genomic rearrangements, we hypothesise that essential genes form

an important group of disease genes that will have different

characteristics from non-essential disease genes. As mouse targeted

deletions provide a source of experimental analysis of null alleles,

we used data on lethal and viable mouse knockouts as a proxy for

human essential genes. The similar physiology and genome

structure between the mouse and human facilitate ortholog

comparison and functional identification between the two species.

To determine if differences exist between essential and non-

essential disease genes we examined several parameters in our

analyses, including the physiological systems affected by each

disease gene, the connectivity of each gene in protein-protein

interaction networks, and the genetic mechanisms by which genes

cause human disease.

Our results demonstrate that essential and non-essential disease

genes have a tendency to differ in the types of disease they cause,

the mode of disease inheritance, and the number of protein-

protein interactions in which they participate. We find that

essential disease genes comprise a major portion of disease genes,

and are associated with many types of human diseases affecting

diverse physiological systems. Additionally, non-essential disease

genes form a distinct class to essential disease genes for nearly

every parameter examined, and are also not similar in character-

istics to non-disease genes. We conclude that disease genes cannot

be considered a homogeneous group of genes, and that gene

essentiality is an important determinant of disease type.

Results

Classification of disease genes
We identified 1,965 human disease genes from OMIM’s morbid

map [24,25]. To assess whether essentiality was correlated with

particular disease gene properties, we grouped the disease genes

into viable and lethal categories, based on inference from mouse

knockout data [26,27]. Approximately 40% of human disease

genes (793/1965) had a knockout reported for their mouse

ortholog. We term human disease genes with essential mouse

orthologs (those with lethal knockout phenotypes) as ‘‘disease

lethal’’ (DL, n = 673) genes and those with non-essential mouse

orthologs (those with viable knockout phenotypes) as ‘‘disease

viable’’ (DV, n = 120) genes. It is important to note that the

essentiality classification is based upon mouse null alleles, whereas

human disease alleles are rarely null mutations. Therefore, when a

gene is referred to as ‘‘disease lethal’’ it is not an indication that the

human diseases associated with mutations in that gene are lethal,

but rather that complete removal of protein function causes

lethality in mouse. Importantly, in contrast to prior studies [5], we

considered all disease genes for which there is no mouse knockout

data available as a separate group of ‘‘unknown’’ disease genes

(DU, n = 1172). These gene groups and classifications were used in

all subsequent analyses (Table 1, Dataset S1).

Notably, for those human disease genes with a known mouse

knockout phenotype, orthologs of essential mouse genes are more

highly represented (673/793, 85%) than orthologs of non-essential

mouse genes (120/793, 15%), a finding that contradicts prior

studies [5,6,7,8]; removing the ‘‘unknown’’ class (DU) has a

dramatic impact on the analysis of disease genes. It has been

reported that the published mouse knockout dataset is enriched for

developmental genes [28]. The percentage of total mouse

knockouts with a lethal phenotype is 66% (1299/1971). Yet for

disease genes with known mouse essentiality status, lethal genes

comprise 85% of the dataset (673/793; Table 1, Dataset S1, x2

p,0.05). Because the proportion of disease genes with essential

mouse orthologs does not simply reflect the relative proportions of

reported lethal and viable knockouts, we conclude that experi-

mental bias cannot solely explain the abundance of essential gene

orthologs among human disease genes (Dataset S1, x2 p,0.05).

We expect that additional essential genes will be found in the

DU dataset. For example, genes required for basal cellular

Table 1. Summary of the number of genes of each category characterized for each parameter examined.

Viable Lethal Disease Viable Disease Lethal Disease Unknown All Disease

Number of genes 672 1299 120 673 1172 1965

Number of genes with
protein-protein interactions

489 1093 90 310 924 1324

Number of genes with gene
ontology annotations

670 1288 119 670 1166 1955

Number of genes with
disease class annotations

- - 68 214 830 1112

Number of genes with
disease mode of
inheritance classifications

- - 64 185 626 875

Number of genes with
disease gain/loss of
function classifications

- - 73 219 987 1279

Data was not available for all genes for each parameter. Some analyses were performed only for disease gene datasets, such as disease classification, and others also
evaluated for the viable and lethal datasets.
doi:10.1371/journal.pone.0027368.t001
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functions, or ‘‘housekeeping genes’’, have been proposed to form a

subgroup of essential human genes [29]. Therefore, we quantified

the percentage of housekeeping genes (from reference 30) in our

datasets as compared to the entire human genome (Dataset S2).

We find that 5.5% of the genes in the DU dataset (64/1172) have

been identified as housekeeping genes, while the percentage of

housekeeping genes overall in the human genome is only 2.5%

(609/24789) [30]. This difference is statistically significant (DU

genes vs not DU genes by housekeeping genes vs not housekeeping

genes, Dataset S1, x2 p,0.05). Additionally, as part of a large-

scale effort to generate targeted deletions in all mouse genes, an

initial analysis of 355 new mouse knockout lines has revealed that

approximately 30% exhibit embryonic lethality (http://www.

sanger.ac.uk/mouseportal/). Of the new knockouts generated, we

found that 22 are mouse orthologs of human DU genes. Of these,

6 exhibit lethal phenotypes (http://www.sanger.ac.uk/mouseportal/

), confirming that there are DL genes in the DU dataset, which were

misclassified as DV in prior studies [5]. Due to the under-

representation of housekeeping genes in mouse knockout experi-

ments and the evidence of new knockouts with lethal phenotypes, we

infer that there are additional essential genes in the DU dataset, the

presence of which, when properly annotated, would increase the

overall number of disease genes with essential functions.

The gene conservation between mouse and human orthologs of

disease genes has been assessed with respect to essentiality,

including a quantification of the frequency of orthologs of human

disease genes among genes with no phenotype, non-lethal

phenotypes, or lethal phenotypes in mouse knockout experiments

[9]. Park et al. found that human orthologs of the lethal gene

group had the most complete mapping to human disease genes,

although they did not differ significantly from the percentage of

non-lethal genes that were associated with disease [9]. However,

rather than determining the distribution of disease genes among

mouse knockout groups, in our work we have performed the

opposite analysis to determine the prevalence of lethal and viable

mouse knockout gene orthologs among all disease genes. We find

that 34% of disease genes have a mouse ortholog with a lethal

phenotype in knockout experiments (673/1965), while only 6% of

disease genes (120/1965) have a mouse ortholog with a viable

phenotype. Thus, a greater proportion of human disease genes are

orthologous to an essential mouse gene.

Essentiality affects disease gene classification by
physiological system

Essential genes have been considered non-disease genes by

others due to their presumed role in developmental defects and

associated lethality [7,8,9]. Since, on the contrary, we find that the

majority of disease genes with known essentiality status were lethal

genes, we next sought to examine the diseases with which lethal

genes are associated. Using MeSH classifications for disease genes,

we identified the disease types associated with each disease gene.

When grouped according to essentiality, disease genes differ in the

specific processes that they disrupt (Figure 1, for all DU data see

Figure S1). Thirty percent of disease lethal genes are associated

with diseases affecting more than one tissue, as compared to 19%

of all disease genes, which is a significant over-representation

(Fisher’s exact test p,0.05, Dataset S3), indicating that multiple

physiological systems are affected by disease mutations in essential

genes. DL genes, as opposed to DV or DU genes, are also highly

associated with multiple types of cancer (15% of DL genes

compared to 7% of total disease genes, Fisher’s exact test p,0.05),

which may be explained by the observation that targeted deletions

of cancer associated gene orthologs in mice often reveal a

requirement for those genes in embryonic development, while

the gene mutations observed in humans are hypomorphic alleles,

activating mutations, or mutations in somatic cells [31]. Despite a

known developmental role for their mouse orthologs, DL genes

were not significantly over-represented in developmental processes

(2% of DL genes) as compared to all disease genes (1% total

disease genes) in this analysis. Overall, we find that DL genes are

associated with a variety of diseases affecting nearly all

physiological processes, and are not restricted to causing

developmental defects.

Disease lethal genes tend to be highly connected in
protein-protein interaction networks, while disease
viable genes are less connected

Rarely are biological functions attributed to a single molecule;

instead, all components of a cell are intrinsically related and can be

thought of as a network of interacting modules. Genes that are

highly connected in protein-protein interaction (PPI) networks

may therefore affect multiple biological processes when mutated,

due to disruption of interactions with a variety of other genes in

the network. Based on the finding that DL genes are highly

represented in diseases affecting multiple physiological systems, we

examined the connectivity of proteins encoded by different types

of disease genes in PPI networks. Previous studies have failed to

distinguish between proteins encoded by genes of unknown

essentiality and those encoded by genes that are non-essential

[5]. This fundamental gene classification difference influences the

conclusions drawn from the resulting PPI networks. Accordingly,

we separately considered essential, non-essential and unknown

essentiality disease proteins for PPI network analysis (Figure 2).

Our results show that DL proteins have a higher average degree

(more interactions for each protein) than DV and V proteins

(Table 2). We found that L proteins have the highest maximal

degree (138) and average degree (3.9) when compared to all other

groups, indicating that L proteins have many interactions. The

variation in connectivity among different gene classes is not simply

a function of the number of proteins in each class, as the ratio of

nodes to interactions varies for each gene group (Dataset S4, x2

p,0.05).

Our analysis of the PPI for proteins with unknown essentiality

suggests that the DU group contains a mixture of essential and

non-essential proteins. The DU network (consisting of interactions

between DU proteins and those of any other group) contains the

largest number of individual components (224), yet the majority of

the proteins (89%) and interactions (96%) are within the largest

connected component. Therefore, there are many small compo-

nents with few proteins and interactions on the periphery of the

DU network, which may represent the non-essential proteins

within the DU group. We find that DU proteins participate in a

similar number of interactions to L proteins (Average Degree,

Table 2). The degree distributions (Table 2) verify the DU network

is more similar to the DL network in connectivity (Wilcoxon–

Mann–Whitney and Kolmogorov–Smirnov tests, both p,0.05),

than to the DV network. The outlying data points in the prior

analysis of viable disease gene PPI networks [5] presumably reflect

the inclusion of essential genes that have no mouse knockout (that

we classify as DU) in their viable gene dataset (Table 2).

Disease proteins segregate to different cellular
compartments based on essentiality

Interactions between proteins can only occur when those

proteins are co-localized. In yeast, it has been shown that sub-

cellular localization affects the degree of network interactions, with

nuclear proteins being more highly connected than those in the

The Role of Essential Genes in Human Disease
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cell periphery [32]. As we found differences in the degrees of

interactions for DV and DL proteins, we tested whether this was a

result of differences in the sub-cellular localization of the proteins.

Using Gene Ontology (GO) annotations [GO, 33], we found that

viable and lethal genes vary in the cellular compartments to which

they are localized (Figure 3). Both DL genes and L genes, which

are highly connected, are statistically overrepresented in the

nucleus (46.45% and 50.8% respectively, see Dataset S5 for

statistical analysis data, and Text File S1 for a description of

statistical data files). In contrast, DV genes, in addition to V genes

generally, are enriched for localization to the plasma membrane

(Fisher’s exact test p,0.05). However, DV genes are also

statistically overrepresented in the extracellular region (Fisher’s

exact test p,0.05). Our findings on sub-cellular localization are in

agreement with those for yeast proteins [32], indicating that DL

genes may show a greater number of PPIs due to their higher

Figure 1. Physiological system analysis of disease genes. Distribution of all Disease genes (D), Disease Viable genes (DV) and Disease Lethal
genes (DL) in different disease classes, according to the physiological system affected. The D set corresponds to all disease genes without separation
according to essentiality.
doi:10.1371/journal.pone.0027368.g001
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Figure 2. Network representation of protein-protein interaction between proteins chosen from the viable (V), lethal (L), disease
viable (DV) and disease lethal (DL). For clarity, interactions are only displayed in the figure if both interacting partners have the same
classification (e.g. DV-DV interactions). However, statistical analysis (Table 2) was performed for all interactions (e.g. proteins of the same classification
interacting and proteins of different classifications interacting). The color corresponds to node degree (relative to each network) as indicated for each
panel, with the lowest degrees in red and highest degrees in purple. The node degree denotes the number of PPIs for a given gene.
doi:10.1371/journal.pone.0027368.g002

Table 2. Protein-Protein Interaction network properties of disease genes.

Largest Connected Component

Proteins Inter-actions Max Degree Avg Degree Comps Proteins Inter-actions Avg Degree

Disease Lethal 1943 2778 104 2.9 70 91% 96% 3.0

Disease Viable 1535 1600 92 2.1 151 71% 81% 2.4

Lethal 3638 7083 138 3.9 86 94% 98% 4.1

Viable 1436 1654 71 2.3 86 84% 91% 2.5

Disease Un-known 5116 8918 92 3.5 224 89% 96% 3.8

Data for PPI networks for disease lethal (DL), disease viable (DV), lethal (L), viable (V) and disease unknown (DU) genes. ‘‘Proteins’’ represent the sum of proteins in a
given group (DL, DV, L, V or DU) and their interacting partners (from any group). Statistical analysis was performed for all interactions (e.g. proteins of the same
classification and proteins of different classifications). The total number of PPIs are indicated under ‘‘Interactions’’ and the number of PPIs for the most highly connected
protein is indicated under ‘‘MaxDegree’’. ‘‘Average Degree’’ corresponds to the mean number of PPIs for all interacting proteins. ‘‘Comps’’ designates the number of
independent groups (components) of interactions, the largest of which comprises the ‘‘Largest Connected Component’’. The percentages of proteins and interactions,
and the average degree found within the largest connected component are given.
doi:10.1371/journal.pone.0027368.t002
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probability of localization within the nucleus. In accordance with

differences in the subcellular localization of DL and DV genes,

differences in molecular function and biological process are also

detected between groups according to GO annotations (Figure S2).

Essentiality does not affect disease mechanism
Genetic alterations that contribute to disease can manifest as a

result of loss of protein function, gain of a new or enhanced/

dysregulated protein function, or be a consequence of large

chromosome or gene rearrangements, such as translocations that

generate chimaeric proteins (classified as ‘‘other’’). We used the

characterization of disease mutations in OMIM [24] to classify

such functional changes for disease genes. Our results show that

essentiality does not appear to correlate with the propensity of a

disease to be originated by gain or loss-of-function mutations in a

gene. Independent of essentiality, the majority of diseases arise

from loss-of-function mechanisms (around 70%) and only a small

number are caused by a gain-of-function mutations (around 10%),

or chromosomal translocations (Figure 4, Dataset S5). However, it

is possible that these results are due to limited data availability or

our classification methods. Furthermore, the low proportion of

inherited diseases associated with translocations is likely due to

infertility associated with abnormal karyotypes.

Disease lethal genes are more likely to demonstrate a
dominant mode of inheritance than other disease classes

Although genes from all groups seemingly cause disease

predominantly through loss-of-function mechanisms, it is possible

that essentiality may affect the mode of inheritance of disease

genes. We therefore classified disease gene mutations as autosomal

dominant, autosomal recessive, or sex-linked, and categorized

them according to essentiality. Importantly, for this study we

included any mutant allele with a described mode of inheritance,

so a particular gene could be included in both the autosomal

dominant and autosomal recessive categories if it had different

mutations exhibiting those inheritance patterns. The frequency of

disease mutations with sex-linked inheritance is below 10% for all

of the groups (Figure 5). It was observed that the DL gene set

showed a higher proportion of autosomal dominant mutations

than autosomal recessive (Fisher’s exact test p,0.05, Dataset S5).

The high representation of dominant inheritance patterns in

essential genes may be reflective of actual semi-dominant

Figure 3. GO analysis of disease genes. Distribution of Viable (V), Lethal (L), Disease Viable (DV), Disease Lethal (DL), and all disease (D) proteins
analysed for cellular localization according to GO terms.
doi:10.1371/journal.pone.0027368.g003

Figure 4. Disease mechanism analysis. Classification of disease mechanism in the total disease gene set (D, red bars), and Disease Viable gene
(DV, green bars) and Disease Lethal gene (DL, blue bars) subsets. Other refers to diseases caused by chromosomal translocations or chimeric proteins.
doi:10.1371/journal.pone.0027368.g004
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mutations, where disease represents a heterozygous phenotype,

and lethality a homozygous phenotype.

Discussion

To refine understanding of the properties of human disease

genes, we classified disease genes as essential or non-essential, and

assessed whether these two types of disease genes have specific

attributes for a variety of parameters. We also considered those

disease genes with unknown essentiality as a separate group. We

propose that this separation allows for an improved understanding

of the features of human disease genes, building upon the finding

that disease genes with essential and non-essential orthologs differ

in nearly every parameter for which they were studied. Our

findings are based on the current annotations of gene phenotypes

in the mouse knockout literature. Although in some cases mouse

knockouts of human disease genes have demonstrated phenotypes

that are not readily comparable to the human disease state [34],

the inability to assess essentiality in the human necessitates

inferring essentiality from other organisms. The mouse is clearly

the most similar model organism for which there is essentiality

data. Furthermore, large-scale mouse knockout projects will in

future provide additional data on essentiality for consideration

[35].

Separating disease genes according to their essentiality status

provides insights that expand upon observations from prior studies

on disease gene PPI networks [5,36,37]. Our results agree with

prior studies that reported a central position for DL genes in PPI

networks [5,37]. However, using our classification system for

disease genes where those of unknown essentiality are classified as

a separate group, we find that more disease genes can be classified

as essential rather than non-essential. Therefore, our interpreta-

tion of the PPI network analysis differs from prior studies. Mainly,

as DL genes constitute the majority of disease genes, and DL genes

have multiple PPIs acting as hubs in the PPI network, we conclude

that it is very likely that disease genes are found at highly

connected central positions in PPI networks.

At the molecular level, disease genes are segregated to different

cellular regions when considered in the context of essentiality. The

number of PPIs differs for the DL and DV gene groups, although

that may be due to differences in sub-cellular localization. DL

genes are both found to have more interactions and to be more

likely to be localized to the nucleus. It has been demonstrated that

nuclear proteins have higher numbers of interaction partners in

PPI networks [32], which may explain the basis for the difference

in connectivity between DL and DV genes.

Prior studies have suggested that essential genes contribute to

human disease by causing spontaneous miscarriages and birth

defects [5,7,8,9,37]. While this conclusion is reasonable for the null

alleles of DL genes, we conclude (from our analysis of the

physiological systems affected by disease genes) that DL genes also

contribute to adult disease in humans due to additional disease

alleles that do not represent functional null alleles. Therefore, the

definition of essentiality needs to be precisely applied to null alleles.

A consideration that other alleles of essential genes, such as

hypomorphic alleles, may not have lethal phenotypes needs to be

incorporated into bioinformatic studies of disease genes. Indeed

our study reveals that DL genes are more highly associated with

diseases that affect multiple physiological systems. This finding

suggests that disease lethal genes have pleiotrophic functions. For

example, many house-keeping genes are found within the lethal

group, and these genes are likely to function in many or all cell

types. Previous studies have suggested that house-keeping genes,

defined as genes with ubiquitous expression patterns, are essential

for organism survival [29] and, as a consequence, ‘mild’ mutations

in these genes will cause diseases with symptoms in several tissues.

An analysis of ubiquitously expressed genes as compared to human

disease genes revealed that the two classes of genes differed in

evolutionary and functional properties [29]. However, ubiquitous

expression is not a comprehensive indicator of essentiality, and

genes with housekeeping functions may not necessarily have lethal

knockout phenotypes. Our work, thus, demonstrates that when

essentiality, as inferred by mouse knockout phenotypes, is

considered explicitly, disease genes themselves display differing

characteristics based on their essentiality status.

Interestingly, DL genes were found to be over-represented in

cancer. Many oncogenes are associated with cell proliferation and

death mechanisms. While disruption of these processes during

embryonic development would likely prevent the survival of the

organism, cancers commonly result from somatic cell mutations

disrupting normal controls of the cell cycle [31]. Indeed, cancer

can be viewed as a developmental disease [38,39,40], because

developmental genes promoting cell proliferation become reacti-

vated in the adult and drive proliferation in an uncontrolled

fashion. A bioinformatic prediction strategy for identifying cancer

genes has been developed, although the role of essential genes has

not explicitly been incorporated into this model [41]. Our results

suggest that identifying essential genes may further refine the

prediction of genes likely to be associated with causing cancer. DV

genes primarily affect systems that are not required for basic

survival of the organism. For example, while a high percentage of

disease viable genes are associated with psychiatric and immune

system diseases, they are under-represented among cardiovascular

diseases.

We also detected a difference in the mode of inheritance of

disease genes when classified according to essentiality. We find that

disease lethal genes are more likely to demonstrate an autosomal

dominant mode of inheritance. This reflects the tendency for

disease to occur in the heterozygous state in these individuals, and

that homozygosity for disease mutations would present a more

severe phenotype causing lethality. Human disease mutations are

not often nulls, and essentiality and disease can be considered on a

spectrum with respect to mutant alleles. While severe mutant

Figure 5. Mode of inheritance of disease genes. Proportion of
disease genes inherited in an autosomal dominant pattern (AD),
autosomal recessive pattern (AR) or X-lined pattern (X) in the total
Disease gene set (D, red bars), or Disease Viable gene (DV, green bars)
and Disease Lethal gene subsets (DL, blue bars).
doi:10.1371/journal.pone.0027368.g005

The Role of Essential Genes in Human Disease

PLoS ONE | www.plosone.org 7 November 2011 | Volume 6 | Issue 11 | e27368



alleles that eliminate protein function represent the null state and

confer lethality, hypomorphic alleles simply reduce protein

function below an optimal level, resulting in a phenotype

recognized as disease. In this manner, lethal genes can have

mutations that only reduce protein function and therefore present

as disease in the human population, allowing for inheritance of

these more mild alleles in genetic diseases.

From our study we can now present a composite profile of

human disease gene types. We have found that DL and DV genes

differ from each other in many of the characteristics we have

analyzed. Overall, DL genes are more likely to be involved in

more protein-protein interactions, encode nuclear proteins, be

associated with diseases such as cancer and those affecting multiple

systems, and have an autosomal dominant mode of inheritance. In

contrast, DV genes have a tendency to localize to the plasma

membrane or extracellular regions, be involved in neurological or

immune system diseases, and have an autosomal recessive mode of

inheritance.

We have shown that disease genes are not a homogenous group

and should be considered in the context of the functional

importance of the gene with which they are associated. Moreover,

in contrast to prior studies [5,6], we find that when disease genes

with unknown essentiality are considered as a separate group from

non-essential disease genes, the majority of disease genes are

essential. We propose that rather than solely contributing to

spontaneous miscarriages or birth defects due to severe loss of

function mutations, as has been stated in prior studies [7,8,9], DL

genes have a variety of disease associated alleles that represent a

spectrum of human diseases affecting both development and adult

physiological systems. The recognition that disease genes are not a

homogenous subset of human genes, and that essential genes

cannot be excluded from consideration as candidates for all types

of human disease genes, will aid in the identification of candidate

disease gene loci for a variety of human diseases.

Materials and Methods

Data retrieval
We obtained the human–mouse orthology and mouse viable/

lethal phenotype data from Mouse Genome Informatics (http://

www.informatics.jax.org) [26], to give 2,360 human genes with

information about lethality status of the mouse knockout of their

ortholog in the whole genome, without consideration of whether

the gene is annotated as a human disease gene. These were

verified manually by checking phenotypes using PubMed. We

considered the annotations of embryonic, postnatal, prenatal and

perinatal lethality as lethal phenotypes. These data are an

appropriate proxy for gene essentiality in humans and are herein

mentioned as viable and lethal. After removing redundancy, we

find 1,299 and 672 human orthologs of mouse lethal and viable

genes respectively. Only mouse genes with known phenotypes

resulting from targeted deletions (knockouts) were included in the

study.

To create the human protein-protein interaction network,

encoded proteins for each gene were determined from the Entrez

gene database and interactions were derived from multiple

sources: BioGRID (http://www.thebiogrid.org) [42], BIND

(http://www.bind.ca) [43] and HPRD (http://www.hprd.org)

[44] and filtered from the NCBI ‘‘interactions’’ file (ftp://ftp.

ncbi.nlm.nih.gov/gene/GeneRIF). Interaction data contained in

these datasets are derived from multiple sources, such as Y2H, co-

imunoprecipitation and so on. The resulting protein-protein

interaction network consisted of 8,880 nodes (proteins) with

33,979 edges (interactions).

A dataset of 1,965 disease genes was retrieved from the OMIM

database [24], and cross-referenced with OMIM’s morbid map to

provide disease-gene-phenotype relationships [25]. Of these, 1,324

of the disease genes were present in the protein-protein network;

90 of which could be found in the viable network and 310 in the

lethal network.

From Eisenberg and Levanon [30], we obtained 600 house-

keeping genes and converted the given nucleotide accessions to

gene loci names and Entrez accession numbers using the NCBI

Entrez gene database.

Disease classification
The classification of the different disease genes into their

corresponding disease categories was based on the Medical

Subject Headings controlled vocabulary (MeSH; http://www.

nlm.nih.gov/mesh/meshhome.html) [45] as previously described

[46]. MeSH hierarchically describes diseases (in addition to other

life science categories), e.g., diseases to digestive system diseases to

digestive system neoplasms and so on. High level terms were

combined with classifications from Goh [5] to provide a consistent

annotation of disease as in [46].

Network connectivity and centrality measurements
Cytoscape (version 2.62) [47] and Navigator (version 2.1.13)

[48] were used to visualize the protein-protein network and to

analyse the number of highly connected proteins (hubs) and the

number of hub-hub connections in the network belonging to each

dataset. R [49], using the igraph package [50], was used to verify

network properties for each subset of nodes. Degree is defined as

the the total number of edges (interactions) incident upon a node

(protein), the distribution of which gives a probability distribution

of degrees over the whole network. Components are the number of

maximally connected independent groups of interactions, the

largest of which is the largest connected component. Self-edges

were ignored throughout. Quantitative analyses include all

interactions where one (or both) of the partners is a member of

the category (DL, DV, L, V or DU, Table 2). For Figure 2, to

improve image clarity, only interactions observed between like-

category partners (e.g. DV-DV) are visualized in a force-directed

layout.

Protein cellular localization, function and processes
Gene Ontology (GO) annotations for human genes were

retrieved using the BINGO 2.3 plugin [51] present in Cytoscape

[47] and from GO directly (http://www.geneonotology.org/GO.

downloads.ontology.shtml) [33]. GO slim corresponds to a higher-

level version of GO ontologies, that contains a subset of terms

representative of the complete GO and were also downloaded

from GO (http://www.geneontology.org/GO.slims.shtml). Func-

tional analysis corresponds to gene ontology terms from the

molecular function category that have the term "activity" in their

name.

Disease Mechanism
We exploited the rich annotation of OMIM to classify diseases

as resulting from gain-of-function or loss-of-function mechanisms.

Mutations that cause the formation of chimeric proteins due to

translocations are included in a further ‘other’ category. For each

OMIM record an automated simplistic word scoring process was

used, whereby discriminating words and word stems, e.g.

‘‘deficiency’’, ‘‘neomorphic’’, ‘‘activation’’, correspond to each

category (gain, loss, neutral). The type of mutation was thus

chosen according to the category that presented the highest word
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score. To verify this data, a separate Bayesian classifying approach

was used to exclude method bias and error using Bishop for Ruby

(http://bishop.rubyforge.org/), based on the Reverend classifier

for Python (http://divmod.org/trac/wiki/DivmodReverend).

OMIM records known to represent gain, loss or neutral

consequences were manually selected and used as training sets.

Frequent words were excluded from training and classification, as

were non discriminating words common to each grouping. For

example, words shared by a gain record and a loss record in the

training set were excluded from our classification.

A separation of monogenic diseases from polygenic diseases was

also performed (Table 3). The results with and without the

polygenic diseases were similar. The group without the polygenic

diseases is presented.

Mode of inheritance
The separation of the disease essential, disease non-essential,

and disease unknown genes into the different modes of inheritance

(autosomal dominant, autosomal recessive and sex-linked) was

based on the categorization provided by Blekhman [52].

Statistical analyses
Statistical analyses were performed throughout in R [49]. P-

values were calculated using Fisher’s exact, Wilcoxon–Mann–

Whitney or Kolmogorov–Smirnov tests as indicated. The

Benjamin & Hochberg False Discovery Rate (FDR) was used to

calculate corrected p-values [53].
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