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Moonlighting proteins are defined by their involvement in multiple, unrelated functions.

The computational prediction of such proteins requires a formal method of assessing

the similarity of cellular processes, for example, by identifying dissimilar Gene Ontology

terms. While many measures of Gene Ontology term similarity exist, most depend on

abstract mathematical analyses of the structure of the GO tree and do not necessarily

represent the underlying biology. Here, we propose two metrics of GO term functional

dissimilarity derived from biological information, one based on the protein annotations

and the other on the interactions between proteins. They have been collected in the

PrOnto database, a novel tool which can be of particular use for the identification of

moonlighting proteins. The database can be queried via an web-based interface which

is freely available at http://tagc.univ-mrs.fr/pronto.
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1. Introduction

Moonlighting proteins are a subset of multifunctional proteins involved in several, unrelated
biological functions. Because of the growing importance of this functional singularity (Copley,
2012) for the understanding of cellular regulations and human diseases (Jeffery, 2011),
computational methods for the large scale prediction of moonlighting proteins have long been
awaited (Khan and Kihara, 2014). Yet, so far, most of the known moonlighting proteins were
serendipitous discoveries (Mani et al., 2015). One of the major hurdles that need to be overcome
in order to tackle such a task is defining the notion of “unrelated functions.” What are biologically
“unrelated functions” in the context of moonlighting? How can they be defined according to the
current gene/protein functional annotations in way that computers can understand?

The Gene Ontology (GO) (Ashburner et al., 2000) is a controlled vocabulary of terms to describe
gene product functions. Over the last decade, it has become the de facto standard ontology used
to formalize gene annotation data. It is organized as three independent directed acyclic graphs
(DAGs), one for each of the sub-ontologies Biological Process (BP), Molecular Function (MF), and
Cellular Component (CC).

The structure of the GO DAG means that many GO terms are related, either because they
describe related functions or because one term is the child of another. Therefore, proteins annotated
to similar GO terms are assumed to perform similar functions and can be categorized as such.
This has led to various methods of evaluating the semantic similarity of GO annotations (reviewed
in Gan et al., 2013). Most of these depend on the relationships between the terms in the DAG,
either by measuring their distance as the number of edges connecting them, or by evaluating
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their information content. Such methods can therefore identify
semantically similar GO terms, cases where the terms are
linked in the structure of the DAG. The identification of
moonlighting proteins requires defining dissimilar functions.
However, semantically dissimilar GO terms are often clearly
connected from a biological perspective, and therefore semantic
similarity measures are not the best option for implementation
in a moonlighting discovery pipeline. For instance, the terms
“response to tumor necrosis factor” (GO:0034612) and “positive
regulation of apoptotic process” (GO:0043065) share no parent
terms apart from the root of the ontology although they are
descriptions of tightly linked biological processes. Indeed, TNF
is a well known inducer of apoptosis (see Gaur and Aggarwal,
2003 for a review) and “positive regulation of apoptotic process”
describes one of the cellular “responses to tumor necrosis factor.”
These semantically dissimilar terms can, therefore, be considered
functionally similar since they are different descriptions of the
same or obviously connected biological processes. This similarity
is reflected in the fact that the two terms co-occur in the
annotations of multiple proteins (e.g., 19 and 25 in the mouse
and human proteomes, respectively).

We have therefore developed PrOnto, a web-based tool
that provides two metrics of GO functional dissimilarity
based on gene product GO annotations and protein-protein
interactions (PPI). We use the frequency of co-occurrence
of GO term pairs in (i) protein annotations (Annotation
Probabilities, APs) and in (ii) the annotations of interacting
protein pairs (Interaction Probabilities, IPs) to compute
probabilities reflecting biases toward infrequent GO terms
associations implying functional dissimilarity (Figure 1). In
this paper, we present the metrics, the webtool we provide
to the community as well as different usage examples among
which our recent characterization of potential moonlighting
proteins from the human PPI network (Chapple et al.,
2015).

The current version of the PrOnto database contains
probabilities for human, mouse, fly, worm and yeast (see
Supplementary Table 1 for database statistics). The database will
be regularly updated to keep up with annotation and interaction
data. PrOnto is free and accessible through a simple web-
based interface (see Figure 2 available at http://tagc.univ-mrs.fr/
pronto).

2. Materials and Methods

2.1. Annotation and Interaction Probabilities
We express functional dissimilarity as a probability of GO term
pair co-occurrence modeled by a hypergeometric distribution.
Let X be the variable “number of proteins annotated to both
terms” which follows a hypergeometric law. The probability
of observing this or smaller values of X by chance is
given by

P(X ≤ k0) =

k0
∑

k= 0

P(X = k) =

k0
∑

k= 0

(K
k

)(N−K
n−k

)
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n

)
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n

)
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)
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where, for AnnotationProbabilities (APs), N is the number of
proteins annotated directly to at least two different GO terms,
K is the number of proteins annotated to GO1, n is the number
of proteins annotated to GO2 and k is the number of proteins
annotated to both terms.

For InteractionProbabilities (IPs), N is the number of
interactions in the PPI network between proteins annotated
directly to at least two different GO terms. K is the number of
interactions involving proteins annotated to GO1, n the number
of interactions involving proteins annotated to GO2 and k the
number of interactions between a protein annotated to GO1 and
one annotated to GO2.

In both cases, N is the size of the event pool. P(X) is
the probability of observing as large a co-occurence as X in
a set of size N. Therefore, when computing N, only proteins
with at least 2 direct annotations (i.e., explicit annotations,
not including the implicit parent terms) are considered since
co-occurence is only relevant for proteins annotated with at
least two different GO terms. When calculating cross-ontology
probabilities, only proteins with at least one explicit annotation
in each ontology of interest are considered. When calculating K,
n, and k, all annotations per protein are counted, both direct and
inherited. All GO annotations have been included, irrespective of
their evidence codes. Indeed, electronic annotations have greatly
improved in recent years and their reliability now rivals that of
manual annotations (Skunca et al., 2012). Pairs whose low-tail p-
value is below a user-defined threshold (default: 0.05) are listed as
“Dissimilar” and all others as “Not dissimilar.”

In addition, the Jaccard index and Cohen’s kappa have been
computed for all pairs.

2.2. Building High Quality PPI Networks
To calculate the IPs, a high quality interactome was compiled
for each target species. Interaction data were retrieved using the
PSIQUICK (Aranda et al., 2011) interfaces of the APID (Prieto
and Rivas, 2006), BioGrid (Chatr-Aryamontri et al., 2013),
IntAct (Kerrien et al., 2012), DIP (Salwinski et al., 2004), MINT
(Ceol et al., 2010), MatrixDB (Chautard et al., 2009), Reactome
(Croft et al., 2011), InnateDB (Lynn et al., 2008), MolCon, Spike
(Elkon et al., 2008), and TopFind (Lange and Overall, 2011)
databases. Interaction data were filtered by identification method
and only binary interactions between proteins were kept. A full
list of the PSI-MI IDs used to build out networks is provided as
Supplementary Table 2.

Protein names were mapped to UniProt IDs, and sequences,
downloaded from UniProt, clustered using CD-HIT (Fu et al.,
2012). TrEMBL/SwissProt protein pairs sharing ≥95% similarity
were considered to be the same protein: interactions of the
TrEMBL protein were then inherited by the Swiss-Prot protein.
Self interactions were discarded.

The final result was high quality interactomes consisting
entirely of experimentally verified, direct, binary interaction pairs
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FIGURE 1 | PrOnto probabilities principle. The blue set represents the proteins annotated to GO1, the red set represents proteins annotated to GO2. The

intersection corresponds to either proteins annotated to both terms (APs) or interactions involving proteins annotated to both terms (IPs).

FIGURE 2 | PrOnto web interface. In the example shown, two terms have been submitted. The lower panel shows the results for APs.

for each species studied. These networks will be regularly updated
with each update of PrOnto. Current interactomes are available
on the downloads page of the PrOnto database (http://tagc.univ-
mrs.fr/pronto/index.php?id=downloads).

2.3. Tools and Resources Used
The probabilities were calculated using the phyper function
of the R statistical environment (R Core Team, 2012) and
protein annotations were taken from the EBI’s QuickGO
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service (Barrell et al., 2009) (ftp://ftp.ebi.ac.uk/pub/databases/
GO/goa/). The power of the test was calculated using the
power.fischer.test function of the statmod R package
and 1000 simulations per pair. Jaccard indeces and Cohen’s kappa
were calculated using a simple awk script. The PrOnto webpage
is written using a combination of HTML, PHP, and Javascript, the
data are stored in aMySQL database which is queried using a Perl
script.

3. Results and Discussion

3.1. PrOnto Content: The Different PrOnto
Categories
PrOnto probabilities have been computed from the proteomes
and interactomes of several species (human, mouse, fly, worm,
yeast) to assess the relationships between GO terms of the same
sub-ontology as well as between sub-ontologies.

Dissimilar - When the low-tail p < 0.05, the GO terms
are very rarely associated among protein annotations and are
therefore qualified as “dissimilar” by PrOnto. For example, the
probability of finding a lower co-occurrence than observed
for the GO terms “RNA processing” (GO:0006396) and
“signaling” (GO:0023052) is very low in human (therefore
highly significant), as indicated by their AP, p = 7.5e-33
(Figure 2). The co-occurrence is even less probable between
interacting proteins since for IPs, p = 1.4e-230. These GO
terms are then functionally “dissimilar” and very rarely
linked through protein-protein interactions. Interestingly,
these processes have been shown to be instead linked
through protein-RNA interactions (Hogan et al., 2008). To
demonstrate the validity of our approach when identifying
dissimilar pairs, the power of the hypergeometric test was
calculated for all pairs for which the null hypothesis was
not rejected (dissimilar pairs). The results are shown in
Supplementary Figure 1. Notably, the power was very high
for the overwhelming majority of pairs (mean = 0.90 and
median= 0.99).

Not Dissimilar - When the p ≥ 0.05, PrOnto returns
Not Dissimilar. For instance, in the human proteome, the
probability of finding a greater co-occurrence than observed for
the terms “response to tumor necrosis factor” (GO:0034612)
and “positive regulation of apoptosis” (GO:0043065) is low
(AP p = 1, therefore highly significant), clearly indicating
that the terms are functionally “similar.” This is explained
by the following: as 116 human proteins are annotated to
“response to tumor necrosis factor” and 459 to “positive
regulation of apoptosis,” 3 are expected to be annotated
to both given the human proteome size (17866 annotated
proteins), but 25 co-annotated proteins are observed.
The same is observed for IP as proteins that respond to
TNF signaling will often interact with those that promote
apoptosis.

NA - Additionally, a NA category exists when no score
could be computed. PrOnto produces NA when at least one
of the GO terms of the pair under consideration does not
annotate any protein in the target species. For instance, PrOnto

returns “NA” for the GO terms GO:0030326 (“embryonic limb
morphogenesis”) and GO:0048736 (“appendage development”)
in yeast. This makes perfect sense biologically speaking since, for
obvious reasons, no yeast proteins will be annotated to either of
those terms.

Globally, as shown in Table 1, where the percentages of
dissimilar and not dissimilar GO term pairs are reported for
each species, most GO term pairs are not dissimilar according
to PrOnto (AP, 84.1–87.1% and IP, 54.2–72.3%). Since the cell
is a complex system whose constituent parts are very often
interlinked (Schwikowski et al., 2000), many GO terms co-
occur more often than expected by chance among gene/protein
annotations or between interacting proteins. This link between
processes in the cell is thus captured by PrOnto which is based
on functional data.

As expected, since PrOnto is based on existing protein
annotations, dissimilar terms according to PrOnto are rare
(AP, 0.2–0.6%). That they are more numerous in the IPs
(0.5–4.9%) shows functions that are rarely carried out by
interacting proteins, therefore suggesting that they are performed
by different functional modules, known as groups of interacting
proteins involved in the same biological process (Spirin and
Mirny, 2003). Interestingly, a larger proportion of dissimilar
pairs has been identified in the organisms for which interaction
data are more complete (human and yeast), highlighting the
necessity of deciphering protein-protein networks in other
organisms to gain a deeper understanding of the links between
functions.

Table 2 shows the percentage of dissimilar GO term pairs
per ontology for human. Interestingly, the fact that dissimilar

TABLE 1 | Percentage of GO term pairs from all ontologies (including

cross-ontology pairs) that are Dissimilar or Not Dissimilar for all species.

AP IP

Dissimilar Not dissimilar Dissimilar Not dissimilar

Human 0.3 99.6 4.0 96

Mouse 0.2 99.8 0.5 99.6

Fly 0.5 99.5 2.2 97.8

Worm 0.6 99.4 2.2 97.8

Yeast 0.5 99.5 4.9 95.2

“Dissimilar” corresponds to low-tail p < 0.05 and “Not Dissimilar” to all other cases.

TABLE 2 | Percentage GO term pairs from each ontology, excluding

cross-ontology, for human (MF: Molecular Function, CC: Cellular

Component, BP: Biological Process) that are Dissimilar or Not Dissimilar.

AP IP

Dissimilar Not dissimilar Dissimilar Not dissimilar

MF 0.4 99.6 2.0 98

CC 1.3 98.6 7.0 93.1

BP 0.3 99.8 4.2 95.7

“Dissimilar” corresponds to low-tail p < 0.05 and “Not Dissimilar” to all other cases.
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terms reach 7% for IP CC pairs reflect the shuttling of proteins
throughout different cell compartments.

3.2. PrOnto Usage to Predict Moonlighting
Protein Candidates
Unlike most tools that provide a measure of GO term
functional association, PrOnto was conceived in order to identify
dissimilar terms. Indeed, whereas most comparable approaches
are geared toward the identification of similar terms, PrOnto
has the advantage of being able to identify terms that very
rarely co-occur. We therefore used PrOnto probabilities in a
protein-protein network analysis dedicated to the discovery
of moonlighting candidates and implemented them in our
MoonGO pipeline (Chapple et al., 2015). The pipeline first
extracts overlapping clusters from a PPI network using the OCG
algorithm (Becker et al., 2012). These clusters are formed by
highly interconnected proteins which tend to be involved in
the same cellular processes. The cellular process(es) in which
the clusters are involved, are identified based on the BP GO
annotations of their constituent proteins, following a majority
rule. Potential moonlighting proteins are then identified at the
intersection of clusters involved in unrelated biological processes
according to PrOnto GO term association probabilities. Using
both APs and IPs ensures that the multiple functions in which
the candidate protein is found to be involved, are very rarely
performed (i) by a single protein and (ii) by interacting proteins.
APs and IPs are therefore used here as two proxies, indicators of
unrelated cellular functions.

Using this approach, we have identified 430 moonlighting
candidates that form a distinct sub-group of proteins
displaying specific features, distinguishing them from non-
candidates proteins and constituting a signature of extreme
multifunctionality. Among the striking features, candidates
are more connected in the network, enriched in short linear
motifs and in disease-related proteins compared to non-
candidates, and are less intrinsically disordered than network
hubs (Chapple et al., 2015; Zanzoni et al., 2015). These results
therefore underline that PrOnto is particularly well suited to
identify moonlighting candidates from biological data since it
is especially stringent when determining term dissimilarity (see
Tables 1, 2).

As we provide PrOnto probabilities for multiple species,
we predict that it will be soon used for the identification of
moonlighting candidates in these other species. Finally, it should
be noted that a recent analysis of GO terms has been proposed
to identify moonlighting candidates in E. coli (Khan et al., 2014).
Unlike our approach which uses PrOnto probabilities to assess
the dissimilarity of functions of functional modules, this work is
comparing the extent to which each function of the moonlighting
candidates is described by the GO terms annotating the proteins,
using a semantic similarity measure. The approach is therefore
also using GO term annotations but in a completely different
context.

3.3. Other PrOnto uses
Overall, APs can be used to identify cellular processes that
are rarely carried out by the same proteins (i.e., “dissimilar”),

whereas IPs can offer insights into the links between different
cellular processes mediated by protein interactions. In addition
their use for the investigation of the links between the functional
modules formed by interacting proteins in PPI networks as
described above, APs and IPs could also be used to score
protein interaction predictions. In some cases, in the absence
of experimental data, protein-protein interactions are predicted
using bioinformatics approaches. One may then want to assign
a confidence score based on real biological data to these
predictions. Because PrOnto probabilities are derived from
biological knowledge and experimental data, they can be used
for this purpose and a lower score can be assigned to predicted
interactions between proteins annotated to dissimilar terms.

They can also be used when constructing ontologies from
-omics data as recently proposed by Dutkowski et al. (2013)
and Kramer et al. (2014), the latter of which uses semantic
similarity for assessment purposes. PrOnto can also help guide
protein annotations as in the annotation tool GOAT (Bada et al.,
2004) which uses term functional association scores to annotate
proteins of unknown function. Once one term has been assigned
to a protein, dissimilar terms are less likely to be added.

3.4. PrOnto compared to similar tools
Using term co-occurence as a proxy for functional similarity has
already been done by other methods and tools. For example, the
EBI’s QuickGO service provides the top 100 most co-occuring
terms for the query GO term. However, a way of getting more
than those 100 co-occuring terms is not provided, nor is any way
of getting terms that do not co-occur (the “dissimilar” terms of
PrOnto). As already mentioned, the later can be very useful in
studies of protein multifunctionality.

The FAM (Function Association Matrix) which is part of the
PFP protein function predictor (Hawkins et al., 2009) uses a very
similar approach. However, the FAM scores (available at http://
dragon.bio.purdue.edu/FAM/), unlike PrOnto, are asymmetric,
meaning that P(GO1|GO2) 6= P(GO2|GO1) which is something
that should be taken into account when choosing which tool to
use. Depending on the analysis, either symmetric or asymmetric
probabilities might be preferred.

In addition, both methods (QuickGO and FAM) provide
co-occurrences calculated from the entirety of the UniProt
database whereas PrOnto considers a specific species’ proteome
or interactome. A species-specific measure can indeed be
considered an asset depending on the analysis being undertaken
since cellular and physiological functions often differ between
species, essentially due to tissue-specificity. Term co-occurences
are therefore expected to be different across species.

Moreover, neither method provides the user with the ability
to input a list of terms and obtain a list of probabilities nor the
possibility of querying for specific pairs. The web-based interface
of PrOnto is designed with that in mind and is a simple and
practical way of quantifying GO term functional dissimilarity.

Finally, PrOnto is, to our knowledge, the only tool that offers
a measure of GO term functional dissimilarity based on a species’
interactome. A similar approach was undertaken by Dotan-
Cohen et al. (2009) to identify “Process Linkage Networks” rather
than to assess GO term functional dissimilarity. While they used
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interactome data of a single species to build these networks, they
did not provide a tool to the community.

4. Conclusion

We have presented PrOnto, a novel tool for quantifying GO term
functional dissimilariy based on two species-dependent metrics
of GO term association derived from either the annotations
or the interactome data of the species in question. This tool
was developed for the specific goal of identifying moonlighting
proteins from interactome data. As such, the emphasis has been
on the identification of dissimilar functions.

The current version of PrOnto is using a relatively simple
statistical approach which, nevertheless provides robust results
(see Chapple et al., 2015 and Supplementary Figure 1). In the
future, in addition to the hypergeometric probability, power and
Jaccard indeces, we plan to implement other statistical measures
and combine them into a single metric of GO term similarity. In
addition, we plan to expand the tool to also address “similar,” as
opposed to merely “not dissimilar,” GO terms.
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