
REVIEW
published: 13 August 2021

doi: 10.3389/fgene.2021.695399

Frontiers in Genetics | www.frontiersin.org 1 August 2021 | Volume 12 | Article 695399

Edited by:

Alexandre V. Morozov,

Rutgers, The State University of New

Jersey, United States

Reviewed by:

Vijaykumar Muley,

Universidad Nacional Autónoma de

México, Mexico

Ankush Sharma,

University of Oslo, Norway

*Correspondence:

Katie Ovens

katie.ovens@mail.mcgill.ca

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 14 April 2021

Accepted: 19 July 2021

Published: 13 August 2021

Citation:

Ovens K, Eames BF and McQuillan I

(2021) Comparative Analyses of Gene

Co-expression Networks:

Implementations and Applications in

the Study of Evolution.

Front. Genet. 12:695399.

doi: 10.3389/fgene.2021.695399

Comparative Analyses of Gene
Co-expression Networks:
Implementations and Applications in
the Study of Evolution
Katie Ovens 1*, B. Frank Eames 2 and Ian McQuillan 3

1 Augmented Intelligence & Precision Health Laboratory (AIPHL), Research Institute of the McGill University Health Centre,

Montreal, QC, Canada, 2Department of Anatomy, Physiology, & Pharmacology, University of Saskatchewan, Saskatoon, SK,

Canada, 3Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada

Similarities and differences in the associations of biological entities among species can

provide us with a better understanding of evolutionary relationships. Often the evolution of

new phenotypes results from changes to interactions in pre-existing biological networks

and comparing networks across species can identify evidence of conservation or

adaptation. Gene co-expression networks (GCNs), constructed from high-throughput

gene expression data, can be used to understand evolution and the rise of new

phenotypes. The increasing abundance of gene expression data makes GCNs a valuable

tool for the study of evolution in non-model organisms. In this paper, we cover motivations

for why comparing these networks across species can be valuable for the study of

evolution. We also review techniques for comparing GCNs in the context of evolution,

including local and global methods of graph alignment. While some protein-protein

interaction (PPI) bioinformatic methods can be used to compare co-expression networks,

they often disregard highly relevant properties, including the existence of continuous and

negative values for edge weights. Also, the lack of comparative datasets in non-model

organisms has hindered the study of evolution using PPI networks. We also discuss

limitations and challenges associated with cross-species comparison using GCNs, and

provide suggestions for utilizing co-expression network alignments as an indispensable

tool for evolutionary studies going forward.

Keywords: gene co-expression networks, network alignment, gene expression, comparative transcriptomics,

evolution

1. INTRODUCTION

Biological systems can be studied as large-scale networks such as gene expression networks,
protein-protein interaction (PPI) networks, andmetabolic networks (Serin et al., 2016). Comparing
these networks is valuable for understanding the relationships between biological entities across
different phenotypes and throughout evolution (e.g., diseased vs. healthy, good prognosis vs. bad
prognosis, mouse vs. human, etc). Studying how these networks are “re-wired” can provide more
insight than studying biological entities as independent units that do not interact with each other.
Many methods are available for PPI network analysis and comparison. However, developing a
specific PPI network is a challenging task for non-model organisms, which is critical for making
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evolutionary inferences (Schoenrock et al., 2017). On the other
hand, developing gene expression networks is a straightforward
task due to publicly available gene expression profiles for model
and non-model organisms.

The relationships between genes can be inferred using an
organism’s transcriptome, which traditionally referred to all
messenger RNA (mRNA)molecules expressed, but now describes
the full range of RNA transcripts expressed by an organism. The
transcriptome is closely tied to an organism’s phenotype, such as
morphological structure (Olson, 2006); therefore, transcriptomic
activity can affect organismal functions. With the advance of
high-throughput technologies such as RNA-seq and single-cell
RNA-seq, comparative transcriptomics has become useful for
tracking gene expression changes that might underlie molecular
mechanisms of evolution (Gómez-Picos and Eames, 2015). Gene
expression networks make it possible to study coordinated gene
expression patterns across various phenotypes and organisms.

Gene co-expression networks (GCNs) represent gene–gene
interactions as an undirected graph, where the nodes of the graph
represent genes and edges represent the co-expression strength
between nodes (Stuart et al., 2003). Although these networks
do not contain information about regulation direction, they
still allow for the simultaneous analysis of many genes and the
potential relationships between them. GCNs can be compared
across different tissues, cell types, or species to better understand
the coordinated changes in gene-gene interactions (van Dam
et al., 2017). Several techniques are currently utilized to
make cross-species GCN comparisons, including differential co-
expression network analysis methods (Watson, 2006; Langfelder
and Horvath, 2008; Tesson et al., 2010; Amar et al., 2013), inter-
and intra- modular hub detection (van Dam et al., 2017), and
functional annotation transfer (Proost and Mutwil, 2017; Reyes
et al., 2017; van Dam et al., 2017).

Comparative analyses of GCNs can be a valuable approach
to generate hypotheses and gain insight into the evolution
of biological processes using the similarities and differences
between the biological interactions across multiple species.
Homologous genes, for example, tend to be negatively correlated
with molecular evolution rates and co-expression connectivity
changes are more likely in genes that are relatively younger in
evolutionary history that tend to have low connectivity (Monaco
et al., 2015; Wei et al., 2016). Genes with lower connectivity—
where fewer edges connect the genes to other genes of the
network—also tend to be co-expressed with other young
genes (Wei et al., 2016). Gradually, these young genes can become
more connected and can potentially become hubs in the network
depending on how important they are to functional processes.
The comparison of GCNs has also being made by mapping
orthologs between species and comparing modules that are
associated with particular functional processes (Stuart et al., 2003;
Yan et al., 2014). Differential co-expression analysis also detects
differences in the co-expressed genes between two conditions,
typically diseased and healthy samples (Jiang et al., 2016), but
can also compare two species (van Dam et al., 2017; Muley et al.,
2020).

In this paper, we focus on using GCN comparisons of species
to identify evidence of adaptation and conservation. Network

alignment and alignment-free methods can address the lack of
knowledge regarding how each node of one network maps to one
or more nodes of the other network(s), and identify areas where
GCNs are conserved or different (Memišević and Pržulj, 2012).
However, several challenges exist when comparing and aligning
GCNs, PPI, gene regulatory, metabolic, and ontology networks.
Depending on the strategy chosen, the network alignment
method can be computationally intractable, requiring heuristics.
Further, the best network alignment methods for GCN alignment
specifically is unknown.

In section 2, we explain how the general representation
of GCNs differs from PPI networks and section 3 covers
applications of network alignment to evolutionary studies. In
section 4, we discuss the trade-offs between local, global,
pairwise, and multiple alignment-based methods in the context
of evolutionary studies. Section 5 describes the available tools and
methodologies to align GCNs, including common alignment-free
methods, while highlighting their shortcomings. In section 6,
we provide suggestions for addressing current challenges in
comparing GCNs. Finally, section 7 concludes the paper.

2. CO-EXPRESSION NETWORK
REPRESENTATION

There are several ways in which biological networks may be
represented graphically, with different methods to represent
relationships between nodes. PPI networks typically have edges
that have no associated weight. A weighted graph can also be
used, where the edge weight can also signify how confident, based
on available data or experimentation, one can be that the edge
is present (Gitter et al., 2010). This is typically represented as
a value between 0 and 1, with 1 being the highest confidence
and 0 being the lowest confidence. The associations between
proteins can range from direct physical interactions inferred
from an experimental method to functional relationships that are
predicted on the basis of computational analysis of other known
biological data. Some examples of edge weight values include
socio-affinity index, which provides a measure of the association
between a pair of proteins based on an entire affinity purification-
mass spectrometry dataset (Gavin et al., 2006; Rao et al., 2014).
The measure is determined by considering when a protein is able
to retrieve another when tagged, when two proteins are retrieved
by another protein, and the overall frequency of each protein in
the dataset. Known interactions from primary databases can also
be utilized, including pathway knowledge from databases such as
KEGG, measuring the similarity between protein structures, or
utilizing gene information such as conserved relationships across
multiple genomes to suggest there is a potential possibility of
the functional relationships among the proteins encoded by the
related genes (Rao et al., 2014).

GCNs are constructed from high-throughput measurements
such as microarray and/or RNA-seq. In the context of
evolutionary studies, RNA-seq has the added benefit of not
being limited to only model organisms that have prior genomic
resources, which could allow for comparisons of gene expression
across a large number of species at one time (Todd et al., 2016).
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FIGURE 1 | Co-expression networks show the difference between original (A), unsigned (B), and signed gene co-expression networks (C). The original network

shows edge weights as calculated using a correlation measure such as Pearson correlation. Networks were constructed using Cytoscape (Shannon et al., 2003).

However, building transcriptomes without a good genomic
resource can lead to a less accurate assembly.

GCNs typically use weighted graphs. One of the most
common similarity measures used to construct these weights
is correlation, an association measure used to estimate the
relationships between two variables. Pearson correlation
coefficient measures the extent of a linear relationship between
variables x and y and is a preferred and standard way of
calculating GCN edge weights. Other measures that are not
as common include Spearman correlation, which is based
on rank, measuring the extent of a monotonic relationship
between x and y. All correlation coefficients take on values
between −1 and 1, where negative values indicate an inverse
relationship, such as transcriptional repression. A correlation
coefficient is an attractive association measure since it can
be easily calculated, allows for calculating significance levels
(p-values), and the sign (±) allows one to distinguish between
positive and negative relationships. For gene network prediction,
close relationships have been found between mutual information
and correlation-based GCNs. Mutual information is often highly
related to the absolute value of the correlation coefficient and
when they disagree, the correlation findings appear to be more
plausible statistically and biologically (Steuer et al., 2002; Song
et al., 2012). Since mutual information requires discrete data,
it is not usually preferred over Pearson correlation as it usually
leads to loss of signal. One advantage of mutual information is
that it captures non-linear relationships, which is not possible
with other preferred metrics (Liu, 2017). Simple measures such
as these have been found to be among the highest performing
for measuring network connectivity and functional inference
(Ballouz et al., 2015).

Some of themore commonways GCNs represent edge weights
are shown in Figure 1. First, the edges can be weighted from
−1 to 1 using simply the correlation coefficient. Alternatively,
edges may be weighted using the absolute value of correlation
coefficients, using

|cor(exc, eyc)|, (1)

where exc is the expression of gene x in condition c. This
is referred to as unsigned correlation, and has the effect of
mapping both positive and negative correlation toward 1,
and no correlation toward 0. Furthermore, correlation can
also be transformed to be between 0 and 1 by using the
following equation:

0.5+ 0.5 ∗ cor(exc, eyc), (2)

This is referred to as signed correlation. A value closer to
0 is a strong negative correlation, a value closer to 1 is a
strong positive correlation, and a value of 0.5 indicates no
correlation (Langfelder and Horvath, 2008). Although this
method retains information regarding negative and positive
correlation, typically this method is not used to align networks.

These networks are often thresholded either using a strict
cut-off that is applied to filter out non-important edges or the
network has a soft threshold applied (Tsaparas et al., 2006;
Langfelder and Horvath, 2008; Yan et al., 2014; Monaco et al.,
2015). A soft threshold, on the other hand, retains all edges.
Each of the edge weights is taken to a power so that when lower
weights are taken to the power, the weights are pushed closer
to zero. When stronger correlations are taken to the power they
are emphasized.

In the following section, we provide motivations as to why
utilizing network alignment methods to study evolution may
be beneficial.

3. POTENTIAL OF NETWORK ALIGNMENT
APPLICATIONS TO THE STUDY OF
EVOLUTION

The alignment of genes and proteins at the network level could
be important in order to understand the evolution of their
function. Since these networks are functional in nature, the
evolution of these networks must be functionally constrained;
thus their topology should also be similarly constrained. As such,
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like with sequence alignment, the alignment of GCNs should
reveal information as to the evolutionary history of the GCN.
Regions of the GCNs that are relatively constrained suggest the
conserved genes serve essential functions. If the connections
between genes based on their correlation changes frequently
across species, then it is more likely that these genes lack of
functional conservation and perhaps even suggests the evolution
of new biological functions or modules.

Graph alignment can be used to infer ancestral networks by
identifying conserved subnetworks. Ancestral reconstruction is
the extrapolation back in time from measured characteristics
of species to their common ancestors (see Figure 2). It should
be mentioned that there are non-alignment based methods
attempting to predict the core nodes and interactions that may
have been a part of the network’s ancestral state (Simões-Costa
and Bronner, 2013). Reconstructing these networks commonly
involves the modeling of loss or gain of interactions following
gene duplication or losses during long-term evolutionary
processes (Conant and Wolfe, 2006; Gu et al., 2019). Others
also incorporate substitution rates and mutation data in order
to predict what an ancestral network looks like (Beleva Guthrie
et al., 2018). However, these methods tend to rely on generative
probabilistic models of module evolution to represent the
expression modules in each species and assign genes to modules
in each extant and ancestral species (Roy et al., 2013; Koch et al.,
2017; Liebeskind et al., 2019).

Differential network connectivity and module conservation
can be used to identify key drivers of evolutionary
change (Madan Babu and Teichmann, 2003; Babu et al.,
2004). Currently, interpreting the specific gene expression
differences between species and determining the evolutionary
significance of these changes is a significant challenge. It is
possible for differences in gene expression to evolve neutrally
and have little functional consequence. Thus, tools are required
that can systematically discern between gene expression changes
that are likely to be functionally significant and those that are
not. The ability to compare gene expression at the network level
can provide a better picture of gene evolution at the systems
level. The changes in connectivity between genes can provide
indication as to potential functional consequences.

Current automated computational methods to assign
functional labels to unstudied genes often involve transferring
annotation from orthologs (van Dam et al., 2017). However,
since genes can evolve different functions, these transfers would
benefit from knowledge of the organization of these genes in
networks. From an evolutionary perspective, these networks can
be used to identify likely functional orthologs (orthologs that
share the same or similar biological role) in species with less
information, identify evolutionarily conserved sub-graphs, as
well as identify conserved functions.

The following sections will briefly describe work in comparing
networks using homology and topology as similarity measures.
Most of the specific examples of alignments involve PPI networks
as this is the biological data for whichmost of these methods have
been designed. Comprehensive reviews of the many methods
or tools available for network alignment are covered in the
literature (Clark and Kalita, 2014; Faisal et al., 2015; Elmsallati

FIGURE 2 | Visualization of the hypothetical changes in a biological network,

such as a co-expression network, generated from four different species

(species A,B,C, and D). Different comparisons that can be made include the

pairwise comparison between the GCNs of two species (red box), or

simultaneous comparisons can be made across many species (blue box).

These types of comparisons may also be used to infer ancestral GCNs, which

may be inferred as portions of the networks that are more conserved across

the species being compared. The known information about phylogeny and

gene age can also be utilized in order to reconstruct hypothetical ancestral

GCNs, such as the one represented at the root of this phylogenetic tree. It is

important to note that the ancestral GCN is completely preserved across these

species for the sake of this example, but this is unlikely without any

evolutionary changes over time. In this alternative scenario, the relationships

between the bottom module nodes would not be preserved, suggesting that

perhaps whatever this module of genes was responsible for biologically is no

longer important for the later diverged species.

et al., 2016; Emmert-Streib et al., 2016; Meng et al., 2016b; Guzzi
and Milenković, 2017).

4. GRAPH ALIGNMENT IN BIOLOGICAL
NETWORKS

The principle behind biological network alignment is that
biologically relevant associations are likely to be observed in
different individuals, species, tissues, or conditions whereas false
associations are less likely to be repeatedly observed. For example,
the conserved genes in terms of both sequence and expression
among multiple species are expected to play a key role in
biological responses (Stuart et al., 2003). The goal is therefore to
align the networks to identify these conserved elements. In order
to better understand the application of network alignment to co-
expression networks, it is important to consider the techniques
used with other types of biological networks such as protein-
protein interaction (PPI) networks.

For network alignment, the basic problem is represented as
follows: each network is represented as a graph Gi, where Gi =

(Vi,Ei) with Vi being a set of nodes and Ei being the set of
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edges that connect nodes in Vi. Some scoring scheme is defined
between components of the graphs, and the goal of an alignment
between two networks G1 and G2 is to map as many nodes and
edges in one graph to the nodes and edges (respectively) of the
other in such a way that the sum of scores is high. However, there
are many factors that can be integrated into the scoring scheme,
which will be explored next.

Network alignment strategies can be considered global
or local. The goal of local alignment is to find conserved
subnetworks in a graph; since multiple local alignments can
exist, this means that individual nodes in one graph can have
multiple good local alignments. These methods tend to identify
subnetworks or communities of related genes. In comparison,
global alignment methods typically align every node in one
network to a node in another network, attempting to find
the one alignment with the maximum amount of similarity
(Meng et al., 2016b).

Network alignments can also be independently divided into
two categories: uniquely labeled, and unlabeled. For the first,
the two graphs have labeled nodes, which could be e.g. gene
name (in principle, graphs could have labeled edges as well).
A uniquely labeled network has separate labels for each node.
In a uniquely labeled alignment, it forces a node to align with
the (at most one) similarly-labeled node in the other graph. It
should be noted that it is possible to create optimal uniquely
labeled alignments in a computationally efficient manner (in
polynomial time) (Dickinson et al., 2004). An example of
an alignment of uniquely labeled networks maps one-to-one
orthologs between species to each other. In contrast, unlabeled
alignments would ignore any labels on the graphs, and align
based on topological similarity only. An alignment between
unlabeled graphs (or ignoring the labels) may in some scenarios
be desirable in order to focus on comparing the structure of the
graphs. In the context of comparing networks across species to
study evolution, comparing network structure without relying
on known biological relationships between the genes may be
beneficial when aligning networks from organisms that are not
model organisms and as such, may lack informative labels.
Homologs also may not have the same functions, so it is possible
these genes should be aligned with other genes in the networks
responsible for similar functions.

Both unlabeled local and global graph alignment are usually
computationally intractable to solve optimally. As an example,
just the problem of determining whether two graphs are
isomorphic (they are the same after renaming nodes and edges)
has no known polynomial time algorithm. It is also possible to
use both topological and sequence similarity by utilizing a cost
function that combines them together. For example, one such
cost function is

C(ui, vj) = αT(ui, vj)+ (1− α)H(ui, vj), (3)

where ui and vj are nodes in networks i and j, respectively, and T
is some topological scoring function representing the similarity
of the topological neighborhood of the nodes in their networks;
and H is a biological scoring function indicating the similarity of
the genes at a sequence level. This means that the alignment of

orthologs could be considered in the calculation of a score, but it
does not necessarily enforce a mapping between these orthologs.
This can be thought of as a hybrid of the uniquely labeled and
unlabeled approaches. In order to vary how much influence each
of the similarities have to the overall score, a parameter α used
in Equation (3), which is a fixed value between 0 and 1. If α is
chosen to be closer to 0, sequence similarity has more influence
on the similarity between nodes; if α is chosen to be closer to 1,
topological information has more influence. Some of the newer
methods of network alignment also allow for updating this cost
function after each iteration of an alignment—after some nodes
have already been aligned—which could provide information for
the remaining iterations (Neyshabur et al., 2013; Sun et al., 2015;
Guzzi and Milenković, 2017).

4.1. Biological Similarity in Network
Alignment
An important aspect of generating informative network
alignments is ensuring the alignments make sense from a
biological perspective. Using a measure of biological similarity
can aid in generating biologically relevant alignments. These
measures of similarity can be accounted for using the H function
described in section 4. One measure of similarity used between
genes in this case is sequence similarity, a traditional method
of identifying homology. Scores can be calculated using BLAST
between protein or gene sequences with E-values less than
some threshold, or by identifying the known orthologs between
species (Stuart et al., 2003). Some methods use only these
calculated BLAST E-values as part of their alignment cost
functions, or they can also incorporate a variety of similarity
information including sequence, structural, and ontology
information (Clark and Kalita, 2014).

Utilizing gene sets or gene set enrichment are other potential
strategies for not only evaluating, but also driving the alignment
of networks (Kuchaiev and Pržulj, 2011). A gene set refers to a set
of genes that have been grouped and annotated with particular
functions based on prior biological knowledge. A gene set may
be considered enriched when it shows statistically significant and
concordant differences between the networks being compared.
Gene Ontology (GO) terms are a controlled vocabulary that
describes biological properties of gene products, and the Gene
Ontology is the organization of these terms that describes their
relation to each other. They can also be referred to as gene
sets. The terms are organized as a directed acyclic graph (DAG)
where each node is a GO term, and each edge is the relationship
between the GO terms. One strategy is to determine the semantic
similarity between the GO terms for each node across the
networks being compared (Shui and Cho, 2016). To do so, the
subgraph of GO terms annotating each node of a network is
transformed into a vector of information content distance for
every GO term pair. A pair of nodes across the networks being
compared can then be compared, and a measure of similarity
between the nodes is calculated as the Euclidean norm between
the distance vector for each node to get a similarity score
and determine good alignments between the networks. Another
simple method typically used to evaluate an alignment based on
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GO terms is to calculate the fraction of aligned proteins sharing
the same GO terms (Kuchaiev and Pržulj, 2011). The larger the
fraction, the more biologically meaningful the alignment. The
GO terms can also be weighted based on their frequency or
how informative they are (Hayes and Mamano, 2017). Other
alignment methods use the number of distinct GO terms that
are statistically significantly enriched in the modules identified
in each network as a measure of conservation and alignment
quality (Kalaev et al., 2008; Faisal et al., 2015).

The current limitations of gene set analysis may hinder
the comparison of gene sets enriched between the networks
being compared (Maleki et al., 2020). The databases and
gene set enrichment analysis methods selected in order
to perform the enrichment analysis and drive or evaluate
network alignments can have a substantial impact on
the results of the enrichment analysis and consequently
the alignment (Maleki et al., 2018, 2019a,b). Also, using
known annotation to align the networks likely will
not be as useful in scenarios when the goal is to align
networks in order to transfer annotation from one species
to another species with limited annotation. Therefore,
incorporating topological information is also useful for guiding
network alignments.

4.2. Topological Similarity in Biological
Network Alignment
Some alignment methods rely on strategies to measure similarity
between the topological properties of networks. Common
similarities include calculating differences between degrees,
clustering coefficients and eccentricities (Kuchaiev et al., 2010;
Hashemifar and Xu, 2014), spectral signatures (Singh et al., 2007;
Liao et al., 2009; Patro and Kingsford, 2012), and graphlet-degree
signatures (Milenković et al., 2010; Memišević and Pržulj, 2012;
Malod-Dognin and Pržulj, 2015). For example, alignment could
involve aligning graphs based on similarity of neighbors, where
two nodes are considered a good match if their neighbors are also
good matches.

IsoRank is the original graph alignment method introduced
to align PPI networks (Singh et al., 2007), and it has also been
used to align GCNs (Liao et al., 2009; Ficklin and Feltus, 2011;
Yan et al., 2014). In the original algorithm, the guiding principle
was that if two nodes of different networks are aligned, then their
neighbors should be aligned as well. It is an application that uses
spectral methods, whereby the eigenvalues and the eigenvectors
of the adjacency matrix of a graph are invariant with respect
to node permutations. Therefore, if two graphs are isomorphic,
their adjacency matrices will have the same eigenvalues and
eigenvectors (Conte et al., 2004). The proteins are ranked
by their total weights based on topological similarities using
an iterative spectral clustering algorithm to identify conserved
proteins. IsoRank and IsoRankN are capable of aligning 5
and 6 species at most, respectively, due to their exponential
time complexity (Hu et al., 2014). Furthermore, handling large
networks of more that 10,000 proteins or genesis a challenge
(Shih and Parthasarathy, 2012).

4.3. Current Directions to Improve
Biological Alignment Strategies
Some of themain strategies for improving alignmentmethods are
to (1) combine local and global alignment methods (Meng et al.,
2016a; Milano et al., 2019), (2) improve the agreement between
topology and homology similarity (Guzzi and Milenković, 2017),
(3) consider both node and edge similarities when making
alignments (Crawford and Milenković, 2015; Sun et al., 2015;
Vijayan et al., 2015), (4) align more than two networks (Kalaev
et al., 2008; Flannick et al., 2009; Liao et al., 2009; Vijayan
and Milenković, 2017), and (5) combine groups of alignment
methods (Malod-Dognin et al., 2017; Manners et al., 2017).
The limitations of using either local or global alignment is
being addressed with methods that try to find a balance
between local and global alignment, which have been shown
to be complementary (Meng et al., 2016a). Therefore, it may
be beneficial to use both or incorporate features of both
alignment methods in a single method. IGLOO, for example,
utilizes an already available (interchangeable) local alignment
method to make an initial alignment, and then applies a
global alignment strategy to improve topological similarity
scores (Meng et al., 2016a). As another example, GLAlign
initially applies MAGNA++ (a global alignment method) to
collect a list of matching nodes and a list of seed nodes
generated from biological information. Then Align-MCL (a
local alignment method) is used to produce the final alignment
(Milano et al., 2019).

The majority of the methods described in section 4 have
been tested with and applied to PPI networks. The benefit of
using gene expression networks as opposed to PPI networks to
study evolution is that the PPI networks available today across
a variety of species are largely incomplete. Depending on the
species or tissues a researcher wishes to study, it may be difficult
to obtain enough PPI information. It is much easier to collect
high-throughput sequencing data for many species, which can
be used to generate GCNs. The following section describes how
GCNs have been compared using network alignment including
methods that have been applied or designed specifically with
GCNs in mind.

5. ALIGNMENT AND ALIGNMENT-FREE
METHODS AND APPLICATIONS TO GENE
CO-EXPRESSION NETWORKS

Co-expression networks exhibit many of the same properties as
PPI networks. They both tend to have a scale-free structure and
have a strong modularity (Carlson et al., 2006). They also both
have a number of highly connected nodes that are known as
hubs (Gaiteri et al., 2014). However, although many GCNs have
been constructed, few PPI network alignment techniques have
been utilized for comparing GCNs, especially from eukaryotic
organisms. Section 5.1.1 includes a demonstration of WGCNA,
which is a commonly used method for module detection in
GCNs and can also be utilized to compare networks. Section 5.2
contains a discussion of PPI alignment methods that have been
applied to GCNs, methods developed specifically to align GCNs,
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and a description of their applications. First, section 5.1 describes
some methods and applications of comparing GCNs without
creating alignments.

5.1. Alignment-Free Comparisons of
Co-expression Networks
Alignment-free network comparisons aims to quantify the
similarity between networks using other methods besides
network alignment (Mutwil et al., 2011; Netotea et al., 2014; Serin
et al., 2016; Tzfadia et al., 2016). These approaches may include
measuring the similarity between the topological properties of
networks (Tsaparas et al., 2006; Ali et al., 2014; Leal et al., 2014;
Monaco et al., 2015; Jardim et al., 2019; Zu et al., 2019), clustering
for the identification of conserved modules of genes (Stuart et al.,
2003; Gerstein et al., 2014; Yan et al., 2014), and comparison of
edge weights or network aggregation for matched orthologs (Jo
et al., 2018; Lee et al., 2020). Figure 3 illustrates some of
these strategies for measuring the similarity between networks.
Since these methods are not designed to (directly) generate a
mapping between all of the nodes of the networks, beyond known
orthologous relationships, we do not consider them as network
alignment methods. However, many of these methods work to
match up groups of genes, or clusters, so we discuss these types
of methods in section 5.1.1.

5.1.1. Cluster Alignment Methods
Clustering has been utilized to identify evidence of conservation
in gene co-expression across vertebrate species (Oldham et al.,
2006; Chan et al., 2009; Weber and Hurst, 2011; Gerstein
et al., 2014). Many methods designed explicitly for co-expression
network comparison generate a mapping between clusters (Yan
et al., 2014). These methods link modules of co-expressed genes
together based on the known orthology relationships of genes.
We refer to these methods as cluster alignment methods.

Yan et al. proposedOrthoClust based on a simulated annealing
strategy. OrthoClust aims to discover the optimal assignment of
orthologs to modules based on a cost function considering the
modularity and known orthologous links between genes within
clusters (Yan et al., 2014). They evaluated their method based on a
set of 1,288 genes reported to have conserved expression patterns
across several species, including worm and fly. These genes were
referred to as metagenes and expected to be in aligned clusters.
The authors reported that when compared to the alignment
method IsoRank, 88% of metagenes were aligned by IsoRank
while 81% were grouped in the same clusters by OrthoClust. This
observation suggests that PPI network alignment methods could
lead to biologically meaningful results for comparing GCNs.

A limitation of most clustering-based approaches is that they
assign each gene to a single cluster; however, genes could be
involved in different regulatory pathways depending on the
conditions they are acting under. Biclustering on the other hand,
can be used to simultaneously cluster genes and samples to detect
co-expressed genes under different subsets of conditions (Cheng
and Church, 2000). Each module of genes or bicluster could
contain co-expressed genes under different subsets of conditions,
and genesmay be contained inmultiplemodules. The application
of biclustering to identify conserved and unique gene expression

patterns across different species has been limited (Kacmarczyk
et al., 2011; Waltman, 2012; Huang et al., 2019).

COMODO uses adaptive co-clustering to compare up to
three species (Zarrineh et al., 2010, 2014). The algorithm starts
with a gene–gene correlation matrix where each axis of the
matrix is for one of two species, and genes that are co-expressed
more highly are grouped together in modules at a specified
threshold, which is determined using biclustering (Bergmann
et al., 2003). The groups below the diagonal entries in the matrix
that are locally more co-expressed with each other than with
their neighboring genes are considered the seed modules. These
seeds are expanded in each species until a pair of modules is
obtained for which the number of shared orthologs is statistically
optimal relative to the size of the modules. Module seeds
linked by a sufficient number of orthologous gene pairs are
gradually extended by traversing the space of possible cluster
threshold combinations, using a combination of greedy and brute
force search, represented on the gene–gene threshold matrices
of each species until optimality is reached. These comparison
techniques appear to have several drawbacks. First, the method
of evaluation relies on the quality of functional annotation
available for each species. Also, multiple cut-offs may need to be
applied to determine the best co-expression stringency values for
identifying possible seed modules. Lastly the researchers explain
that the species they compare have genes that have one or two
corresponding homologs in the other species, which is required
for their method to work as expected (Zarrineh et al., 2014).
Therefore, if the species compared are evolutionarily distant, or
have a large portion of one-to-many ormany-to-manymappings,
using their statistic may not be possible.

Clustering and biclustering are useful strategies to reduce the
dimensions of gene expression data. Both of these strategies can
be used to identify modules of genes, which can be utilized
for functional analyses or comparisons between the identified
modules (Saha et al., 2017). Below we discuss and demonstrate
one of the more common strategies used to construct and
compare GCNs that utilizes clustering.

5.1.1.1. WGCNA for Comparing Gene Co-expression

Networks
One of the most widely used techniques used for module

detection in GCNs is weighted gene co-expression network
analysis (WGCNA). Although WGCNA was created in 2008, it
is still commonly used to detect potentially important modules
of genes associated with diseases (Allen et al., 2018; Swarup
et al., 2019), biological pathways (Silva-Vignato et al., 2019), and
development (Spadafora et al., 2018). First, unsigned or signed
correlation is calculated using Equations (1) or (2), respectively.
These values are used to construct the adjacency matrix, which is
a quantitative measure of the strength of the relationship between
each pair of genes. Each value of the adjacency matrix is raised
to a power β , which is the smallest value of β that can be used
where a scale-free topology is achieved. Next, WGCNA uses a
topological overlap measure (TOM), which is a combination
of the adjacency value between a pair of genes as well as the
adjacency values these genes have with other genes to which they
are connected.
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FIGURE 3 | Illustration of alignment-free strategies to measure the similarity between gene co-expression networks. (1) Measuring the topological similarities between

networks. This could include identifying the conserved gene-pairs as shown in the illustration or more complex subgraph comparisons such as counting the number

of conserved small subgraphs (3–5 nodes), like triangles, 2-stars, 3-stars, squares, or cliques. (2) Representation of methods that utilize orthologous links (shown with

green links between the networks) to identify conserved modules of genes. (3) Example of comparison of edge weights or network aggregation where the nodes of

the graph are automatically matched up and the edge weights aggregated to obtain a measure of similarity between the networks. (4) Module detection where each

module can be compared using network connectivity and density statistics.

WGCNAis also utilized for its module conservation statistics
to make comparisons across modules of different clusterings
and species (Du et al., 2020; Pembroke et al., 2021). In order

to measure the preservation of a module, WGCNA can be
used to determine if it is reproducible (or preserved) in an
independent test network. One score is Zsummary score, which
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FIGURE 4 | Module preservation statistics comparing signed gene co-expression networks constructed using prefrontal cortex samples from human and macaque.

To generate the networks, a power of β = 8 for soft thresholding was applied to create a scale-free network topology. The clustering merge height was set to 0.20 to

generate the clusters shown in the dendrogram and module color images (top). The minimum module size allowed was 30 genes. From both Zsummary (bottom

left) and medianRank (bottom right) preservation scores using mouse as the reference network, the most preservation is observed for the yellow and brown

modules. A Zsummary score >2, but <10 indicates moderate preservation, while a score greater than 10 indicates strong module preservation. A low score for

medianRank indicates high module preservation. One limitation of Zsummary score is that it often shows a dependence on module size meaning larger modules tend

to get a higher score. It is also computationally intensive as it relies on permutation tests to determine significance. Although medianRank is not module size

dependent like Zsummary, one drawback of medianRank is that it is rank based and therefore, it can only measure relative preservation. For example, the yellow and

brown module with low medianRank scores may not be that well preserved, but it is the most preserved in comparison to the other modules discovered.

is a composite score of density and connectivity preservation
statistics to determine if a module is significantly more similar to
a reference module than a random sample of genes (Langfelder
et al., 2011). As module size dependence could be an issue,
medianRank can also be calculated for each module, which is
a rank-based measure of the density and connectivity statistics.

Each module is ranked based on the observed values for the
statistics for each module.

Figure 4 shows the results of WGCNA applied to publicly
available RNA-seq datasets in human and macaque from Bozek
et al. (2014). Samples from the prefrontal cortex were used
to construct the GCNs. Relatedness of network connectivity to
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TABLE 1 | Studies utilizing an alignment strategy to compare GCNs.

Organism References Method/Technique Sample description Alignment type

Rice Ficklin and Feltus (2011) IsoRankN 508 microarray samples Global, pairwise/multiple

Maize Ficklin and Feltus (2011) IsoRankN 253 microarray samples Global, pairwise/multiple

Arabidopsis Wang et al. (2013) Subnetwork alignment Leaf, flower, shoot microarray samples Local, pairwise

Poplar Wang et al. (2013) Subnetwork alignment Leaf, flower, shoot microarray samples Local, pairwise

Mouse Berg and Lässig (2006) Bayesian alignment 61 tissues Global, pairwise

Human Berg and Lässig (2006) Bayesian alignment 79 tissues Global, pairwise

Mouse Wang et al. (2009) SCHype 300 microarray liver samples Global/local, pairwise

Human Wang et al. (2009) SCHype 423 microarray liver samples Global/local, pairwise

Rat Wang et al. (2009) SCHype 382 microarray liver samples Global/local, pairwise

Mouse Towfic et al. (2010) BiNA 45 tissues, organs, and cell lines, 90 microarray samples Local, pairwise

Pig Towfic et al. (2010) BiNA 16 tissues, 64 microarray samples Local, pairwise

Human Towfic et al. (2010) BiNA 46 tissues, organs, and cell lines, 85 microarray samples Local, pairwise

Mouse Towfic et al. (2012) BiNA 33 ligands, 422 microarray B-cell samples Local, pairwise

Fly Yan et al. (2014) IsoRank 30 developmental stages RNA-seq samples Global, pairwise

Worm Yan et al. (2014) IsoRank 33 developmental stages RNA-seq samples Global, pairwise

Fly Nguyen et al. (2019) ManiNetCluster 12 timepoints RNA-seq samples Global, pairwise

Worm Nguyen et al. (2019) ManiNetCluster 25 development stages RNA-seq samples Global, pairwise

Human Ovens et al. (2021) Juxtapose 12 RNA-seq samples per species Global/local, pairwise

Chimpanzee Ovens et al. (2021) Juxtapose 12 RNA-seq samples per species Global/local, pairwise

Macaque Ovens et al. (2021) Juxtapose 12 RNA-seq samples per species Global/local, pairwise

Mouse Ovens et al. (2021) Juxtapose 12 RNA-seq samples per species Global/local, pairwise

molecular rates of evolutions has also been studied by using
WGCNA and estimates of dN (nonsynonymous substitutions
per site) and dS (synonymous substitutions per site) (Masalia
et al., 2017; Mack et al., 2019). More highly connected genes or
genes found in a greater number of cross-tissue modules showed
greater sequence constraint.

Network alignment alternatively tries to find the node
correspondence between networks that leads to highly similar
conserved network regions. Both approaches have their own
set of challenges and depending on the biological question of
interest, and how well characterized a species is, one approach
may have advantages over the other.

5.2. Alignment-Based Methods and
Applications to Gene Co-expression
Networks
Table 1 shows GCN alignments that have been published in
literature. Few graph alignment methods have been described
from a GCN perspective or utilized to compare GCNs across
different species to make inferences about their evolution.

The alignments presented in Table 1 utilize local or global
measures of similarity, or a combination of both strategies,
for different evolutionary applications. Many alignments also
focused on detecting potential evidence of conservation based
on topological and biological similarity (Berg and Lässig, 2006;
Wang et al., 2013; Nguyen et al., 2019). Some methods were
applied for functional annotation transfer (Towfic et al., 2010,
2012; Ficklin and Feltus, 2011; Michoel and Nachtergaele, 2012).
After alignments were made, similarities between networks such

as similar network centralities and conserved hub genes were

studied as well as likely conserved biological pathways. Others
focused on measures of global and local similarity that reflected

known biology and evolutionary relationships after the alignment
of the networks (Ovens et al., 2021). More details on the results

of each method can be found in theAppendix. It should be noted

that not all of the applications of network alignment to the study
of evolution have been thoroughly explored by these studies and

there is still much that could be done for future research in
this area.

There are several limitations to studying evolution when
applying network alignment to GCNs as presented in this
section. In general, the majority of studies identified in this
section only consider 2 or 3 species when utilizing alignment-
based methods to compare GCNs. Therefore, it is challenging
to make any inferences about the evolution of genes and
the processes they drive as more than 2 species are required
in order to provide evolutionary trajectory. Furthermore,
identifying evidence of adaptation across GCNs is rarely the
focus of alignments. As heuristics are used with the goal
of identifying areas of conservation in the networks, it may
not imply that what is not identified as conserved should be
considered evidence of adaptation. These methods have also not
been systematically compared with other network comparison
strategies so it is not clear to what effect aligning the networks
has on detecting evidence of conservation or adaptation. From
Table 1, it is also clear that RNA-seq has not been highly
utilized to perform network alignments although there are many
instances of RNA-seq being used to construct, analyse, and
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evaluate GCNs in other ways (Iancu et al., 2012; Ballouz et al.,
2015).

Utilizing network alignment methods to study evolution with
GCNs comes with several technical challenges as well. In the
following section, characteristics of GCNs that may prevent them
from being utilized to study evolution using network alignment
are discussed as well as describing potential areas of future
research in the area.

6. LIMITATIONS, CHALLENGES, AND
FUTURE DIRECTIONS

Using gene co-expression data for network analysis and
alignment has some advantages over PPI network analysis and
alignment, such as the much larger availability of data for the
study of transcriptomics, but it also has some limitations. Gene
co-expression cannot provide a full understanding of complex
gene-gene interactions because they cannot distinguish between
direct and indirect interactions. In other words, if they are viewed
as networks that only contain direct, causative, and directional
interactions, GCNs can contain many false positive interactions
and the interpretation of evolutionary rewiring is more limited.
Using large numbers of samples may reduce the number of false
positive edges in GCNs, but depending on the thresholds used
to decide what edges should be included, there is still a large
number of edges to consider. False positive or false negative
interactions may also be observed (or not observed) due to
technical artifacts, including poor experimental design, incorrect
data preprocessing, and inappropriate contrast methods (Parsana
et al., 2019). This is why co-expression network analysis tends
to focus on changes that are occurring in groups or modules
of genes. GCN network alignment is an under-utilized tool for
identifying conserved subnetworks across multiple species to
study evolution.

The sign of the edge weights connecting nodes of a network
can mean different things depending on whether the network is a
PPI network or GCN. How each network alignment algorithm
handles weighted networks may have implications as to the
components of the networks the methods identify as being
considered conserved or species-specific. Depending on how
often differences in the edge weight sign are observed when
comparing the relationship between genes in two species, it may
be important, or negligible. One possibility to determine if a
method is appropriate without modification for GCN alignment
would be to have a network with all positively correlated
genes and gradually incorporate negatively weighted genes into
the network until there are modules of positively correlated
genes that are negatively correlated with other module(s).
How the methods align these networks respond to changes
in the edge weights may provide an indication of whether it
would be informative when using a network with important
negative correlations.

Another possible limitation is the sample size of the dataset
used to construct a network (Ballouz et al., 2015; Ovens et al.,
2020) and finding multi-species studies to make evolutionary
inferences. As it is often impractical to expect large datasets to

be generated containing many species, it would be beneficial
to make use of other publicly available datasets. However, this
can result in technical challenges where network structure is
determined in part by data biases. Although batch normalization
methods are available, there are few normalization methods to
address differences between environmental conditions (Nygaard
et al., 2016). For example, not all species may be sequenced by
the same lab or have different conditions in which they are raised
and bred. Therefore,a comparative method to uniformly analyze
cross-condition or cross-species gene expression data is essential.
Further, the potential construction and comparison of sample-
specific GCNs from single transcriptomic profiles may offer new
insights into network evolution and better understand sample-
specific differences (Kuijjer et al., 2019; Jahagirdar and Saccenti,
2020).

Since graph alignment, in general, has been utilized for so
long (Clark and Kalita, 2014; Faisal et al., 2015; Elmsallati et al.,
2016; Emmert-Streib et al., 2016; Meng et al., 2016b; Guzzi
and Milenković, 2017), application of more of these methods
to GCNs may be a good first step before attempting to create
new alignment methods specifically for GCNs. PPI networks,
for example, have been utilizing methods to align tagged social
networks (Michoel and Nachtergaele, 2012; Zhang and Philip,
2015). At the very least, GCN aligners should be systematically
compared to other PPI alignment methods to show how they
are suited for this task. As IsoRank has not performed very well
in PPI network alignment based on evaluation studies (Malod-
Dognin et al., 2017), it may be beneficial to adopt others that have
performed better to make alignments in the future.

Multilayer networks can provide better modeling for complex
networks like biological networks. However, their usage is still
new in some domains, including GCNs, but commonly applied
in other research areas such as epidemiology (Hammoud and
Kramer, 2020). These networks are node-aligned networks with
layers representing co-expression profiles in different settings,
including different time points, diseases, cells, or organisms (Rai
et al., 2017). The layers could also be across networks from
different domains such as DNA, protein, and metabolite
layers (Klosik et al., 2017). Using network alignment in order to
either construct or compare these networks while incorporating
GCNs may be helpful. However, limitations may be encountered
when dealing with large and complex (dense) networks in terms
of visualizing these networks (Hammoud and Kramer, 2018) as
well as evaluating alignments over various domains. Evaluating
alignments may require biological expertise and experimental
validation over various domains depending on the data used to
make the multilayer network.

Finally, as GCN structure tends to be difficult to compare, one
possibility for future research in cross-species GCN analysis is to
utilize embedding strategies, typically used in natural language
processing to generate numerical representations for genes.
Traditional techniques such as matrix factorization have shown
promising results, as well as more recent random walk-based
and neural network-basedmethods (Grover and Leskovec, 2016).
Embeddings are frequently faster than other options that operate
on the original networks and are less sensitive to structural noise
compared to spectral methods (Trung et al., 2020). Additionally,
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the learned embeddings are often applicable for downstream
analysis by direct interpretation of the embedding space. Co-
expression networks have recently been used to generate gene
representations for single networks (Choi et al., 2018; Choy
et al., 2018; Du et al., 2019) as well as multiple networks (Ovens
et al., 2021), and a manifold learning technique has been used to
compare co-expression networks (Nguyen et al., 2019). This may
be an avenue of research for comparing an increasing number of
biological networks in the future with improved and state-of-the-
art techniques now available for embedding in natural language
processing research.

7. CONCLUSION

Methods to compare gene expression among species include
GCN alignment, which can identify quantitative evidence of
adaptation or constraint acting on various groups of genes among
species. The techniques used to align biological networks and
infer ancestral networks are continually being improved upon
to increase the agreement between topological and homology
measures of network similarity.

Graph alignment techniques have been available for a long
time and used for many different applications, so we reviewed

how network alignment has been applied to GCNs, highlighting
any crossover with PPI alignment techniques. As the alignment

of GCNs becomes increasingly common, other research areas
outside of biological research might provide insights. New
network comparison techniques should be enlisted to compare
GCNs inmore organismswith the increase in transcriptomic data
from newer high-throughput technologies.
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Crawford, J., and Milenković, T. (2015). “Great: graphlet edge-based network

alignment,” in 2015 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM), 220–227. doi: 10.1109/BIBM.2015.7359684

Dickinson, P. J., Bunke, H., Dadej, A., and Kraetzl, M. (2004). Matching

graphs with unique node labels. Pattern Anal. Appl. 7, 243–254.

doi: 10.1007/s10044-004-0222-5

Du, J., He, X., Zhou, Y., Zhai, C., Yu, D., Zhang, S., et al. (2020). Gene coexpression

network reveals insights into the origin and evolution of a theanine-associated

regulatory module in non-camellia and camellia species. J. Agric. Food Chem.

69, 615–626. doi: 10.1021/acs.jafc.0c06490

Du, J., Jia, P., Dai, Y., Tao, C., Zhao, Z., and Zhi, D. (2019). Gene2vec:

distributed representation of genes based on co-expression. BMC Genomics

20:82. doi: 10.1186/s12864-018-5370-x

Elmsallati, A., Clark, C., and Kalita, J. (2016). Global alignment of protein-protein

interaction networks: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 13,

689–705. doi: 10.1109/TCBB.2015.2474391

Frontiers in Genetics | www.frontiersin.org 12 August 2021 | Volume 12 | Article 695399

https://doi.org/10.1093/bioinformatics/btu447
https://doi.org/10.1016/j.jalz.2017.09.012
https://doi.org/10.1371/journal.pcbi.1002955
https://doi.org/10.1016/j.sbi.2004.05.004
https://doi.org/10.1093/bioinformatics/btv118
https://doi.org/10.1093/molbev/msy036
https://doi.org/10.1073/pnas.0602294103
https://doi.org/10.1103/PhysRevE.67.031902
https://doi.org/10.1371/journal.pbio.1001871
https://doi.org/10.1186/1471-2164-7-40
https://doi.org/10.1186/jbiol130
https://doi.org/10.1038/s41598-018-32180-0
https://doi.org/10.3389/fgene.2018.00682
https://doi.org/10.1093/bioinformatics/btu307
https://doi.org/10.1371/journal.pbio.0040109
https://doi.org/10.1142/S0218001404003228
https://doi.org/10.1109/BIBM.2015.7359684
https://doi.org/10.1007/s10044-004-0222-5
https://doi.org/10.1021/acs.jafc.0c06490
https://doi.org/10.1186/s12864-018-5370-x
https://doi.org/10.1109/TCBB.2015.2474391
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ovens et al. Comparative Analyses of Co-expression Networks

Emmert-Streib, F., Dehmer, M., and Shi, Y. (2016). Fifty years of graph matching,

network alignment and network comparison. Inform. Sci. 346, 180–197.

doi: 10.1016/j.ins.2016.01.074

Faisal, F. E., Meng, L., Crawford, J., and Milenković, T. (2015). The post-genomic
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APPENDIX

The following descriptions provide additional details for the
methods listed in Table 1 in section 5.2.

Ficklin and Feltus (2011) utilized IsoRankN (Liao et al.,

2009), designed for PPI network alignment, to compare GCNs
constructed from rice and maize. The focus was to transfer
functional annotation from maize to the less-characterized rice

GCN. They identified 194 genes that had unknown function in
rice through 3,092 conserved edges, which suggested associated

biological processes such as seed storage. Interestingly, although
sequence orthology in general is a common strategy for
transferring functional annotation from one species to another,

the cost function used to generate the alignment between these
species was weighted with more emphasis toward topological
similarity. This suggests that similarities in topological structure

between GCNs is informative for functional annotation transfer.
A study of Arabidopsis and Poplar incorporated analysis of

network topology and also went so far as to align the networks
to identify the conserved and species-specific functions of cell-
wall related genes (Wang et al., 2013). Subnetworks associated
with cell wall genes in leaf, flower, and shoot tissues between the
two plant species were aligned while considering the neighboring
orthologous genes. Tissues that had good alignments were
considered to likely have more conserved function. They also
separately investigated network centralities including clustering
coefficient and eigenvector centrality for measuring a gene’s
global influence over the entire network. Conserved hub genes
and tissue-specific hub genes across networks were discovered.

Berg and Lässig (2006) utilized a probabilistic alignment
procedure for biological network alignment based on their
edge and node similarity and attempted to maximize their
proposed score based on a mapping to a generalized quadratic
assignment problem. This was another method proposed to
identify conserved modules of genes, which in this case was
applied to compare human and mouse GCNs. However, they
applied their method to a limited number of genes considered
housekeeping genes that were expressed in all samples and
showed a low variance of expression levels across samples in
both species, as well as genes with a high expression similarity
with at least one of the genes considered housekeeping genes.
Furthermore, although they claim to analyze the evolution
of GCNs between humans and mice, studying evolution is
challenging given that only two species were compared.

SCHype addresses local and global alignment with recursive
spectral clustering and biclustering algorithms of hypergraphs
(generalizations of graphs where the edges can exist between
arbitrary subsets of nodes, rather than just two) to identify sets

of nodes in each species with a greater than expected number
of conserved interactions (based on co-expression in this case)
between them (Michoel and Nachtergaele, 2012). The technique
is used to discover densely interconnected genes by computing
the dominant eigenvector and then converting it to a discrete set
of vertices. Uniqueness of the dominant eigenvector guarantees
unambiguity of the solution and rapid convergence of the
procedure and allows for analysis of complex homology groups,
unlike the potential drawbacks of using Pearson’s chi squared test
from COMODO (Zarrineh et al., 2010). Again, this is another
technique that has been applied to GCNs for the purpose of
functional annotation transfer (Reyes et al., 2017). Importantly,
individual experiments from the series did not cluster together
in SCHype clusters. This could indicate different normalization
techniques may be required to account for these differences to
make better comparisons across experiments.

BiNA is another PPI network alignment method that has
been applied to co-expression data, and works by breaking down
the networks being compared into subgraphs to align each of
them (Towfic et al., 2010, 2012). A “k-hop subgraph” for each
gene g is constructed by including any gene that can be reached
from g within k edges. Each of the subgraphs in one co-expression
network is compared to the subnetworks in the second network
to find the best match based on a similarity measure, taking into
account the sequence homology of the genes as well as the general
topology of the neighborhood around each gene. The authors
used their method for ortholog detection (Towfic et al., 2010),
and to identify B-cell ligand processing pathways (Towfic et al.,
2012). None of the similarity measures employed by this method
have utilized weighted edges, but there is potential to extend the
method to handle weighted graph scenarios.

ManiNetCluster is a recent strategy for alignment that projects
two GCNs into a common lower dimensional space on which
the Euclidean distances between genes preserve the geodesic
distances between them (Nguyen et al., 2019). This distance was
used as a metric to detect manifolds embedded in the original
high-dimensional network space. This is different from the other
alignment methods covered in that it is a subspace learning
approach, embedding the nodes across different networks
into a common low dimensional representation. The network
representations were used to form a multilayer network that
could be clustered to a number of cross-network gene modules.
The benefit of such a method is that only the networks are
required to learn the underlying structure of the data. This
method was only tested on a cross-species comparison using
1,882 fly genes and 1,925 worm genes. Therefore, it would need
to be tested on a much larger network with more species to
determine its utility for making evolutionary inferences.
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