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A low cost, green method  
to synthesize GaN nanowires
Jun-Wei Zhao1, Yue-Fei Zhang2, Yong-He Li2, Chao-hua Su1, Xue-Mei Song1, Hui Yan1 &  
Ru-Zhi Wang1

The synthesis of gallium nitride nanowires (GaN NWs) by plasma enhanced chemical vapor deposition 
(PECVD) are successfully demonstrated in this work. The simple and green synthesis route is to 
introduce gallium oxide (Ga2O3) and nitrogen (N2) for the growth of nanowires. The prepared GaN 
nanowires have a single crystalline wurtzite structure, which the length of some nanowires is up to 
20 μm, with a maximum diameter about 140 nm. The morphology and quantity of the nanowires can 
be modulated by the growth substrate and process parameters. In addition, the photoluminescence 
and field emission properties of the prepared GaN nanowires have been investigated, which were 
found to be largely affected by their structures. This work renders an environmentally benign 
strategy and a facile approach for controllable structures on nanodevice.

There is a strong ongoing interest in the use of semiconductor nanowires for active nanoscale electronic 
and photonic devices1–3. Among them GaN has attracted much attentions4–6. Due to its wide band gap, 
high melting temperature, carrier mobility, strong chemical stability and high electric breakdown field 
have demonstrated great potential in device applications7–9, including field-effect transistors (FET)10, 
light-emitting diodes (LEDs)11,12, ultraviolet photo-detectors and lasers applications13,14.

To date, the synthesis of GaN NWs have been achieved by various of technical routes, such 
as carbon-nanotube-confined reaction15, oxide-assisted method16, vapor-solid mechanism17 and 
vapor-liquid-solid mechanism18. Many types of source materials have been attempted such as trimethyl-
gallium (TMG), metal gallium, gallium chloride (GaCl3) and gallium nitride (GaN), etc9,19–21, but most of 
them are either expensive or toxic. In addition, ammonia, which is corrosive and harmful, is always used 
as the reaction gas. In order to change the existing situations, recently, we developed an environmentally 
friendly method to synthesize GaN NWs by a customized plasma assisted hot filament CVD system9. 
In this technique, GaN powders were used as the Ga precursor, and a negative DC bias was used to 
decompose nontoxic N2 to create positive nitrogen ions. By this method, we successfully prepared GaN 
NWs with different morphologies, and exhibiting good photoluminescence properties. However, the 
crystallinity and productivity of GaN NWs are still unsatisfactory for this method. Therefore, we further 
improved this method. GaN powders were replaced by economic and widely accessible Ga2O3. Due to the 
existence of some oxides in this reaction system, the reducible carbon and hydrogen were introduced to 
guarantee that the generated nitride was not affected by the oxygen element in the reactants. Upon this 
improvement in a plasma enhanced chemical vapor deposition (PECVD) system, the GaN NWs have 
been successfully synthesized. Their structures can be significantly modulated by the process parameters. 
And the growth mechanism has been revealed. The photoluminescence and field emission properties of 
the prepared nanowires have been investigated. Our works suggests an environmentally friendly strategy 
and facile approach for one dimensional nano-structural nitride materials.

Experiments and Mearsurements
In this work, gallium oxide (Ga2O3) and ionized nitrogen were used as Ga and N precursors, respectively. 
H2 and carbon were introduced to create an oxygen-free environment and reduce the degree of vacuum 
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level required for the reaction. The growth procedure is as following: First, the substrate was chemically 
cleaned by toluene, acetone, ethanol and de-ionized water in an ultrasonic bath for 15 min in each sol-
vent sequentially; after that, the other parameters were set according to the experimental requirements.

Then sputter coater (SBC-12) was introduced to deposit an Au film on all of the substrates for 10s. 
After that, about 0.2 g Ga2O3 (purity 99.999%) mixed with carbon (purity 99.9%) (Mole ratio 1:6) pow-
ders were placed in a small Al2O3 boat. The boat was placed at the highest temperature zone of a hori-
zontal quartz tube, with the substrate located at the downstream end of the boat. The distance between 
them was about 5 mm, as depicted in Fig. 1.

The furnace was heated to 900 °C within 70 min in Ar gas with purity of 99.999% at a flow rate of 
20 sccm. When 900 °C was reached, the RF power supply (GMPOWER PG-500) and RF matching net-
work (GMPOWER BM-2000) were turned on. Furthermore, the pressure of the vacuum chamber was 
maintained at about 50 Pa after reaching the reaction setting time. The furnace was cooled down. To 
protect the as-synthesized GaN NWs from decomposition the flow of N2 was maintained during the 
cooling process. After cooling, a light-yellow layer was observed.

The structure, morphology and composition of the products were characterized using X-ray diffraction 
(XRD; BRUKER D8 ADVANCE), field emission scanning electron microscope (FESEM; JEM-2010F), 
and high resolution transmission electron microscope (HRTEM; Tecnai-F20). Raman spectroscopy was 
used to investigate the chemical-bond vibrational properties of the GaN samples, which were collected at 
room temperature using a T64000 micro-Raman spectroscopy. The photoluminescence (PL) of the spec-
imen was measured at room temperature using a homemade photoluminescence spectroscopy, in which 
a 325 nm He-Cd laser was used as the excitation light source. Field emission properties were measured 
at room temperature in a vacuum ambient of 8.6  ×   10−6 Pa. ITO conductive glass and the as-synthesized 
nanowires were used as the anode and the cathode, respectively. The distance between them was 100 μ m, 
and the emission current was monitored with a Keithley 2410 electrometer and recorded at a 1.0 interval 
by applying a sweep step of 5 V.

Results and Discussion
The effect of process parameters.  The RF power and reaction time are the key factors for a PECVD 
system. During the reaction, it will significantly modulate the structures and performance of the as-syn-
thesized nanowires. So the following two series of experiments were designed to study the specific mech-
anism of structural modulation. Detailed process parameters are shown in Table 1.

As the XRD pattern in Fig. 2d shows, the crystallinity of these NWs was enhanced with the increase 
of RF powers, indicating a high tendency of crystalline growth after nucleation with a higher RF power. 
The analysis of FESEM and XRD pattern implies that the RF power may determine the crystalline quality 
of the nanowires.

Figure  3(a) shows the morphology and spatial arrangement of the as-synthesized nanowires at the 
reaction time of 30 min. From the side view one can see that the nanowires were averagely slightly 
thinner than those at the other two reaction times (Fig.  3b,c). With the increase of reaction time the 
nanowires gradually grew thicker, while the length of them kept almost unchanged. This trend may 
be explained by the following argument: the precursor could radially diffuse deeper into the bulk of 

Figure 1.  Schematic of home-developed PECVD system.

series specimen
RF power 

(W) t (min) Au (s) H2 (sccm) N2 (sccm) T (°C)

A

a 40

b 60 60 10 10 20 900

c 80

B

a 30

b 80 60 10 10 20 900

c 90

Table 1.  Detailed growth conditions including RF power, catalyst (Au), flow rate of gas, reaction 
temperature (T) and growth time (t).
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Figure 2.  (a), (b) and (c) are the images of NWs synthesized on 40W, 60W, 80W, respectively. (d) XRD 
pattern of Series A.

Figure 3.  (a), (b) and (c) are the images of NWs synthesized on 30min, 60min, 90min, respectively. (d) 
XRD pattern of series B.
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nanowires with a longer reaction time, so the wire diameter increased. However, the average wire length 
remained roughly the same due to the intense bombardment by high energy ions9. Figure 3(c) shows at 
the reaction time of 90 min. All nanowires were adhered together, thus intensifying the NWs agglom-
eration. The present study, in comparison with the results obtained by Brian A. Korgel22,is more in line 
with the following possibility: for a long time growth at a high temperature, the nanocrystals or liquid 
alloy droplets agglomerate, and then the nanowires become softened and stuck.

However, the change in XRD pattern (Fig.  3d) is not particularly obvious. It may suggest that the 
reaction time has no significant influence on the crystallization of nanowires. And the diffraction peak 
at ca. 38 degree was indexed to Au.

The substrate effect.  As well known, the substrate adopted often has a significant effect on the 
quality and structure of nanowires23. So, two experiments were designed as following (series C): NWs-a 
was synthesized on a Si wafer without any post-processing except cleaning; the substrate used for NWs-b 
was dipped in HF solution for 20 min.

Figure  4 shows the FESEM images of the nanowires synthesized on the two different substrates. 
The RF power was 60 W and the other parameters as the same as series A (Table 1). Figure 4(a) shows 
the nanowires synthesized on a Si wafer without HF treatment. The as-prepared NWs are thin and a 
little kinked, with a typical diameter of less than 20 nm and the length in the range of 5 to 8 μ m. From 
Fig.  4(b) one can see that by dipping in HF solution for 20 min the longest NW we can obtain has a 
length of ~7 μ m and the length of most nanowires is between 1 and 3 μ m. In addition, NWs all have a 
sharp tip.

The overall crystal structure and phase purity of the nanowires were assessed through XRD measure-
ments. As showed in Fig. 5, there are 6 peaks respectively at about 32.4°, 34.6°, 36.9°, 48.2° and 57.9°. 
This system can be indexed with respect to the wurtzite GaN structure (PDF# 50-0792). These sharp 
diffraction peaks suggest a good crystallinity. The dashed line highlighting the peak at about 33° is related 
to the diffraction peak of the Si substrate (as shown in the inset). From Fig.  5, it is obvious that the 
intensity of peaks in NWs-b is higher than that of NWs-a, which probably indicates that NWs-b have a 
better crystallinity or structural ordering.

Figure 4.  FESEM images of series C: (a) NWs-a grown on Si wafer without HF treatment, (b) NWs-b 
grown on Si wafer dipped in HF for 20min.

Figure 5.  XRD pattern of series C. The insert is the XRD pattern of the substrate.
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TEM analyses were used to further characterize the structure of GaN NWs. As shown in Fig. 6(a), 
NWs-a prepared on the substrate without HF treatment exhibit a corrugated surface with a typical diam-
eter of less than 20 nm. When the nanowires were deposited on the substrate dipped in HF solution for 
20 min, nanowires with a triangular cross section were obtained (Fig. 6(b)). These nanowires are slightly 
shorter than NWs-a and have a typical diameter of about 80 nm.

Furthermore, from the selected area electron diffractions (SAED) and HETEM image (Fig. 6(c),(d)), 
it can be found that the SAED diffraction spots are regular, that is, the selected GaN nanowire is 
mono-crystalline with a hexagonal structure.

Figure 7 shows the Raman spectra of the as-synthesized NWs. There is a break region from 513 cm−1 
to 528 cm−1, where is the Si mode. And 304 cm−1 scattering line also belongs to Si mode24,25. The two 
peaks at about 568 cm−1 and 727 cm−1 are assigned to first-order phonons of E2 (high) and A1 (LO), 
respectively26–28.

Figure 6.  TEM images of series C: (a) NWs-a and (b) NWs-b. (c) SAED pattern and (d) corresponding 
HRTEM images of NWs-b, highlighted by the dashed boxes in (b).

Figure 7.  Raman spectra of series C.
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From the spectra, one can obviously observe that the intensity of NWs-b is much higher than that of 
NWs-a. This means that NWs-b has a better quality, which is consistent with the analysis of Fig. 5. As for 
the A1 (LO) mode, GaN NWs display a red shift due to the small size confinement effect, as compared 
to the bulk material whose A1 (LO) locate at 736 cm−1.

Moreover, we also find three extra peaks at 254 cm−1and 422 cm−1, which can be attributed to the 
finite-size effect and high surface disorder degree29. There is also a peak that only can be observed in the 
spectra of NWs-a, at 693 cm−1. According to the study of Hsiang-Lin Liu27, the occurrence of this peak 
is due to the existence of defects in the as-synthesized NWs.

Growth mechanism.  In the synthesis strategy, mainly affected by the substrate and RF power, GaN 
NWs with two different types of cross-sections were obtained. Just as shown in Fig. 8, the one looks like 
a needle with a small alloy droplet on the tip (Fig. 8(a)), which provides a crisp evidence that the growth 
of nanowires went through a vapor-liquid-solid (V-L-S) process30, while the other one has a triangular 
cross section (Fig. 8(b)). In this section, the growth mechanism of the two types of GaN NWs will be 
discussed in detail.

In this work, due to the difference of thermal expansion coefficients between gold and silicon wafer, 
the gold film will break into particles and melt into small droplets. Generally, Ga2O3 will react with carbon 
and decomposes into Ga2O, eventually reduced to metallic gallium15. The reactions can be expressed as

+ → + + ( )Ga O C Ga O Ga CO 12 3 2 X

+ + + + → + + ( )+ +Ga O Ga C H N GaN H O CO 22 2 X

Furthermore, coupled with the effect of RF discharge, N2 will be ionized. Then, just as the standard 
VLS growth mechanism described31, the catalyst gradually forms catalyst-gallium-nitrogen alloys after 
the concentration of gallium nitride saturates. The droplet can act as a nucleation site, and a GaN nano-
wire begins to grow in one direction (Fig.  8(c)). In the foregoing process32,33, a high enough surface 
energy of liquid alloy in the droplet is needed to maintain the triple phase line (TPL, separating the 
vapor, liquid, and solid phases) stable on the top. However, in this work, due to the introduction of 
high-energy plasma the surface of the nanowire becomes hyperactive under the ion irradiation. Therefore, 
the downward force of surface energy γwv (NW sidewalls in contact with the vapor) will be much higher 
than the sum of upwards γ LV  (the liquid-vapor interface) and γSL

l  (the vertical solid-liquid interface). 
Thus, the TPL will move slightly downward. In other words the nanowire grows by wetting the sidewall 
of nanowires (Fig. 8(a)). Thus, more area will be wetted during this process, so the absorption of precur-
sors will be accelerated and the nucleation will speed up. As compared to the catalyst-free spontaneous 
formation strategy34, we can achieve longer nanowires more easily by the similar process.

We stress the RF power as an important factor for preparing high-purity and -quality nanowires, 
which is consistent with the results obtained in the series A. Here, the effects of plasma for the growth 
of GaN NWs are emphasized. In the process of wetting, under the influence of high temperature and 
high-energy plasma, droplets will gradually decrease so the obtained nanowires all look like needles 
(Fig.  8(c)). As we all know, on the VLS growth the morphology of catalyst depends on the shape of 
nanowires. From the insert of Fig. 8(b), one can see that defects of inverted pyramid will form on the 
silicon wafer surface after corrosion by HF. This shape will limit the nucleation process that decides the 
ultimate nanowire morphology.

Photoluminescence (PL) properties.  The PL spectra were obtained with a source of 325 nm excited 
by a He-Cd laser. It is known that pristine GaN will exhibit strong ultraviolet luminescence (UVL) at 
room temperature. From Fig. 9 one can see that there is a significant UVL band at about 3.34 eV, which 

Figure 8.  (a), (b) FESEM images of the two types nanowire and the surface treated by HF (Figure.8b 
insert), (c) Schematic of formation of GaN nanowire.
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indicates a good quality of the nanowires. Furthermore, when the molar ratio of Ga2O3 and C was 1:3 the 
UVL peak is much higher than that for the ratio of 1:1, which implies that increasing the incorporation 
amount of carbon powders can significantly improve the quality of the nanowires.

According to the previous studies by Reshchikov35, Kucheyev36 and Livneh29, there will be a yellow 
luminescence due to the C impurities and other defects. However, there is no other luminescence peaks 
in the spectra. It may indicate that the carbon composition in the reaction has been well controlled, and 
the quality of the nanowires can be significantly adjusted by controlling the amount of carbon.

Field emission (FE) properties.  Figure 10 shows the FE current density versus applied field (J− E) 
characteristic and Fowler− Nordheim (F− N) curves of Series A and series B, respectively. All two groups 
of experimental data are shown. As the applied voltage is gradually increased, the emission current is 
observed to increase very rapidly, indicating that the electron emission in accords with F–N tunneling. 
In this paper, we define the turn-on field as the electric field required to produce an emission current 
density of 1 μ A·cm−2.

Figure 9.  PL spectra of series C.

Figure 10.  FE characteristics of the series A and series B: (a) (c) emission current density versus applied 
electricfield (J-E) curve; (b) (d) F-N plot.
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Figure  10(a) shows the field emission plots for the GaN NWs prepared with different RF powers. 
The turn-on fields of NWs synthesized at 40 W, 60 W, and 80 W are about 6.8 V μ m−1, 7.8 V μ m−1 and 
8 V μ m−1, respectively. This indicates that all of them have a similar turn-on field. However, in the con-
dition of 10 V μ m−1 the maximum current density of NWs synthesized at 80 W is about ~35 μ A cm-2, 
significantly larger than the other two. As we all know, the nanowires with top-tips along specific orien-
tations can greatly enhance field electron emission because of a strong local electric field at their tips. The 
previous analysis showed that when the RF power was up to 80 W, the proper structure of the prepared 
nanowires was more helpful to improve the maximum field emission current density.

Figure 10(c) shows the J–E with F-–N curves of series B. From Fig. 10(c) one can see that the turn-on 
fields of NWs synthesized at 30 min, 60 min, and 90 min are about 7.8 V μ m−1, 9.2 V μ m−1 and 9 V μ m−1, 
respectively. Furthermore, the maximum current density of NWs synthesized at 30 min is nearly 10 times 
larger than the others. Just as Fig. 3(a) shows, the nanowires synthesized in the condition of 30 min have 
a larger surface area and length-diameter ratio, which can advance the field emission maximum current 
density37,38.

In addition, the FE property of a flat multi-tip emitter can be analyzed by F–N equation39:

λ Φ β
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Where J is the emission current density, a and b are F–N constants, E is the average applied electric field, 
Φ  is the work function, β  is the field enhancement factor, λm is a macroscopic pre-exponential correction 
factor. From the previous studies by Suryawanshi39, for a multi-tip emitter the electric field can be written 
as Elocal =  β  Eaverage, so the field enhancement factor β  will be overestimated. Hence, we did not estimate 
the value of β  in our present study.

In Fig. 10(b),(d), we can see that all the curves of the two series can be divided into two linear parts. 
The linear part indicates that the electron field emission properties of all the samples are close to the 
F–N emission mechanism. However, the second part of the curves deviates from F–N plot. According 
to equation (1), we conclude that it may be originated from the effect of morphology damage and the 
absorbents for NWs. During FE testing process the generated Joule heat will damage the morphology of 
GaN NWs, so a number of nanowires were flattened and shortened. The effective emission area will be 
reduced, which will lead to a drift of the F–N line.

These results suggest that nanowires with a large diameter, surface area and length diameter ratio have 
a better field emission property. However, the generated Joule heat and adsorption gas are the barriers for 
stable electron emission. Simultaneously, these results enrich our knowledge on improvement of the field 
emission properties and are helpful for us to understand the mechanism of nanowires electron emission.

Conclusion
By an improved PECVD method, all materials used in this technique are Ga2O3 and carbon powders, 
N2 and H2, which are all cheap and easily to acquire. GaN nanowires were prepared by a simple and 
green strategy. The high crystalline NWs with a length of 20 μ m and maximum diameter of 143 nm 
were obtained. The influences of substrate, RF power and reaction time on the growth of GaN nanow-
ires were systematically studied. The results suggest that the defects on the substrate formed by dipping 
in HF will contribute to nucleation and growth of nanowires. The RF power is the key to prepare GaN 
NWs. It has an obvious effect on the nucleation and growth process. The results reveal that a 80 W of RF 
power is optimum for the growth of nanowire in the PECVD system. The reaction time can also signifi-
cantly affect the morphology, but when the reaction time reaches to 90 min nanowires will stick together. 
Furthermore, the possible growth mechanism was also discussed. The PL and FE spectra showed that the 
adjustment of process parameters can significantly influence their performance. This work supplies a low 
cost and green method to synthesize GaN NWs, providing more choices of equipment and materials for 
preparing GaN low dimensional materials. The method will help us to understand the regulation mech-
anism for preparing high quality nanowires in a high temperature and plasma environment.
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