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Abstract

Using a system optimized for propagating human keratinocytes, culture of skin samples

from white and green sturgeons generated epithelial cells capable of making cross-linked

protein envelopes. Two distinct forms of TGM1-like mRNA were molecularly cloned from

the cells of white sturgeon and detected in green sturgeon cells, accounting for their cellular

envelope forming ability. The protein translated from each displayed a cluster of cysteine

residues resembling the membrane anchorage region expressed in epidermal cells of tele-

osts and tetrapods. One of the two mRNA forms (called A) was present at considerably

higher levels than the other (called B) in both species. Continuous lines of white sturgeon

epidermal cells were established and characterized. Size measurements indicated that a

substantial fraction of the cells became enlarged, appearing similar to squames in human

epidermal keratinocyte cultures. The cultures also expressed CYP1A, a cytochrome P450

enzyme inducible by activation of aryl hydrocarbon receptor 2 in fish. The cells gradually

improved in growth rate over a dozen passages while retaining envelope forming ability,

TGM1 expression and CYP1A inducibility. These cell lines are thus potential models for

studying evolution of fish epidermis leading to terrestrial adaptation and for testing sturgeon

sensitivity to environmental stresses such as pollution.

Introduction

Aquatic organisms are in decline worldwide, and many desirable species, particularly those in

estuaries impacted by human civilization, are threatened or endangered. In addition to over-

fishing, this phenomenon is attributable to loss of habitat and its degradation by pollution. To

permit remediating and restoring the remaining habitat, a great need exists to identify pollut-

ants of most concern to support regulatory action. However, traditional toxic testing is slow,
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costly and can lead to sacrificing considerable numbers of individual animals. In contrast, cell

lines provide important models for physiology, virology, biotechnology and toxicology that,

once established, permit testing without further loss of live individuals. This factor is highly

relevant to sturgeon species, most of which are threatened or endangered. Two species of con-

servation concern are the evolutionary octoploids, white sturgeon (Acipenser transmontanus)
and green sturgeon (Acipenser medirostris), both of which inhabit coastal regions and large

river systems along the West Coast of North America [1, 2]. The green sturgeon Southern Dis-

tinct Population Segment (SDPS) and Kootenai River white sturgeon population are listed

under the US Endangered Species Act as threatened and endangered, respectively [3, 4]. The

SDPS green sturgeon and the Sacramento-San Joaquin population of white sturgeon, listed as

of “special concern” in the state of California [5], both use the San Francisco Estuary system at

various points in their life cycles. The San Francisco Estuary is impacted by substantial levels

of many legacy and current pollutants known to be hazardous to aquatic species (including

metals, pesticides, halogenated aromatic hydrocarbons, pharmaceuticals), due to runoff from

urban and agricultural sources, as well as many pollutants only recently identified [6, 7].

Among the many classes of pollutants to which fish such as sturgeon are exposed, polycyclic

and halogenated aromatic hydrocarbons are widely encountered and known to be deleterious.

Fish species differ by>100 fold in sensitivity to these compounds, where most damage occurs

during larval development [8]. Relative species sensitivity can be estimated from responsive-

ness to the highly potent prototypical compound, 2,3,7,8-tetrachlorodibenzo-p-dioxin

(TCDD). This pollutant induces the enzyme CYP1A that helps degrade and clear xenobiotics

but that also activates some substrates to electrophiles that damage cellular macromolecules.

Sturgeon have two forms of aryl hydrocarbon receptor (AHR1, AHR2), where the latter is

responsible for induction of CYP1A and most of the myriad deleterious effects of TCDD and

similar ligands [9, 10]. TCDD can act as an endocrine disruptor, for example, by suppressing

estrogenic responsiveness (vitellogenin synthesis) in white sturgeon [11].

Although cell lines have been derived from many fish species, especially those available in

aquaculture, generally they are of mesenchymal origin. However, epithelial cell lines are deriv-

able by a method found successful with fish integument [12]. The culture system uses a feeder

layer of lethally irradiated mouse 3T3 embryonic fibroblasts [13]. It specifically selected for

growth of keratinocytes from a mouse teratoma in its first use [14] and has since been opti-

mized to promote growth of human epidermal keratinocytes [15]. Fortuitously, when supple-

mented with the rho kinase inhibitor Y-27632 [16], this system selected for growth of tilapia

lip epithelial cells that we could not propagate otherwise [17].

In addition to its potential use for ecotoxicology studies, the present cultures of an epithelial

cell type from sturgeon epidermis provided an initial opportunity to characterize the cellular

properties. During evolution, the emergence of aquatic species onto land involved multiple

adaptations. Recent genome sequencing and transcriptional analysis has revealed traits related

to terrestrial adaptation in ancient lobe-finned fish lineages, of which lungfish is the closest rel-

ative to tetrapods. These traits involve the respiratory and nervous systems and limb and car-

diac development [18–20]. Some of these traits, such as a latent potential for limb

development, are also found in teleosts [21]. Dramatic morphological and transcriptional

changes in the skin of modern amphibious teleosts upon exposure to air could have facilitated

ancient terrestrial adaptation [22]. However, the epidermis of ancient fish lineages such as

sturgeon appears quite different from that of tetrapods [23], where lineages leading to Actinop-
terygians and tetrapods diverged >450 million years ago [18, 20]. Thus, characterization of the

cultured epidermal cells might shed light on repurposing of features in the sturgeon lineage

during evolution of tetrapod epidermis.
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In addition to providing a barrier to the environment, a function of epidermis in tetra-

pods such as mammals is to regulate evaporative water loss [24]. To that end, keratinocyte

transglutaminase (TGM1) in human epidermis plays a critical role by cross-linking a multi-

tude of proteins to form the cross-linked envelope [25]. This characteristic feature of mature

corneocytes provides a scaffold to which lipid is covalently attached, forming a barrier limit-

ing transepidermal evaporation [26]. Although fish epidermis generally lacks a protective

cornified outer layer, stratified external epithelia are observed in certain teleost tissues, such

as in the lip of tilapia and, more dramatically, in breeding tubercles and contact organs of

some teleosts [27]. Moreover, the skin of the Yantze sturgeon (A. dabryanus) displays kerati-

nized spines [23] and keratinocyte-like cells, identified by numerous intermediate filaments

and desmosomes, have been reported in integument of larval lake sturgeon (A. fulvescens)
[28].

We pursued the hypothesis that adaptation of stratified epithelia of fish for terrestrial sur-

vival involved participation of TGM1-like protein cross-linking. Analysis of cultured epithelial

cells from O. mossambicus (tilapia) revealed two related TGM1-like enzymes capable of form-

ing envelope structures, and database searches indicate this isozyme class is common in tele-

osts [17]. Although other types of transglutaminase were found, TGM1 was not identified

previously by database searching in more ancient aquatic species. However, a high level of iso-

peptide cross-linking is found in envelope structures at the periphery of cells in the horny

teeth of hagfish [29], suggesting that the ancient agnathan lineage expresses a TGM1-like

enzyme. Present work now identifies such an enzyme in sturgeon, a lineage that diverged from

teleosts some 400 million years ago [18].

Materials and methods

Cell culture

Pieces of skin from the flank, ventral surface and edge of the protruding mouth of four white

sturgeon were excised, placed in culture medium, transported to the laboratory at ambient

temperature and used to generate explant cultures as previously described for tilapia [12].

Three samples originated from normal octoploid white sturgeon while one was taken from a

spontaneous autopolyploid, an individual possessing an additional four copies of the maternal

genome (dodecaploid) [30]. Cultures were maintained at room temperature (24–26˚C) in a

5% CO2 atmosphere with a feeder layer of lethally irradiated 3T3 fibroblasts in Dulbecco-Vogt

modified Eagle’s medium (high glucose) supplemented with 5% fetal bovine serum, 0.4 μg/ml

hydrocortisone, 10 ng/ml epidermal growth factor, 10 μM Y27632 and 10 μM ciprofloxacin.

Fibroblasts were occasionally observed, but the epithelial cells attached more tightly to the

dishes and outcompeted them. The medium was changed first after 1–2 days and then at 4 day

intervals. Cultures were split 1:2 with trypsin and EDTA when they reached confluence using a

3T3 feeder layer previously permitted to attach to the dishes at 37˚C. In these experiments,

cells from octoploid and dodecaploid white sturgeon grew equally well.

Fresh samples of ventral surface skin from one green sturgeon (octoploid), obtained as

above, were minced with scissors and incubated in a plastic centrifuge tube (held horizontally)

with culture grade trypsin for 45 min at room temperature with occasional swirling. After the

tube was held vertically for several seconds to permit the large pieces of skin to settle, the cells

released into the supernatant were drawn off, recovered by centrifugation and, after resuspen-

sion in serum containing medium, added to culture dishes with pre-attached 3T3 feeder layers.

This digestion and recovery process was repeated two more times, after which the remaining

tissue fragments were added to other dishes with a feeder layer.
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Cell harvesting and envelope induction

When the epithelial cell outgrowths or colonies reached diameters of�1 cm or became conflu-

ent, they were dissolved in Trizol and stored at -80˚C for subsequent real time PCR analysis or

cDNA cloning. Alternatively, such cultures were incubated for 16 hr in serum free medium

containing 0.1 mg/ml ionophore X537A. Floating and attached cells were treated together

with a solution 2% in sodium dodecyl sulfate, 20 mM in Tris buffer (pH 7.5), and 20 mM in

dithiothreitol (DTT) for at least an hour before visualization by phase contrast microscopy

[31].

Cloning, sequencing and PCR

A partial male octoploid white sturgeon genome sequence was obtained in a pilot study

(Schreier, unpublished) using the 10X Genomics Chromium platform and two lanes of Illu-

mina HiSeq 4000 sequencing assembled by Supernova v.2.0.0 [32]. The sequence was interro-

gated using tblastn with the known sequences (called A and B) of the two TGM1s from sterlet

sturgeon (Acipenser ruthenus) [33]. Matching regions of the white sturgeon genome were

scanned for translated regions and compiled; the sequence obtained covered exons 3–14 for

each form (S1 Table in S1 File). The remainder of the 5’-end was cloned using a TGM1-specific

primer to synthesize cDNA from cultured cell RNA. The cDNA was tailed with oligo dC using

terminal transferase, and PCR was conducted with oligo dG and a nested Tgm1-specific

primer. Amplification of 5’ ends was performed using a 5’ RACE system for rapid amplifica-

tion of cDNA ends (Thermo Fisher Scientific). PCR products (0.7–1 kb) were recovered and

cloned using a TOPO TA Cloning kit for subcloning (Thermo Fisher Scientific). After confir-

mation by their restriction fragmentation patterns, the cloned products were submitted to the

University of California Davis DNA Technologies Core for sequencing. In parallel, the tran-

scribed white sturgeon genomic DNA sequence from exons 3–15 was submitted to Applied

Biosystems (Thermo Fisher) for Custom TaqMan Gene Expression Assay synthesis. Real time

PCR was conducted on a BioRad CFX96 C1000 Touch Thermal Cycler. Primer sequences for

the various steps are given in S2 Table in S1 File. Ct values of the A forms were 18–22 for white

sturgeon (most measurements from 2 or 3 independent cultures) and 16–20 for green sturgeon

(two independent cultures).

Ethoxyresorufin-O-deethylase (EROD) assay

Cultures grown to confluence in 12 well plates were incubated overnight with the AHR ligand

TCDD with or without AHR inhibitors. The cells were then treated with 7-ethoxyresorufin

(4 μM) in serum free medium. After a 2 hr incubation, the serum free medium was harvested

and its content of 7-hydroxy-resorufin, the dealkylated product, was measured by fluorescence

(excitation at 560 nm, emission at 600 nm) using a SpectraMax iD3 Multi-Mode microplate

reader (Molecular Devices, San Jose, USA). 7-ethoxyresorufin has been a useful substrate in

measuring cytochrome P450 1A activity in intact mouse epidermal cells [34] and serves an

analogous function to measurement of benzo(a)pyrene metabolites in cultured human and

rodent epidermal cells [35].

Cell size distribution

Cultures were trypsinized, recovered by centrifugation, resuspended in medium and an aliquot

(100 μl) diluted with 20 ml of saline solution from which 0.1 ml aliquots were analyzed elec-

tronically at low cell densities to avoid coincidence counting. The size distributions were deter-

mined using a Beckman Coulter Multisizer3 to measure cell electrical resistances, proportional
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to their volumes, from which the diameters are calculated assuming spherical shapes. Although

the attached cells in culture resemble squames, this is a good approximation because they

become rounded up as a result of trypsin treatment, analogous to human epidermal keratino-

cytes [36].

Ethics statement

This study was carried out using only culled sturgeon (not subjected to experimental treat-

ments). Until sacrifice, they were maintained in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health

using IACUC protocols #19778 (white) and #20968 (green) approved by the UC Davis Institu-

tional Animal Care and Use Committee. Individual sturgeon were euthanized prior to sam-

pling using buffered tricaine methane sulfonate.

Results

Over the course of two weeks, epithelial cells grew outward as sheets from explanted samples

of white sturgeon skin (Fig 1A). In the case of green sturgeon, trypsinizing the skin samples

was much more effective. The yield increased with the number of trypsinizations (45 min

each), and culturing the remaining tissue after the third round recovered numerous colonies

as well. In most cases, the colonies appeared to result from attachment of small clumps of cells

(Fig 1B). With both species, the yield of outgrowths or colonies was highest from samples of

skin around the protruding mouth. Cell growth was quite slow for the first several passages

and gradually increased along with higher colony forming efficiency. By passage 12, newly

confluent white sturgeon cultures with a 1:4 split reached confluence again in less than a week.

When the medium of highly confluent cultures was replaced by 0.5 mM EDTA in phosphate

buffered saline, the cell borders appeared distinctly separate from those of neighboring cells

with no clear indication of stratification. Stratification also was not evident microscopically

during trypsinization.

When the medium was replaced by a solution of 2% sodium dodecyl sulfate (SDS) and 20

mM DTT, the cells rapidly dissolved. By contrast, cultures that had been pretreated overnight

with the ionophore X537A, which raises the cytoplasmic calcium concentration sufficiently to

activate transglutaminase activity, did not dissolve. Microscopic observation of cultures to

which SDS and DTT were added showed the cells changing in appearance, in many cases los-

ing most internal features, but the majority remained intact (Fig 1C). After detergent treat-

ment, cells that became detached during ionophore treatment were indistinguishable in

stability and appearance from those that had remained loosely attached to the dish. Large dif-

ferences in cell size were noted microscopically and were also observed by measurement of cell

size distribution in comparison to human dermal fibroblasts (Fig 2). Such differences were

also observed microscopically among the envelopes after ionophore treatment (Fig 1C).

Table 1 shows results of cross-linked envelope formation assays under several conditions.

As previously found with cultures from tilapia lip [17], few if any cells (<1%) formed enve-

lopes spontaneously in surface culture. Analogous to the desquamation process observed in

human epidermal keratinocyte cultures [37], confluent sturgeon cultures continued to divide

slowly despite a lack of space for all the cells to remain attached. When the floating cells were

collected four days after the previous medium change, a small but appreciable fraction of them

(18% ± 2%) displayed envelopes.

Trypsin-disaggregated sturgeon cells treated immediately with the ionophore did not form

envelopes, unlike human epidermal cell cultures [38]. However, 15% ± 2% of the trypsinized

cells formed envelopes in suspension in medium overnight (Table 1), analogous to human
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epidermal cells [37]. By contrast, the fraction of adherent cells capable of envelope formation

upon ionophore treatment was 60% ± 5%, comparable to the degree of envelope formation in

cultured human epidermal keratinocytes [38]. To obtain this value, untreated cultures were

trypsinized and counted to give total cell numbers, while parallel cultures (without trypsiniza-

tion) were incubated overnight with ionophore and counted following treatment with SDS

and DTT. In such experiments, envelope formation is prevented by treatment of human cells

Fig 1. Cultures of sturgeon epidermal cells. (A) Sheet of epithelial cells expanding outward from explant of white sturgeon skin (at bottom of panel).

(B) Colony of green sturgeon epidermal cells in primary culture surrounded by sparse 3T3 feeder layer cells. (C) Squame-like cells remaining attached

to dish after treatment of confluent culture of white sturgeon cells with ionophore X537A overnight followed by SDS + DTT.

https://doi.org/10.1371/journal.pone.0265218.g001
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Fig 2. Cell size distribution. (A) Passage 3 white sturgeon epidermal cells confluent for a week and (B) confluent

human dermal fibroblasts were trypsinized, suspended in saline and analyzed electronically using a Multisizer 3

Coulter counter adapted for measurement of cell sizes.

https://doi.org/10.1371/journal.pone.0265218.g002
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with iodoacetamide or cystamine, which block the active site cysteine of transglutaminase [39,

40] and thereby prevent protein cross-linking (Rice and Green, 1979). Similarly, treating the

sturgeon cultures with iodoacetamide or cystamine prevented ionophore induction of enve-

lope formation. As seen in S1 Fig in S1 File, ionophore-inducible envelope formation appeared

largely independent of cell density, a feature that distinguishes among epithelial cell lines

derived from various rat tissues [41, 42].

Finding that the sturgeon cells were capable of cross-linked envelope formation stimulated

a search for expression of a TGM1-like gene in them. Sequencing of the 120 chromosome ster-

let sturgeon genome has revealed two TGM1-like genes [33], and it was unknown how many

TGM1-like genes would be present in the 240 chromosome white sturgeon with four times the

diploid chromosome number [30]. Using those exon sequences to interrogate the white stur-

geon genomic DNA revealed two homologous genes, although exons 1 and 2 were not

retrieved. (Sequences of a Factor XIII-like and a TGM2-like, but no other TGM1-like, genes

were identified.) Using RNA isolated from the cultures permitted cloning these two genes to

complete the translated sequences (given in S3 Table in S1 File). As seen in Table 2, the white

and sterlet A forms had high levels of amino acid sequence identity (98%) as did the B forms

(95%), whereas comparison of A and B forms from each species revealed lower degrees of

identity (70–77%). Considerably lower degrees of identity (55–62%) were evident in compari-

sons of white or sterlet sturgeon Tgm1 A and B forms with those from tilapia, a representative

teleost.

White refers to white sturgeon. Sequences employed were those indicated by the accession

numbers in Table 3.

Table 1. Cross-linked envelope formation.

Sample %

Spontaneous� <1

Desquamated† 18 ± 2

Suspendedǂ 15 ± 2

X537A§ 60 ± 5

X537A + IA§ 1

X537A + Cystamine§ �1

Cells were treated as described below, then counted after subsequent SDS/DTT treatment.

� Confluent cultures treated directly with SDS/DTT.
† Cells shed from confluent cultures and accumulating in the medium over 4 days.
ǂ Trypsinized cells suspended in medium overnight.
§ Confluent cultures treated with ionophore X537A (0.1 mg/ml) overnight in the presence or absence of

iodoacetamide (25 mM) or 4 hr after addition of cystamine (20 mM).

https://doi.org/10.1371/journal.pone.0265218.t001

Table 2. Percent identities in TGM1 sequences generated from two-way comparisons using NCBI Protein BLAST.

Sterlet A Sterlet B White A White B Tilapia A

Sterlet B 78

White A 98 79

White B 77 95 77

Tilapia A 60 57 60 55

Tilapia B 57 58 62 58 63

https://doi.org/10.1371/journal.pone.0265218.t002
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Among TGM1s, the least identity is observed at the amino terminal end of the protein,

probably due to its encoding in an exon added after expansion of the gene family [43]. How-

ever, it contains a cluster of cysteine residues that are palmitoylated, permitting membrane

attachment. As shown in Table 3, the cluster encoded by the sturgeon genome has the form

CPCVC in TGM1A, which differs by one C residue from the typical cluster in teleosts of

CPCCC [17], versus FPCVC in TGM1B. Studies of human TGM1 indicate that two strategi-

cally placed cysteines are sufficient for membrane anchorage and indicate that hydrophobic

residues within the cluster assist in membrane anchorage [44].

TGM1A expression levels were considerably higher than those of TGM1B as judged by real

time PCR of mRNA from the cultured cells. The ratio of TGM1A to TGM1B was�200 in cells

cultured from one white sturgeon, a value that appeared largely independent of the passage

number of the cells. In contrast, the ratio was�20 in cells cultured from two other octoploid

white sturgeon and from one green sturgeon (Fig 3). The ratio observed in cultures from the

dodecaploid white sturgeon was intermediate (�70), indicating the degree of ploidy was not a

major determinant.

TCDD is the most potent congener of halogenated polycyclic aromatic hydrocarbons, a

group of ubiquitous environmental pollutants generated during combustion of organic com-

pounds. TCDD is, therefore, used by the USEPA, World Health Organization and other agen-

cies as an index chemical for exposures and toxicity testing [45]. In this study, we used TCDD

to examine the responses of sturgeon epidermal cells to a key class of environmental pollutant.

The toxicity of TCDD and other such halogenated polycyclic aromatics is highly dependent on

induction of the aryl hydrocarbon receptor signaling pathway, which subsequently induces the

expression of a series of related genes such as cytochrome P4501A (CYP1A) [8]. The induction

of the xenobiotic-metabolizing enzyme CYP1A can be measured by the EROD assay to moni-

tor the exposure to substances that activate the AHR [46]. As shown in Fig 4, like human kera-

tinocytes, sturgeon cells did respond to TCDD exposure with induced CYP1A activity.

Table 3. Cysteine clusters in sturgeon (white, green, sterlet) compared to representative teleost, amphibians, reptiles and mammals.

Species Cysteine cluster region (40 residues) Accession #

Sterlet A tkrqesrCsawmrrvCpCvCkksaddvtdnsgptatmedd XP_033853104.2

Green sturgeon A tkrqesrCsgwmrrvCpCvCrksadnvtdnsgptatiedd This work

White sturgeon A tkrqesrCsgwmrrvCpCvCrksaddltdnsgptatiedd This work

Sterlet B lktqesrsrgwmgtvfpCvCtnsadshdvtdynvppatrt XP_034770304.1

Green sturgeon B lktqesrsggwlgtvfpCvCtnsadshdvtdynvrpatrt This work

White sturgeon B lktqesrsggwlgtvfpCvCtnsadshdvtdynvrpatrt This work

Tilapia A nvkkrnaCqewlrkvCpCCCpkhddvtdtevtgvdepske XP_019206699.1

Tilapia B kkqeeggClwwlrkmCpCCCkhpnatsyditdkvetsydi XP_003456225.1

Cayenne caecilian pslapsrkkswfqrCCgCCssahseedveewrstapgvrd XP_030042797.1

West. clawed frog marCeerkksfwerlCpCCCtersqyepdndmrpvnrpdg XP_002939073.2

Corn snake epaprrkkqswfhkfCrCCaghrddsdwtpapgevpgarr XP_034261313.1

Sand lizard etgprrkkrnwfnkCCaCCsgqgdddwgpapgevpgarre XP_033026209.1

Green sea turtle etqperrkrsffskfCkCCkCCagprddtdwgpapgevpg XP_037771629.1

Chinese alligator parperrrrgvfskvCaCCrCCagrnddadwgpapgevpg XP_006039042.2

Swainson’s thrush sggarglwrrlargCCgCCgCCgnrdrnrdwepipgevpg XP_032940238.1

Tasmanian devil dtrsrgsgrsfwarCCsCCsCrggadddwgpepagprgsg XP_003755945.1

Human grsrrgggrsfwarCCgCCsCrnaadddwgpepsdsrgrg NP_000350.1

Segments of 40 residues are given centered on the cysteine cluster. Cysteine residues are capitalized and in bold.

https://doi.org/10.1371/journal.pone.0265218.t003
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Pretreatment with different concentrations of two receptor antagonists, CH223191 and

GNF351, inhibited EROD activity in a concentration-dependent manner. Yet, compared to

human cells, sturgeon cells required high concentrations of AHR antagonists to produce their

inhibitory effects on CYP1A induction, providing another example of species-level differences

in AHR ligand sensitivity [47].

Discussion

TCDD induction of CYP1A in the cultured sturgeon epidermal cells reveals a functioning

AHR signaling system as found in many mammalian and fish epithelial cells. The degree of

CYP1A induction by TCDD in EROD assays was�40 fold higher than in untreated cultures,

similar to the induction in white sturgeon liver, intestine, and gill by treatment with the recep-

tor ligand β-naphthoflavone [48]. The cultures thus provide a quantitative alternative to

observing CYP1A induction in systems such as zebrafish skin, where it is an effective immuno-

histochemical biomarker for AHR2 activation [49]. This feature is important for modeling the

Fig 3. Relative expression levels of TGM1 A and B determined by real time PCR. (A) RNA was isolated from the indicated passages of cells from a

single sturgeon. (B) The average ratio TGM1A/TGM1B in panel A is shown along with the ratios for two other octoploid (8N) white sturgeon (lighter

shading), a dodecaploid white sturgeon (12N, dark shading) and a green sturgeon (as labeled). Error bars indicate values derived from 2 or 3

independent cultures except for P3 (7 cultures).

https://doi.org/10.1371/journal.pone.0265218.g003
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Fig 4. Human and sturgeon epidermal cell responses to TCDD. Human (A, B) and sturgeon (C, D) epidermal cells were pre-

treated with indicated concentrations of AHR inhibitors (CH223191 or GNF351) 1 hr before TCDD exposure. After overnight

incubation, the cells were treated with 7-ethoxyresorufin in serum free medium for 2 hr and the medium was harvested for EROD

assay performed as described in the Methods. The CYP1A activity was corrected for background activity measured from fresh

medium containing 7-ethoxyresorufin and expressed as a percent of the CYP1A activity obtained from cells treated with TCDD

(set to 100%). Results are presented as the mean ± SD of three independent experiments. Significant differences from untreated

control were calculated (one-way ANOVA and Dunnett’s post hoc test) with GraphPad Prism 9 (ns, not significant different; ��,

p< 0.01; ����, p< 0.0001).

https://doi.org/10.1371/journal.pone.0265218.g004
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cellular response to various pollutants that produce deleterious effects directly by receptor acti-

vation or indirectly as a result of their biotransformation by CYP1A to electrophiles forming

macromolecular adducts. Assaying fluorescence from cleavage of the substrate 7-ethoxy-resor-

ufin is easily adaptable to multiwell plates [50], which may be assisted by the streamlined use

of live cells as described here. The contrast in effectiveness in the sturgeon and mammalian

cells of two potent inhibitors of AHR2 activation emphasizes that species generally develop dif-

fering sensitivities to environmental exposures such as to pollutants. Differences in amino acid

sequence in the AHR2 ligand binding domain are evident even among sturgeon species and

are anticipated to be manifest as TCDD sensitivity differences [51].

The ability of the sturgeon cells to become greatly enlarged resembles squame formation in

human epidermis and in keratinocyte cultures [36], where the size in the latter is influenced by

the culture microenvironment [52, 53]. Mechanisms regulating cell size in multicellular organ-

isms are not well understood [54]. While sizes increase in general in preparation for mitosis,

the dramatic enlargement keratinocytes undergo is a critical feature of terminal differentiation

with functional consequences in this cell type. Further work may help elucidate to what degree

the enlargement in these fish cells was repurposed during evolution of terrestrial epidermis.

The capability of epithelial cells derived from the skin of sturgeon to form cross-linked

envelopes resembled that from tilapia in several ways. First, treatment of the cultured cells

with an ionophore permitting cytoplasmic calcium ion influx induced formation of envelope-

like structures visible microscopically in a majority of the cells after detergent treatment. Sec-

ond the envelopes did not form spontaneously but required treatment, in this case by the iono-

phore. Third, envelope-forming capability could be attributed to a calcium-requiring

keratinocyte transglutaminase, a TGM1-like enzyme. In contrast to cultured human keratino-

cytes, however, this ability to form envelopes was not stimulated rapidly by ionophore imme-

diately after trypsinization. This observation may reflect more substantial preparation for

terminal differentiation in human keratinocytes such as expression of proteins not present in

fish [55] or mobilization of acylceramides for fabrication of the lipid barrier [24], either stabi-

lizing the cell periphery.

The data in Table 3 indicate that sturgeon speciation occurred much later than the genome

duplication leading to TGM1 divergence into A and B forms. Sterlet and white sturgeons

diverged from a common lineage approximately 120 million years ago judging by mitochon-

drial cytochrome b sequences [56]. The level of amino acid identity of the TGM1A forms

between sterlet and white sturgeons, or the degree of identity of TGM1B forms between these

two species (95–98%), was considerably higher than the identity when A and B forms were

compared within or between species (77–79%). An approximately linear rate of amino acid

substitution over time is consistent with the duplication occurring prior to the divergence of

cartilaginous sturgeon and bony teleost lineages some 400 million years ago. Whether the

agnathans have A and B forms remains to be seen. Although the molecular cloning in present

work was sufficient to distinguish A and B forms, expression of closely related forms of either

type from homologous sequences on the polyploid chromosomes cannot be ruled out. By con-

trast, four TGM1 sequences were distinguishable in sequences of Atlantic salmon (Salmo
salar) arising from two genome duplications [17]. Comparison of the two TGM1A or the two

TGM1B forms showed higher levels of identity (84–87%) than comparison between the A and

B forms (70–73%).

Analogous to expression in tilapia, where TGM1A and TGM1B were detected in the strati-

fied lip and oral epithelia [17], the TGM1 enzymes were expressed in cells derived from stur-

geon epidermis. Although cells with intermediate filaments have been reported in sturgeon

epidermis [28], more detailed characterization awaits, including whether these or other cells

express TGM1-like enzymes in the epidermis in vivo. The observed high fraction of envelope-
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forming cells in culture could reflect abundant expression in vivo, or it could result from selec-

tion for a minority of keratinocyte-like cells. A third possibility is that induction of TGM1-like

gene expression is part of a re-differentiation process in the cultured cells that migrate outward

from tissue explants. A possibly analogous phenomenon occurs during migration of mouse

cranial neural crest cells that develop pluripotent character [57]. More specifically, numerous

epithelia in the rat undergo reversible squamous metaplasia as a result of vitamin A depriva-

tion [58], a reprogramming process evident in cell culture resulting in TGM1 induction and

ionophore-inducible envelope formation in this species [42, 59].

A lack of TGM1, and thus a defective cross-linked protein envelope, is a major cause of the

human scaly skin disease lamellar ichthyosis [60, 61], and mice with the gene ablated are not

viable after birth [62]. We speculate this epidermal function developed from repurposing a

TGM1-like enzyme in agnathans necessary to form their isopeptide cross-linked teeth [29]

and in sturgeon to form the keratinized spines in the skin [23]. Envelope formation occurs

during terminal differentiation in mammalian epidermis and is observed spontaneously in

their cultured keratinocytes, albeit at a low level under optimal growth conditions. To permit

proper barrier function in a terrestrial environment, a TGM1 activation process for protein

cross-linking at the granular layer of mammalian epidermis appears necessary. Evolution of

the trigger for cross-linking, satisfactory substrate proteins for envelope formation, and the

subsequent process of lipid attachment all remain to be elucidated.
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17. Rodriguez Cruz SI, Phillips MA, Kültz D, Rice RH. Tgm1-like transglutaminases in Tilapia (Oreochromis

mossambicus). PLoS One. 2017; 12(5):e0177016. https://doi.org/10.1371/journal.pone.0177016

PMID: 28472103

18. Bi X, Wang K, Yang L, Pan H, Jiang H, Wei Q, et al. Tracing the genetic footprints of vertebrate landing

in non-teleost ray-finned fishes. Cell. 2021; 184:1–15. https://doi.org/10.1016/j.cell.2020.12.019 PMID:

33417857

PLOS ONE Sturgeon epidermal cell culture

PLOS ONE | https://doi.org/10.1371/journal.pone.0265218 March 16, 2022 14 / 17

https://doi.org/10.1111/jai.13243
https://doi.org/10.1111/jai.13243
https://doi.org/10.1111/jai.13238
https://doi.org/10.1007/s10641-006-9062-z
https://doi.org/10.1007/s10641-006-9062-z
https://doi.org/10.1111/j.1467-297.2005.00190.x
https://doi.org/10.1111/j.1467-297.2005.00190.x
https://doi.org/10.1016/j.scitotenv.2015.04.052
http://www.ncbi.nlm.nih.gov/pubmed/25955693
https://doi.org/10.1039/d0em00463d
http://www.ncbi.nlm.nih.gov/pubmed/33656498
https://doi.org/10.1016/j.mce.2011.09.027
https://doi.org/10.1016/j.mce.2011.09.027
http://www.ncbi.nlm.nih.gov/pubmed/21958697
https://doi.org/10.1093/toxsci/kfaa143
http://www.ncbi.nlm.nih.gov/pubmed/32976604
https://doi.org/10.1093/toxsci/kfz075
https://doi.org/10.1093/toxsci/kfz075
http://www.ncbi.nlm.nih.gov/pubmed/30907958
https://doi.org/10.1897/08-481.1
http://www.ncbi.nlm.nih.gov/pubmed/19292566
https://doi.org/10.1371/journal.pone.0095919
https://doi.org/10.1371/journal.pone.0095919
http://www.ncbi.nlm.nih.gov/pubmed/24797371
https://doi.org/10.1083/jcb.17.2.299
http://www.ncbi.nlm.nih.gov/pubmed/13985244
https://doi.org/10.1016/0092-8674%2875%2990183-x
http://www.ncbi.nlm.nih.gov/pubmed/1052770
https://doi.org/10.1073/pnas.81.24.7802
https://doi.org/10.1073/pnas.81.24.7802
http://www.ncbi.nlm.nih.gov/pubmed/6440145
https://doi.org/10.1172/JCI42297
http://www.ncbi.nlm.nih.gov/pubmed/20516646
https://doi.org/10.1371/journal.pone.0177016
http://www.ncbi.nlm.nih.gov/pubmed/28472103
https://doi.org/10.1016/j.cell.2020.12.019
http://www.ncbi.nlm.nih.gov/pubmed/33417857
https://doi.org/10.1371/journal.pone.0265218


19. Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, et al. Giant lungfish genome eluci-

dates the conquest of land by vertebrates. Nature. 2021; 590:284–9. https://doi.org/10.1038/s41586-

021-03198-8 PMID: 33461212

20. Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, et al. African lungfish genome sheds light on the verte-

brate water-to-land transition. Cell. 2021; 184:1362–76. https://doi.org/10.1016/j.cell.2021.01.047

PMID: 33545087

21. Hawkins MB, Henke K, Harris MP. Latent developmental potential to form limb-like skeletal structures

in zebrafish. Cell. 2021; 184:899–911. https://doi.org/10.1016/j.cell.2021.01.003 PMID: 33545089

22. Dong Y-W, Blanchard TS, Noll A, Vasquez P, Schmitz J, Kelly SP, et al. Genomic and physiological

mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J Exp Biol.

2021; 224:jeb235515. https://doi.org/10.1242/jeb.235515 PMID: 33328287

23. Yang S, Fu HM, Xiao Q, Liu Q, Wang Y, Yan TM, et al. The structure of the skin, types and distribution

of mucous cell of Yangtze sturgeon (Acipenser dabryanus). Int J Morphol. 2019; 37:541–7. https://doi.

org/10.4067/S0717-95022019000200541

24. Akiyama M. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis

pathogenesis. J Dermatol Sci. 2017; 88:3–9. https://doi.org/10.1016/j.jdermsci.2017.06.002 PMID:

28623042

25. Karim N, Phinney BS, Salemi M, Wu P-W, Naeem M, Rice RH. Human stratum corneum proteomics

revreals cross-linking of a broad spectrum of proteins in cornified envelopes. Exp Dermatol. 2019;

28:618–22. https://doi.org/10.1111/exd.13925 PMID: 30916809

26. Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability

barrier. Biochim Biophys Acta. 2014; 1841:280–94. https://doi.org/10.1016/j.bbalip.2013.11.007 PMID:

24262790

27. Wiley ML, Collette BB. Breeding tubercles and contact organs in fishes: their occurrence, structure and

significance. Am Mus Nat Hist. 1970; 143:143–216.

28. Shute L, Huebner E, Anderson WG. Microscopic identification of novel cell types in the integument of

larval lake sturgeon, Acipenser fulvescens. J Morphol. 2016; 277:86–95. https://doi.org/10.1002/jmor.

20480 PMID: 26440535

29. Rice RH, Wong VJ, Pinkerton KE. Ultrastructural visualization of cross-linked protein features in epider-

mal appendages. J Cell Sci. 1994; 107:1985–92. https://doi.org/10.1242/jcs.107.7.1985 PMID:

7983163

30. Gille DA, Famula TR, May BP, Schereier AD. Evidence for a maternal origin of spontaneous autopoly-

ploidy in culturedwhite sturgeon (Acipenser transmontanus). Aquaculture. 2015; 435:467–74. https://

doi.org/10.1016/j.aquaculture.2014.10.002

31. Rice RH. Assays for involucrin, transglutaminase and ionophore-inducible envelopes. In: Leigh FMW I.

M., Lane B., editor. Keratinocyte Methods. UK: Cambridge University Press; 1994. p. 157–65.

32. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome

sequences. Genome Res. 2017; 27:757–67. https://doi.org/10.1101/gr.214874.116 PMID: 28381613
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