CRYSTALLOGRAPHIC COMMUNICATIONS

Received 28 March 2016
Accepted 27 April 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; salt; 4-methyimidazole; picric acid; uninodal $\left\{4^{2} .8^{5}\right\}$ net.

CCDC reference: 1476728

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN ∂ ACCESS

Hydrogen-bonded network in the salt 4-methyl-1H-imidazol-3-ium picrate

Xue-gang Song, Ping Su and Xing-man Xu*

College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China. *Correspondence e-mail: xingman_xu@126.com

In the title molecular salt, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$, the phenolic proton of the starting picric acid has been transferred to the imidazole N atom. The nitro groups are twisted away from the benzene ring plane, making dihedral angles of 12.8 (2), 9.2 (4) and $29.3(2)^{\circ}$. In the crystal, the component ions are linked into chains along [010] via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and bifurcated $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds. These chains are further linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a threedimensional network. The complex three-dimensional network can be topologically simplified into a 4-connected uninodal net with the point symbol $\left\{4.8^{5}\right\}$.

1. Chemical context

Co-crystallization, the crystallization of more than one solid component into a new compound, forming a new co-crystal or molecular salt, is a well known research field involving, for example, active pharmaceutical ingredients (Aitipamula et al., 2015; Weyna et al., 2012; Robinson, 2010; Arenas-García et al., 2010) and crystal engineering (Manoj et al., 2014). 4-Methylimidazole is an often used pharmaceutical intermediate (Shimpi et al., 2014). The study of its crystallization can facilitate its related organic synthesis and theoretical optimization calculations. Picric acid, as a strong organic protondonating reagent, is often adopted 2as an organic acid in the synthesis of co-crystallized complexes. Herein, we report the crystal structure of the molecular salt, 4-methylimidazolium picrate, (I). Future work will concentrate on how the crystallization behavior is affected by the solvent and temperature.

2. Structural commentary

The asymmetric unit of (I) consists of one 4-methylimidazolium cation and one picrate anion (Fig. 1). The phenolic proton in the original picric acid starting material was

Figure 1
Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
transferred from the picric acid OH group to the imidazole nitrogen atom, forming a molecular salt. In the picrate anion, the $\mathrm{C}-\mathrm{O}_{\text {phenol }}$ bond distance is shorter than in an earlier reported un-deprotonated compound [1.33 (2) \AA; Bertolasi et al., 2011] with a value of 1.244 (2) \AA in (I). The adjacent $\mathrm{C} 1-$ $\mathrm{C} 2[1.453$ (2) \AA] and $\mathrm{C} 1-\mathrm{C} 6[1.457$ (3) \AA] bonds are also lengthened from the values expected in a completely delocalized benzene ring. The $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$ angle $\left[111.0(2)^{\circ}\right.$] is smaller by ca 10° than the average value of the other five phenyl inner angles $\left[121.8(1)^{\circ}\right.$]. This is mainly due to the electron-withdrawing effect of the three nitro groups attached

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	0.84 (2)	2.46 (2)	3.013 (3)	124 (2)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$	0.84 (2)	1.88 (2)	2.687 (2)	160 (2)
N5-H5A $\cdots \mathrm{O}^{\text {i }}$	0.87 (2)	2.07 (3)	2.898 (3)	160 (2)
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.93	2.50	3.302 (3)	145
C9-H9 . . O5 ${ }^{\text {iii }}$	0.93	2.39	3.242 (3)	152

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x+1, y+1, z$; (iii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.
to the aromatic π system, delocalizing electron density on the phenolate oxygen atom over the π system. The three nitro groups, $\mathrm{N} 1 / \mathrm{O} 2 / \mathrm{O} 3, \mathrm{~N} 2 / \mathrm{O} 4 / \mathrm{O} 5$ and $\mathrm{N} 3 / \mathrm{O} 6 / \mathrm{O} 6$, are twisted away from the benzene ring plane, making dihedral angles of 12.8 (2), 9.2 (4) and $29.3(2)^{\circ}$, respectively. In the 4-methylimidazolium cation, the $\mathrm{C} 9-\mathrm{N} 4[1.321$ (3) \AA] and $\mathrm{C} 9-\mathrm{N} 5$ [1.304 (3) \AA] bond lengths are similar to each other due to the delocalizing effect; this is in contrast to the un-protonated 4methylimidazole molecule in the co-crystal of 8-hydroxyquinoline and 5-methyl- $1 H$-imidazole $[\mathrm{C}-\mathrm{N}=1.305$ (4) and $1.3404 \AA$ A Liu \& Meng, 2006].

3. Supramolecular features

In the crystal structure of (I), the component ions are linked into chains along [010] by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1, Fig. 2), one of which is bifurcated, $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$. The chains are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forming a three-

Figure 2
Part of the crystal structure of (I), showing the formation of the three-dimensional network. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ Hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are shown as green dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted.

Figure 3
Part of the crystal structure of (I), showing the topologically connected relationship between 4-methylimidazolium and picrate ions (shown as gray and pink balls, respectively).
dimensional framework. In the cation, all H atoms except for the methyl group H atoms act as hydrogen-bond donors. Each cation is bonded to four adjacent picrate anions. In turn, each picrate anion utilizes the one phenolic and four nitro oxygen atoms, acting as hydrogen-bond acceptors, linked to four 4methylimidazolium cations. No other interactions such as $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ are observed (Spek, 2009).

In order to better understand the three-dimensional structure, we can regard both the cation and anion as 4-connected nodes (Fig. 3), i.e. each one 4-methylimidazolium ion links with four other picrate ions, and vice versa. Thus, the whole network is simplified into a uninodal 4-connected net with the point symbol $\left\{4.8^{5}\right\}$ (Baburin \& Blatov, 2007; Blatov et al., 2014) (Fig. 4).

4. Database survey

A CSD search (CSD Version 5.37 plus one update; Groom et al., 2016) found some analogs of the title compound, viz.

Figure 4
A schematic view of the formation of the 4-connected topological network in (I) when the cations and anions are regarded as fourconnected nodes. The gray and pink spheres represent the 4-methylimidazolium cations and picrate anions, respectively.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta{ }^{\circ}{ }^{\circ}{ }^{3}$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$0.052,0.110,1.04$
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$
311.22

Monoclinic, $P 2_{1} / c$
298
9.3079 (17), 9.4339 (17), 15.195 (3)
107.835 (2)
1270.2 (4)

4
Mo $K \alpha$
0.14
$0.30 \times 0.05 \times 0.02$

Bruker SMART CCD
Multi-scan (SADABS; Sheldrick, 2008)
0.936, 0.992

12952, 2489, 1539
0.142
0.616

2489
206
H atoms treated by a mixture of independent and constrained refinement
$0.25,-0.22$

Computer programs: SMART and SAINT-Plus (Bruker, 2001), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2006).

BEZGEU (2-methylimidazolium picrate 2-methylimidazole; Dhanabal et al., 2013) and QAKYOS (2-methyl-1H-imidazol-3-ium 2,4,6-trinitrophenolate; Dutkiewicz et al., 2011). A structural comparison indicates that the two nitrogen atoms are preferably hydrogen-bonded to the picrate anions, of which one is bifurcated and the other is linear.

5. Synthesis and crystallization

Equivalent molar amounts of 4-methyl imidazole (1.0 mmol , 80.0 mg) and picric acid ($1 \mathrm{mmol}, 230.0 \mathrm{mg}$) were dissolved in 95% methanol $(40.0 \mathrm{ml})$. The mixture was stirred for half an hour at room temperature and then filtered. The resulting yellow solution was kept in air for two weeks. Needle-shaped yellow crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown at the bottom of the vessel by slow evaporation of the solution. The crystals were separated by filtration (yield, 75%, ca 0.23 g).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) or $0.96 \AA$ (methyl) and refined using a riding model $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}$ (Caromatic) or $1.5 U_{\text {eq }}($ Cmethyl $\left.)\right] . \mathrm{H}$ atoms bonded to N
atoms were found in Fourier difference maps; $\mathrm{N}-\mathrm{H}$ distances were refined freely with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Acknowledgements

We thank Dr Xiang-gao Meng for helpful discussions about this crystal structure.

References

Aitipamula, S., Mapp, L. K., Wong, A. B. H., Chow, P. S. \& Tan, R. B. H. (2015). CrystEngComm, 17, 9323-9335.

Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. \& Höpfl, H. (2010). Cryst. Growth Des. 10, 37323742.

Baburin, I. A. \& Blatov, V. A. (2007). Acta Cryst. B63, 791-802.
Bertolasi, V., Gilli, P. \& Gilli, G. (2011). Cryst. Growth Des. 11, 27242735.

Blatov, V. A., Shevchenko, A. P. \& Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dhanabal, T., Sethuram, M., Amirthaganesan, G. \& Das, S. K. (2013). J. Mol. Struct. 1045, 112-123.

Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. \& Kubicki, M. (2011). Acta Cryst. E67, o235.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Liu, Z.-X. \& Meng, X.-G. (2006). Acta Cryst. E62, o1286-o1288.
Manoj, K., Tamura, R., Takahashi, H. \& Tsue, H. (2014). CrystEngComm, 16, 5811-5819.
Robinson, D. I. (2010). Org. Process Res. Dev. 14, 946-959.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shimpi, M. R. , Childs, S. L., Boström, D., \& Velaga, S. P. (2014). CrystEngComm, 16, 8984-8993.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Weyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Wojtas, L. \& Zaworotko, M. J. (2012). CrystEngComm, 14, 2377-2380.

supporting information

Acta Cryst. (2016). E72, 772-775 [doi:10.1107/S205698901600712X]
Hydrogen-bonded network in the salt 4-methyl-1H-imidazol-3-ium picrate

Xue-gang Song, Ping Su and Xing-man Xu

Computing details

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Methyl-1 H-imidazol-3-ium 2,4,6-trinitrophenolate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$
$M_{r}=311.22$
Monoclinic, $P 2_{1} / c$
$a=9.3079$ (17) \AA
$b=9.4339(17) \AA$
$c=15.195$ (3) \AA
$\beta=107.835(2)^{\circ}$
$V=1270.2(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
$T_{\text {min }}=0.936, T_{\text {max }}=0.992$
12952 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.110$
$S=1.04$
2489 reflections
206 parameters
0 restraints

$$
F(000)=640
$$

$D_{\mathrm{x}}=1.628 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1754 reflections
$\theta=2.3-22.1^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle, yellow
$0.30 \times 0.05 \times 0.02 \mathrm{~mm}$

2489 independent reflections
1539 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.142$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-18 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0154 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.1017 (2)	0.4075 (2)	0.43900 (15)	0.0339 (6)
C2	0.0815 (2)	0.3083 (2)	0.50742 (14)	0.0340 (6)
C3	-0.0320 (2)	0.2096 (2)	0.49046 (15)	0.0350 (6)
H3	-0.0386	0.1486	0.5371	0.042*
C4	-0.1356 (2)	0.2015 (2)	0.40413 (15)	0.0318 (5)
C5	-0.1265 (2)	0.2912 (2)	0.33388 (15)	0.0344 (6)
H5	-0.1983	0.2860	0.2759	0.041*
C6	-0.0126 (2)	0.3863 (2)	0.34989 (14)	0.0326 (6)
C7	0.4896 (2)	0.7421 (2)	0.51495 (15)	0.0367 (6)
C8	0.6087 (3)	0.8040 (3)	0.57572 (16)	0.0420 (6)
H8	0.6633	0.8808	0.5646	0.050*
C9	0.5366 (3)	0.6298 (3)	0.64773 (16)	0.0438 (7)
H9	0.5314	0.5658	0.6932	0.053*
C10	0.4074 (3)	0.7745 (3)	0.41634 (16)	0.0552 (7)
H10A	0.3094	0.8119	0.4116	0.083*
H10B	0.3966	0.6894	0.3803	0.083*
H10C	0.4634	0.8432	0.3936	0.083*
N1	0.1822 (2)	0.3139 (2)	0.60151 (13)	0.0421 (5)
N2	-0.2537 (2)	0.0971 (2)	0.38594 (15)	0.0414 (5)
N3	-0.0051 (3)	0.4734 (2)	0.27120 (13)	0.0438 (5)
N4	0.4464 (2)	0.6333 (2)	0.56162 (13)	0.0390 (5)
H4A	0.369 (3)	0.584 (3)	0.5399 (16)	0.047*
N5	0.6343 (2)	0.7322 (2)	0.65746 (14)	0.0450 (6)
H5A	0.706 (3)	0.757 (3)	0.7063 (18)	0.054*
O1	0.19859 (18)	0.50281 (17)	0.45332 (11)	0.0487 (5)
O2	0.2988 (2)	0.3814 (2)	0.62018 (11)	0.0623 (6)
O3	0.1436 (2)	0.2490 (2)	0.66125 (12)	0.0682 (6)
O4	-0.2498 (2)	0.00651 (19)	0.44540 (13)	0.0600 (5)
O5	-0.35582 (18)	0.10262 (18)	0.31206 (12)	0.0520 (5)
O6	-0.1232 (2)	0.4962 (2)	0.21012 (13)	0.0744 (6)
O7	0.1172 (2)	0.5136 (2)	0.26798 (12)	0.0673 (6)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0342(14)$	$0.0300(14)$	$0.0336(13)$	$0.0044(11)$	$0.0044(11)$	$-0.0040(11)$
C2	$0.0361(13)$	$0.0374(14)$	$0.0223(12)$	$0.0054(11)$	$0.0001(10)$	$-0.0027(10)$
C3	$0.0416(14)$	$0.0332(13)$	$0.0295(14)$	$0.0067(11)$	$0.0100(11)$	$0.0010(11)$
C4	$0.0311(13)$	$0.0310(13)$	$0.0318(13)$	$-0.0012(11)$	$0.0074(11)$	$-0.0043(11)$

supporting information

C5	$0.0373(13)$	$0.0358(13)$	$0.0245(12)$	$0.0039(11)$	$0.0010(10)$	$-0.0043(11)$
C6	$0.0389(14)$	$0.0296(13)$	$0.0262(12)$	$0.0024(11)$	$0.0055(10)$	$0.0018(10)$
C7	$0.0410(15)$	$0.0341(14)$	$0.0313(14)$	$0.0045(11)$	$0.0056(11)$	$-0.0018(11)$
C8	$0.0456(15)$	$0.0401(15)$	$0.0371(15)$	$-0.0006(12)$	$0.0080(12)$	$-0.0018(12)$
C9	$0.0514(17)$	$0.0405(15)$	$0.0329(15)$	$0.0040(13)$	$0.0030(13)$	$0.0019(11)$
C10	$0.0690(18)$	$0.0555(18)$	$0.0323(15)$	$0.0077(15)$	$0.0023(13)$	$0.0037(13)$
N1	$0.0473(13)$	$0.0444(14)$	$0.0281(12)$	$0.0037(11)$	$0.0020(10)$	$-0.0017(10)$
N2	$0.0427(13)$	$0.0394(13)$	$0.0421(13)$	$0.0010(10)$	$0.0131(11)$	$-0.0065(11)$
N3	$0.0503(14)$	$0.0377(13)$	$0.0349(12)$	$-0.0030(11)$	$0.0007(11)$	$0.0058(10)$
N4	$0.0366(12)$	$0.0352(12)$	$0.0353(12)$	$-0.0032(10)$	$-0.0033(10)$	$-0.0046(9)$
N5	$0.0415(13)$	$0.0515(14)$	$0.0306(12)$	$0.0014(11)$	$-0.0058(10)$	$-0.0104(11)$
O1	$0.0515(11)$	$0.0442(11)$	$0.0398(10)$	$-0.0130(9)$	$-0.0017(8)$	$-0.0003(8)$
O2	$0.0481(11)$	$0.0838(16)$	$0.0408(11)$	$-0.0196(11)$	$-0.0074(9)$	$0.0005(10)$
O3	$0.0797(14)$	$0.0853(15)$	$0.0274(10)$	$-0.0219(12)$	$-0.0016(10)$	$0.0122(10)$
O4	$0.0664(13)$	$0.0493(12)$	$0.0609(13)$	$-0.0107(10)$	$0.0144(10)$	$0.0134(10)$
O5	$0.0459(11)$	$0.0590(13)$	$0.0428(11)$	$-0.0098(9)$	$0.0014(9)$	$-0.0118(9)$
O6	$0.0702(14)$	$0.0825(15)$	$0.0472(12)$	$-0.0069(11)$	$-0.0163(10)$	$0.0287(11)$
O7	$0.0618(13)$	$0.0821(15)$	$0.0546(12)$	$-0.0132(12)$	$0.0126(10)$	$0.0241(11)$

Geometric parameters ($A,{ }^{\circ}$)

C1-O1	$1.244(2)$	C8-H8	0.9300
C1-C2	$1.453(3)$	C9-N5	$1.304(3)$
C1-C6	$1.457(3)$	C9-N4	$1.321(3)$
C2-C3	$1.372(3)$	C9-H9	0.9300
C2-N1	$1.451(3)$	C10-H10A	0.9600
C3-C4	$1.372(3)$	C10-H10B	0.9600
C3-H3	0.9300	C10-H10C	0.9600
C4-C5	$1.385(3)$	N1-O2	$1.214(2)$
C4-N2	$1.438(3)$	N1-O3	$1.236(2)$
C5-C6	$1.353(3)$	N2-O5	$1.230(2)$
C5-H5	0.9300	N2-O4	$1.236(2)$
C6-N3	$1.470(3)$	N3-O7	$1.215(2)$
C7-C8	$1.340(3)$	N3-O6	$1.222(2)$
C7-N4	$1.375(3)$	N4-H4A	$0.84(2)$
C7-C10	$1.491(3)$	N5-H5A	$0.87(2)$
C8-N5	$1.370(3)$		
O1-C1-C2	$125.9(2)$	N5-C9-N4	$107.6(2)$
O1-C1-C6	$123.1(2)$	N5-C9-H9	126.2
C2-C1-C6	$111.0(2)$	N4-C9-H9	126.2
C3-C2-N1	$116.0(2)$	C7-C10-H10A	109.5
C3-C2-C1	$124.3(2)$	C7-C10-H10B	109.5
N1-C2-C1	$119.7(2)$	H10A-C10-H10B	109.5
C4-C3-C2	$119.5(2)$	C7-C10-H10C	109.5
C4-C3-H3	120.2	H10A-C10-H10C	109.5
C2-C3-H3	120.2	H10B-C10-H10C	109.5
C3-C4-C5	$120.8(2)$	O2-N1-O3	$121.9(2)$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$119.6(2)$	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 2$	$120.7(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 2$	$119.6(2)$	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 2$	$117.4(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.8(2)$	$\mathrm{O} 5-\mathrm{N} 2-\mathrm{O} 4$	$122.5(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.1	$\mathrm{O} 5-\mathrm{N} 2-\mathrm{C} 4$	$118.5(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.1	$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 4$	$118.9(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$124.5(2)$	$\mathrm{O} 7-\mathrm{N} 3-\mathrm{O} 6$	$123.5(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 3$	$117.02(19)$	$\mathrm{O} 7-\mathrm{N} 3-\mathrm{C} 6$	$119.07(19)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 3$	$118.4(2)$	$\mathrm{O} 6-\mathrm{N} 3-\mathrm{C} 6$	$117.4(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 4$	$106.3(2)$	$\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 7$	$109.4(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10$	$131.6(2)$	$\mathrm{C} 9-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	$125.9(17)$
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{C} 10$	$122.1(2)$	$\mathrm{C} 7-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	$124.4(17)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 5$	$106.6(2)$	$\mathrm{C} 9-\mathrm{N} 5-\mathrm{C} 8$	$110.0(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	126.7	$\mathrm{C} 9-\mathrm{N} 5-\mathrm{H} 5 \mathrm{~A}$	$128.9(17)$
$\mathrm{N} 5-\mathrm{C} 8-\mathrm{H} 8$	126.7	$\mathrm{C} 8-\mathrm{N} 5-\mathrm{H} 5 \mathrm{~A}$	$121.1(17)$

Hydrogen-bond geometry $\left(\hat{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 2$	$0.84(2)$	$2.46(2)$	$3.013(3)$	$124(2)$
N4—H4A $\cdots \mathrm{O} 1$	$0.84(2)$	$1.88(2)$	$2.687(2)$	$160(2)$
N5—H5A $\cdots \mathrm{O} 3^{\mathrm{i}}$	$0.87(2)$	$2.07(3)$	$2.898(3)$	$160(2)$
C8—H8 $\cdots 4^{\mathrm{ii}}$	0.93	2.50	$3.302(3)$	145
C9—H9 $\cdots 5^{\text {iii }}$	0.93	2.39	$3.242(3)$	152

Symmetry codes: (i) $-x+1, y+1 / 2,-z+3 / 2$; (ii) $x+1, y+1, z$; (iii) $x+1,-y+1 / 2, z+1 / 2$.

