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Abstract: Background: Alzheimer’s disease (AD) is a complex neurodegenerative disorder charac-
terized by the progressive loss of neurons, which typically leads to severe impairments in cognitive 
functions including memory and learning. Key pathological features of this disease include the 
deposition of highly insoluble amyloid β peptides and the formation of neurofibrillary tangles 
(NFTs) in the brain. Mounting evidence also implicates sustained glial-mediated inflammation as a 
major contributor of the neurodegenerative processes and cognitive deficits observed in AD.  

Methods: This paper provides an overview of findings from both human and animal studies inves-
tigating the role of microglia and astrocytes in AD, and discusses potential avenues for therapeutic 
intervention. 

Results: Glial-mediated inflammation is a ‘double-edged sword’, performing both detrimental and 
beneficial functions in AD. Despite tremendous effort in elucidating the molecular and cellular 
mechanisms underlying AD pathology, to date, there is no treatment that could prevent or cure this 
disease. Current treatments are only useful in slowing down the progression of AD and helping 
patients manage some of their behavioral and cognitive symptoms. 

Conclusion: A better understanding of the role of microglia and astrocytes in the regulation of AD 
pathology is needed as this could pave the way for new therapeutic strategies. 
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1. INTRODUCTION 

 Alzheimer’s disease (AD) is the leading cause of demen-
tia in the elderly population, affecting approximately 24  
million people worldwide [1]. First described by Alois  
Alzheimer in the early 20th century, AD is characterized by 
severe cognitive deficits including memory loss and lan-
guage impairment, leading to increasing dependence in eve-
ryday life [2]. Neuropsychiatric symptoms such as depres-
sion, apathy and hallucinations are also frequently observed 
in the AD population, thus imposing even heavier burdens 
on affected individuals and families [3]. However, even if 
there are indubitably psychiatric symptoms in AD, this dis-
ease is more commonly characterized as a neurological or 
neurodegenerative disorder inasmuch as its key pathological 
hallmarks include neuronal loss and cellular dysfunction [4]. 
The amyloid cascade hypothesis, which was formulated in 
1992, posits that the main pathological event leading to neu-
ronal loss and dementia in AD is the formation of β-amyloid 
(Aβ) in the brain, which ultimately leads to the deposition of 
extracellular amyloid plaques [5]. The production of Aβ is 
the result of the proteolytic cleavage of β-amyloid precursor 
protein (APP) by two enzymes: Beta-secretase 1 (BACE1)  
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and γ-secretase [6]. In addition to exerting detrimental ef-
fects to surrounding neurons, the accumulation of Aβ in the 
brain can lead to a series of events including the hyperphos-
phorylation of the microtubule-associated protein tau and the 
formation of neurofibrillary tangles (NFTs), both of which 
highly contribute to the neurodegenerative processes in AD 
[7, 8]. 

 Over the past few years, the amyloid cascade hypothesis 
has been the prevailing concept for explaining AD patho-
genesis. However, several lines of investigation are now 
supporting the view that inflammation may be the key neu-
ropathological event leading to neurodegeneration in AD. 
Indeed, a number of studies have observed elevated cytokine 
levels in the brain of individuals with AD [9, 10] and animal 
models of the disease [11-13]. There is also abundant evi-
dence showing that activation of glial cells, including micro-
glia and astrocytes, plays an important role in eliciting the 
inflammatory signalling pathway involved in neurodegenera-
tion [14, 15]. Also noteworthy are studies showing that reac-
tive astrocytes and microglia are particularly found in high 
number near senile plaques of individuals with AD [16-18], 
suggesting a role for these immune cells in the pathogenesis 
of AD. However, despite significant progress in research, 
whether the glial-mediated inflammatory response observed 
in AD is a consequence or a cause of neurodegeneration is 
still a subject of debate. 
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 Given the high burden of AD to the affected individual 
and to the society in terms of the ensued health care costs, a 
better understanding of the pathophysiological mechanisms 
of this disorder is urgently needed as this could help promote 
the development of new therapeutic strategies. The overarch-
ing aim of this paper is to provide a thorough overview of 
the contribution of microglia and astrocytes in inflammation 
and AD pathogenesis by illustrating key findings from ani-
mal and human studies. Potential avenues for therapeutic 
interventions are also discussed. 

2. MICROGLIA DURING HEALTHY AND 
INFLAMMATORY CONDITIONS 

 Microglia are resident macrophages that represent ap-
proximately 10% of all the cells in the central nervous sys-
tem (CNS) [19]. Being one of the first immune cells that get 
immunologically active during an inflammatory reaction, 
they constitute the first line of cellular defence against invad-
ing pathogens and other types of brain injury [20]. Despite 
being extensively studied, their true origin remains a subject 
of debate. Early evidence suggested that microglia differen-
tiate in the bone marrow from embryonic hematopoietic pre-
cursor cells, whereas more recently, studies have shown that 
these cells may in fact arise from progenitors in the embry-
onic yolk sac early during development [21]. Under normal 
conditions, microglia exist in a quiescent (or resting) state, 
and are morphologically characterized by small-shaped soma 
and highly ramified processes [22]. One of the main func-
tions of resting state microglia is to vigilantly monitor the 
CNS for the detection of pathogens and host-derived ligands, 
including pathogen-associated molecular patterns (PAMPs) 
and danger-associated molecular patterns (DAMPs) [20, 23]. 
The expression of pattern recognition receptors (PRRs) on 
their molecular surface makes them well equipped for this 
purpose [24]. In response to invading pathogens, microglia 
get activated and undergo morphological changes including 
enlargement of their soma and shortening of their cellular 
processes [25]. Activated microglia play an important role in 
the phagocytosis of pathogens and in the clearance of cellu-
lar debris and degenerating cells at the lesion site [26]. In 
addition to their phagocytic activity, activated microglia par-
ticipate in the presentation of antigens to T cells, thereby 
coordinating the dialogue between the innate and adaptive 
immune systems during an inflammatory response [27, 28]. 

 Mounting evidence points to the fact that microglia-
mediated inflammatory response is a "double-edged sword", 
executing both detrimental and beneficial functions [29, 30]. 
When activated, microglia produce inflammatory mediators 
including cytokines, chemokines, inducible nitric oxide syn-
thase (NOS), cyclooxygenase-2 (COX-2) and free radicals 
like reactive oxygen species (ROS), which may disturb neu-
ronal functions and produce cellular damage [20, 31]. Acti-
vated microglia also produce a wide array of neuroprotective 
factors that help prevent neuronal injury, including brain-
derived neurotrophic factor (BDNF), glial cell-derived neu-
rotrophic factor (GDNF) and nerve growth factor (NGF) [31-
33]. This duality in the effect of microglia on immune-
mediated inflammation suggests that these immune cells 
adopt different functional phenotypes based on their sur-
rounding environment. Depending on their activation state, 

microglial cells have been broadly classified into a proin-
flammatory M1 phenotype or an anti-inflammatory M2 phe-
notype [34]. However, it should be noted that this classifica-
tion is not universally accepted by research findings, and 
there are still a lot to learn about the mechanisms underlying 
microglia functions during these different activation states 
[35]. 

 The M1 phenotype is "classically activated" by Toll-like 
receptors or interferon-gamma (IFNγ), and plays a vital role 
in destroying invading pathogens by producing proinflam-
matory cytokines, ultimately causing neuronal damage in 
local tissues [14, 20]. In contrast, the M2 phenotype is "al-
ternatively activated" by interleukin 4 (IL-4) or IL-13, and is 
involved in the release of high levels of anti-inflammatory 
cytokines, thus playing fundamental roles in tissue repair and 
angiogenesis [14]. Interestingly, microglia that have been 
polarized into an M1 or M2 state can rapidly switch their 
phenotype in order to adapt to their surrounding microenvi-
ronment, thus providing researchers with the possibility of 
targeting imbalances of macrophage polarization for various 
therapeutic applications [36]. For instance, M1 macrophages 
can be polarized to M2-like macrophages following experi-
mental manipulations that inhibit the PI3K/AKT signalling 
pathway [37] or the NF-κB, MAPK and AKT pathways [38], 
whereas M2 macrophages can be reprogrammed into an M1 
phenotype in response to lipopolysaccharide (LPS) and IFNγ 
[39, 40]. 

3. MICROGLIA IN ALZHEIMER’S DISEASE 

 There is an extensive number of studies indicating that 
inflammatory pathways are altered in AD owing to exacer-
bated immune response [41, 42]. The observation that in-
flammatory processes may promote neuronal loss and cogni-
tive decline [43, 44], together with evidence associating po-
lymorphic variations of inflammatory cytokines with AD 
[45-47], argue for a potential role of microglia in AD patho-
genesis. Microglia are one of the first immune cells that get 
activated and recruited to the site of injury during an in-
flammatory response. Understanding how they are involved 
in AD could not only help decipher the cellular and molecu-
lar mechanisms underlying neurodegeneration, but could 
also open up new avenues for therapeutic interventions. One 
of the first ground-breaking findings implicating microglia in 
AD date from studies in the early 1990s showing that these 
immune cells are highly engaged in the formation of Aβ 
plaques in the brains of AD patients [41, 42]. More recently, 
data from studies utilizing animal models of AD have also 
demonstrated the presence of activated microglia at sites of 
Aβ deposition, suggesting that these glial cells might physi-
cally interact with Aβ and regulate their levels in the brain 
[43, 44]. 

 Further evidence providing a link between microglia dys-
function and AD pathogenesis comes from genetic studies 
showing that a null mutation in TREM2 (Triggering Recep-
tor Expressed on Myeloid cells 2) gene, which is specifically 
expressed by microglia in the CNS, is associated with severe 
neuritic tau hyperphosphorylation and reduced ability of 
microglia to envelop amyloid deposit [48]. In addition, ge-
netic deletion of the complement factors C1q and C3, or the 
microglial complement receptor CR3, reduces the number of 
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phagocytic microglia and the degree of early synapse loss, 
suggesting that complement activation can act as an early 
mediator of plaque associated synapse loss in AD by trigger-
ing the activation of phagocytic microglia [49]. Microglia 
and CR3 also play a crucial role in Aβ homeostasis inasmuch 
as ablation of CR3 in APP-transgenic mice leads to de-
creased Aβ accumulation, most likely as a result of increased 
secretion of Aβ-degrading enzymes and increased ability of 
microglia to degrade extracellular Aβ [50]. However, despite 
significant progress in the understanding of the interaction 
between microglia and Aβ in AD, whether the accumulation 
of Aβ in the brain precedes microglia activation still remains 
a subject of debate [51-54]. 

 Microglia interact with Aβ, but also with APP, through 
specific PRRs, including CD14, CD36 and Toll-like recep-
tors, which are highly expressed on their surface [55-58]. 
This interaction is required for phenotypic activation of mi-
croglia and induction of phagocytosis, and results in the 
clearance of Aβ from the brain [20, 59]. Inductors of in-
flammation, such as LPS, also activate microglia to promote 
the degradation of Aβ [60]. Consistent with the view that 
microglia are involved in Aβ clearance, impairment of mi-
croglia function in transgenic mice facilitates the progression 
of AD and results in increased Aβ accumulation in the brain 
[61, 62]. Besides providing beneficial effects to the host, 
activation of microglia by Aβ or APP also results in an 
upregulation of inflammatory mediators including inducible 
nitric oxide synthase (iNOS), tumor necrosis factor-alpha 
(TNF-α), interleukin-1beta (IL-1β) and IL-6, ultimately lead-
ing to exacerbated inflammatory response and severe neu-
ronal loss [63-65] (Fig. 1). 

 Taken together, the aforementioned studies suggest that 
microglia exert dual functions in AD in a context-dependent 
manner. While moderate activation of microglia provides 

protective effects by facilitating the clearance of Aβ in the 
brain, overactivation of these cells by Aβ or APP could trig-
ger an exaggerated inflammatory response that may worsen 
the neurodegenerative processes in AD. However, despite 
significant progress in research, very few reports have inves-
tigated the relationship between microglia and the formation 
of NFTs in AD. Although studies thus far seem to point for a 
role of microglia in the internalization and degradation of 
tau, the major component of NFTs [66, 67], further investi-
gations are warranted for a better understanding of the mo-
lecular mechanisms underlying the role of microglia in AD 
pathogenesis. 

4. ASTROCYTES DURING HEALTHY AND 
INFLAMMATORY CONDITIONS 

 Astrocytes are the most abundant glial subtype in the 
CNS, and similar to microglia, play a crucial role in the 
regulation of neuroinflammation [68]. Also referred to as 
astroglia, astrocytes exhibit a star-shaped morphology with 
cellular processes extending from the soma [69]. In the 
healthy CNS, astrocytes perform several physiological func-
tions involved in ion homeostasis, neurotransmitter transmis-
sion, growth factor secretion, synaptic remodeling, and oxi-
dative stress regulation [42, 70]. In addition, astrocytes play 
a fundamental role in the protection and differentiation of 
dopaminergic neurons [71, 72], and have been associated 
with CNS pathologies like schizophrenia [73, 74] and Park-
inson’s disease [75, 76], where dopamine neurotransmission 
is incriminated. 

 Because of their close proximity to blood vessels and 
their interaction with endothelial cells, astrocytes also par-
ticipate in the maintenance and permeability of the blood-
brain barrier (BBB), a multi-cellular unit involved in the 
exchange of molecules in and out of the brain [77, 78]. Ana-

 

Fig. (1). Detrimental effects of glial-mediated inflammation. Activation of microglia and astrocytes by Aβ or following a signal of damage 
leads to the secretion and release of inflammatory chemokines and cytokines, including IL-1, IL-6, and TNF-α. These pro-inflammatory 
elements trigger a cascade of events, such as oxidative stress, demyelination and apoptosis, which eventually lead to neurodegeneration and 
cognitive decline. Reactive astrocytes also contribute to scar formation around injured tissue by accumulating around amyloid plaques. 
Adapted with permission from [65]. (The color version of the figure is available in the electronic copy of the article). 
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tomically, astrocytic terminal processes, known as endfeet, 
almost completely cover the outer surface of the endothe-
lium, forming a lacework of fine lamellae [77]. Through the 
release of soluble factors such as GDNF, transforming 
growth factor-beta (TGFβ), basic fibroblast growth factor 
(bFGF) and angiopoetin-1 (ANG-1), astrocytic endfeet par-
ticipate in the regulation of angiogenesis and in the forma-
tion of endothelial cell-to-cell junctions, thus preserving the 
function and structural integrity of the BBB [79, 80]. Astro-
cytic expression of growth factors and cytokines also tightly 
regulates the permeability of the BBB during inflammatory 
conditions, and in doing so help control the passage of im-
mune cells into the CNS [81, 82]. 

 Upon activation by pathogens, astrocytes produce a wide 
array of inflammatory cytokines that can have beneficial or 
detrimental consequences. In addition, astrocytes express 
major histocompatibility complex (MHC) class II molecules 
on their surface, thus acting as antigen-presenting cells for T 
cells [83, 84]. Depending on their surrounding environment 
and activation state, astrocytes either suppress [85, 86] or 
enhance [87, 88] T-cell functions. Although astrocytes are 
mainly neuroprotective [89], they participate in perpetuating 
the self-destructive environment by secreting various 
chemokines and proinflammatory cytokines, including IL-1β 
and TNF-α [90, 91]. In addition, astrocytes have the capacity 
to physically interact with microglia, thereby exerting a sig-
nificant control over their activation [92], phagocytic capac-
ity [93], and ability to secrete inflammatory mediators such 
as TNF-α [94], IL-12 [95] and iNOS [96]. 

5. ASTROCYTES IN ALZHEIMER’S DISEASE 

 Early evidence implicating astrocytes in the pathological 
processes of AD comes from the observation that these glial 
cells are associated with senile plaques in the brains of AD 
patients [97]. More recently, studies have reported profound 
astrogliosis in the brain of animal models of AD [98] and 
AD patients [99], where reactive astrocytes accumulate 
around amyloid plaques via phagocytosis of local degener-
ated dendrites and synapses, encircling Aβ deposits in a 
manner reminiscent of glial scarring [42, 65] (Fig. 1). Upon 
activation by Aβ or following a signal of damage or injury, 
astrocytes also participate in the secretion of inflammatory 
cytokines including IL-1, IL-6, and TNF-α, thereby promot-
ing the neurodegenerative processes in AD [65] (Fig. 1). Al-
though the mechanisms by which astrocytes react with Aβ 
remain largely elusive, astrocytes express a wide array of 
receptors, including the receptor for advanced glycation end-
products (RAGE), lipoprotein receptor-related proteins 
(LRPs), membrane-associated proteoglycans and scavenger 
receptor-like receptors, which recognize and bind to Aβ [42, 
100]. On the other hand, Aβ aggregates can stimulate the 
production of chemotactic molecules including monocyte 
chemoattractant protein-1 (MCP-1), which help mediate the 
recruitment of astrocytes to the site of lesion [101, 102]. In 
addition to promoting the accumulation of immune cells in 
and around senile plaques, Aβ also contributes substantially 
to the inflammatory processes mediated by astrocytes. For 
instance, isolated senile plaques or Aβ aggregates from hu-
man AD brains lead to reactive astrogliosis when co-cultured 
with glial cells [93]. Aβ also activates astroglial nuclear fac-

tor-kappa B (NFκB) and complement signalling to impair 
synaptic density and dendritic morphology [103], and poten-
tiates the production of inflammatory mediators by astro-
cytes in response to scavenger receptors ligands [104] and 
LPS [105], thereby contributing to the neurodegenerative 
changes observed in AD. 

 The effect of astrocytes on Aβ in AD remains a subject of 
controversy. Numerous studies have indicated that reactive 
astrocytes participate in the clearance of Aβ in vitro, suggest-
ing a direct role for these glial cells in the attenuation of the 
neurodegenerative processes in AD [102, 106, 107]. In 
transgenic mice with AD-like pathology, the astrocyte-
mediated clearance of Aβ is mediated by the increased ex-
pression of neprilysin [108] and insulin-degrading enzyme 
[109]. Extracellular brain clearance of Aβ is also promoted 
by the secretion of matrix metalloproteinase (MMP)-2 and 
MMP-9 by astrocytes [110]. However, despite being effec-
tive in mediating the degradation of amyloid plaques, astro-
cytes could also produce Aβ under certain inflammatory 
conditions. For instance, TGF-β1 alone [111] or IFN-γ in 
combination with TNF-α [112, 113] or IL-1β [113] drives 
the production of Aβ by astrocytes. Astrocytes could also 
engulf large amounts of Aβ that are partly digested, eventu-
ally leading to astrocytic defects and neuronal apoptosis 
[114]. Moreover, astrocytes can release many trophic factors 
that may exert either beneficial or detrimental functions in 
AD. For instance, GDNF secreted from astrocytes improves 
neuronal function and cognitive performance in aged rats 
[115], whereas overexpression of NGF by astrocytes leads to 
neurotoxicity and the degenerative loss of hippocampal neu-
rons in-vitro [116]. 

 Last but not least are studies implicating astrocytes and 
other glial cells in the evolution of NFTs in AD. In the para-
hippocampal cortex of AD patients, the number of activated 
astrocytes correlates with the number of tangles and the 
stage of NFTs formation, suggesting a role for astrocyte ac-
tivation in the progression of NFTs in AD [117]. In addition, 
thrombin, a serine protease expressed by astrocytes and  
microglia, accumulates in NFTs [118] and participates in  
the cleavage of tau [119]. Although these studies propose  
a potential mechanistic pathway by which activated  
astrocytes may dampen the neurodegenerative processes in 
AD, more work is required to better understand the cellular 
mechanisms underlying the formation and progression of 
NFTs. 

6. CLINICAL AND THERAPEUTIC IMPLICATIONS 

 Based on the compelling evidence implicating glial-
mediated inflammation in AD, numerous studies have ex-
plored the possibility of using anti-inflammatory drugs to 
prevent or halt neurodegeneration. In particular, non-
steroidal anti-inflammatory drugs (NSAIDs) have shown 
beneficial effects in reducing glial cell activation and slow-
ing the progression of AD in animal models of the disease 
[120, 121]. Although the mechanisms of actions of NSAIDs 
in AD remain to be fully determined, these drugs bind to and 
activate the peroxisome proliferator-activated receptor-
gamma (PPAR-γ) [122, 123] leading to reduced glial cells 
activation [124, 125] and cytokine-mediated inflammation 
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[126, 127]. In mice overexpressing APP, a transgenic model 
of AD, treatment with the NSAID ibuprofen results in re-
duced microglial activation and amyloid plaque load [128, 
129]. Consistently, a number of other NSAIDs were shown 
to selectively lower Aβ42 levels in the brain of transgenic 
mice as a result of decreased activity of γ-secretase, the en-
zyme responsible for the generation of Aβ from APP [130]. 
The view that NSAIDs delay some forms of AD pathology is 
also supported by in-vitro studies showing that these anti-
inflammatory drugs selectively prevent the accumulation of 
Aβ peptides in culture cells, likely through a decrease in APP 
production or metabolism [131, 132]. Similar to NSAIDs, 
PPAR-γ agonists such as pioglitazone or GFT1803 show 
beneficial effects in attenuating the neurodegenerative proc-
esses of AD, namely by reducing Aβ plaque deposition and 
glial cells activation [133, 134]. However, despite robust 
preclinical evidence highlighting the protective effects of 
NSAIDs in AD, clinical trials of these drugs for the treat-
ment of AD have mostly been disappointing so far [135-
138], most likely due to the fact that NSAIDs’ effect may 
differ depending on whether they are used in early or late 
stages of disease [120] (Fig. 2). Glucocorticoids, a class of 
corticosteroids, have also been investigated for the treatment 
of AD due to their anti-inflammatory and immunosuppres-
sive properties. In-vitro studies show that glucocorticoids 
inhibit cortical astrocyte proliferation [139] and exert neuro-
protective functions against inflammation by down-
regulating the production of nitric oxide (NO) from micro-
glia [140]; effects that are reversed upon the addition of RU-

486, a glucocorticoid receptor blocker [139, 140]. Glucocor-
ticoids were also shown to inhibit both Aβ and LPS-induced 
pro-inflammatory cytokine and chemokine production in 
mice [141]. However, notwithstanding the beneficial effects 
of glucocorticoids in-vitro and in-vivo, clinical trials have 
failed to observed notable differences in cognitive decline 
between glucocorticoid-treated and placebo-treated patients 
[142], thus urging the need for more efficient therapeutic 
approaches. 

 As discussed earlier, many inflammatory responses me-
diated by microglia and astrocytes exert protective functions 
in AD. Therefore, directing or instructing the machinery re-
sponsible for the activation of these glial cells may prove 
more beneficial than supressing it. Notably, studies employ-
ing mouse models of AD have shown that injection of LPS 
[143] or delivery of gamma oscillations [144] in the hippo-
campus increases the activation of resident microglial cells 
and significantly reduces the cerebral Aβ load within the 
brain parenchyma. The view that microglial activation may 
be beneficial in AD is also bolstered by studies showing that 
stimulation of microglia with macrophage colony-stimulating 
factor (M-CSF) increases the phagocytosis of opsonized ag-
gregated Aβ in culture medium [145], and improves cogni-
tive functions in mice with AD-like pathology [146]. How-
ever, under other circumstances, glial cells activation can have 
deleterious roles in AD, and experimental manipulations that 
inhibit their activation or signalling may prove more effec-
tive in ameliorating cognitive functions. In APP/PS1 mice, a 

 

Fig. (2). Differential effects of NSAIDs on microglia and AD pathogenesis. The therapeutic effects of NSAIDs may differ depending on the 
stage of AD. Alternatively activated (M2) microglia are present during the early stage of the disease, whereas classically activated (M1) mi-
croglia are present during the late stage of the disease. Furthermore, different subsets of NSAIDs have different affinity for immune and in-
flammatory targets in the brain, thus resulting in a range of effects including reduced inflammatory mediators and altered Aβ production. 
Abbreviations: insulin degrading enzyme (IDE); scavenger receptors (SC). Adapted with permission from [120]. 
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well-established model of AD, inhibition of astrocytes sig-
nalling with adeno-associated virus vectors [147] and selec-
tive suppression of astrocytic gamma-Aminobutyric acid 
(GABA) synthesis resulted in improved cognitive functions 
including learning and memory [148]. In another study, 
Heneka and colleagues showed that NLRP3 inflammasome 
inhibition in the APP/PS1 model of AD skews microglial 
cells to an M2 phenotype and results in enhanced spatial 
memory and decreased deposition of Aβ [149]. In addition, 
inhibition of Aβ-induced microglial activation resulted in  
increased protection against cell injury and toxicity [150], 
decreased proinflammatory genes expression [151], and  
enhanced level of neurotrophic factors [63] in-vitro. Together, 
these findings concur with the view that glial cells exert both 
protective and detrimental functions in AD, and suggest  
that the regulation of their activity and function might be  
an appealing way to promote neuroprotection and prevent 
cognitive decline. 

 Although the strategy to modulate glial cells activation 
has shown great potential in promoting neuroprotection in 
AD, its proper use has been limited by the fact that the mi-
croenvironment surrounding microglia and astrocytes during 
chronic neuroinflammation may impair their function. An-
other avenue of therapeutic intervention that might be more 
appealing in AD is the transplantation of bone marrow 
(BM)-derived precursor cells from healthy donors. The ra-
tionale behind this approach is based from the observation 
that microglia derived from BM progenitor cells are more 
competent in eliminating amyloid plaques compared to their 
resident counterparts [152, 153]. In a mouse model of AD, 
intracerebral transplantation of BM-derived mesenchymal 
stem cells (MSCs) restored defective microglial function and 
resulted in reduced Aβ deposition, decreased tau hyperphos-
phorylation, and improved cognitive functions [154]. Consis-
tent with these findings, intracerebral transplantation of BM-
MSCs in APP/PS1 mice promoted the differentiation of resi-
dent microglia into an M2 phenotype, which resulted in 
marked reductions of Aβ deposition and memory impair-
ments [155]. MSCs derived from other sources, including 
adipose tissues [156] and human umbilical cord blood [157], 
have also been shown to provide beneficial effects in ex-
perimental AD in terms of promoting learning and memory 
recovery. The finding that transplanted stem cells or neural 
precursor cells survive and exert beneficial properties in-vivo 
constitutes a major step towards the development of novel 
and more efficient approaches for the treatment of AD. 
However, notwithstanding the beneficial effects of cell 
therapy in animal models of AD, further studies are needed 
to investigate its safety profile and long-term efficiency, 
notably in clinical settings. 

CONCLUSION 

 The studies showcased in the present review support the 
notion that glial-mediated inflammation is a double-edged 
sword, performing both detrimental and beneficial functions. 
The response of microglia and astrocytes to CNS insults is 
regulated in a context-dependent manner by specific inflam-
matory mediators that dictate their functional phenotype. 
While some studies have indicated that glial activation pre-
vents the progression of AD by facilitating the clearance of 

Aβ in the brain, others have shown that impaired or exacer-
bated glial activation increases the production of proinflam-
matory cytokines and Aβ in the brain. This duality in the 
effects of glial-mediated inflammation on the progression of 
AD-related pathologies have prompted investigators to ex-
plore different—and sometimes opposite—strategies for the 
treatment of AD. However, despite significant progress to-
wards the development of new therapeutic approaches in 
animal models of AD, there is still no cure for this disease in 
humans, and patients are left with the same choices and dis-
appointing prognosis they faced decades ago. It is therefore 
essential for future studies to continue characterizing the 
mechanisms of glial-mediated inflammation in AD, includ-
ing potential cross-talk between different cellular signalling. 
A better interpretation of data from animal studies and their 
relevance in the context of human health is also needed, as 
this could open the way to numerous opportunities in terms 
of potential implications in the clinic. 
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