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Pressure passivity of cerebral
mitochondrial metabolism is associated
with poor outcome following perinatal
hypoxic ischemic brain injury
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Abstract

Hypoxic ischemic encephalopathy (HIE) leads to significant morbidity and mortality. Impaired autoregulation after

hypoxia-ischaemia has been suggested to contribute further to injury. Thalamic lactate/N-Acetylasperate (Lac/NAA)

peak area ratio of> 0.3 on proton (1H) magnetic resonance spectroscopy (MRS) is associated with poor neurodevelop-

ment outcome following HIE. Cytochrome-c-oxidase (CCO) plays a central role in mitochondrial oxidative metabolism

and ATP synthesis. Using a novel broadband NIRS system, we investigated the impact of pressure passivity of cerebral

metabolism (CCO), oxygenation (haemoglobin difference (HbD)) and cerebral blood volume (total haemoglobin (HbT))

in 23 term infants following HIE during therapeutic hypothermia (HT). Sixty-minute epochs of data from each infant were

studied using wavelet analysis at a mean age of 48 h. Wavelet semblance (a measure of phase difference) was calculated to

compare reactivity between mean arterial blood pressure (MABP) with oxCCO, HbD and HbT. OxCCO-MABP semb-

lance correlated with thalamic Lac/NAA (r¼ 0.48, p¼ 0.02). OxCCO-MABP semblance also differed between groups of

infants with mild to moderate and severe injury measured using brain MRI score (p¼ 0.04), thalamic Lac/NAA (p¼ 0.04)

and neurodevelopmental outcome at one year (p¼ 0.04). Pressure passive changes in cerebral metabolism were asso-

ciated with injury severity indicated by thalamic Lac/NAA, MRI scores and neurodevelopmental assessment at one year

of age.
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Introduction

Intrapartum hypoxic-ischemic injury leading to
hypoxic ischaemic encephalopathy (HIE) is a signifi-
cant cause of neonatal morbidity and mortality. Each
year across the world, approximately 1 million babies
die following intrapartum complications.1 Although
therapeutic hypothermia improves neurodevelopmental
outcome in HIE,2 40–79% of cooled infants die or
develop significant disability in the developed
world.3–5 The evolution of injury following hypoxia-
ischaemia has been studied using magnetic resonance
spectroscopy (MRS); despite the initial recovery of
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cerebral energetics after resuscitation, there is a decline
in energy state with increased thalamic lactate and
reduced N acetyl aspartate (NAA) over the hours and
days following birth. These metabolic changes have
been termed secondary energy failure. These MRS stu-
dies were important for the concept that interventions
such as cooling ameliorate the subsequent secondary
energy failure.6–9 Currently, thalamic lactate/NAA
peak area ratio acquired between day 5 and 14 predicts
outcome in HIE using a cut off threshold of 0.3;10 this
ratio is used with conventional MRI for counselling
and prognosis.11

There has been recent interest in the use of blood
biomarkers12 and monitoring cerebral autoregulation
following HIE,13–17 but direct assessment of cerebral
mitochondrial function in relation to cerebrovascular
reactivity has not been investigated so far.

Cytochrome-c-oxidase (CCO) is the terminal
electron acceptor inside the mitochondrial electron
transport chain (ETC). It plays a crucial role in mito-
chondrial oxidative metabolism and is responsible for
more than 95% of ATP synthesis.18 Using a broadband
NIRS system, concentration changes in the oxidation
state of CCO (oxCCO) can be measured along with
changes in oxy- and deoxy-haemoglobin (HbO2 and
Hb), with derived changes in haemoglobin difference
(HbD¼HbO2�Hb) and total haemoglobin
((HbT¼HbO2þHb).19 Changes in [oxCCO] indicate
the status of the mitochondrial function and has been
used to monitor the cerebral energy state following HIE
in preclinical20,21 and clinical studies.22–24

Cerebral autoregulation (CA) maintains a constant
cerebral blood flow (CBF) over a range of cerebral per-
fusion pressure and protects the brain from hypo- and
hyperperfusion. Cerebrovascular circulatory function is
controlled through neural, myogenic and metabolic
mechanisms. Cerebral vasoparalysis leading to
abnormal cerebral haemodynamics and impaired CA
following HIE was associated with poor outcome in
pre-hypothermic era.25–27 In recent years, further
attempts have been made to examine the cerebrovascu-
lar reactivity status of the brain and its relationship
with outcome in neonates with HIE who underwent
therapeutic hypothermia, using NIRS-based haemo-
dynamic indices.13–16 A close relationship between dis-
autoregulation and abnormal cerebral metabolism has
been described in adults after traumatic brain injury
but pressure passivity was not related to CBF.28

Disturbances in cerebral oxidative metabolism fol-
lowing HIE are well documented.7–8 Both preclinical
and clinical studies using phosphorus magnetic reson-
ance spectroscopy (31P MRS) have demonstrated the
depletion in cerebral energy state immediately after
the HI insult (primary energy failure) followed by a
further phase of deterioration 6–24 h after HI

(secondary energy failure). During this secondary
phase, phosphocreatinine (PCr) and neucleotide tri-
phosphate (NTP) fell and inorganic phosphate
increased (Pi) despite maintenance of adequate oxygen-
ation and circulation. The secondary phase marked by
the onset of seizures, cytotoxic oedema, accumulation
of cytokines and mitochondrial failure that leads to
further call death.29 The degree of energy failure influ-
ences the type of cell death.30,31 These findings further
raise the importance of reviewing the relationship of a
metabolic reactivity index with outcome following HIE.
A cot side metabolic reactivity index using CCO has
never been examined before. This is particularly intri-
guing in the current era, in view of the influence of HT
on other early prognostic biomarkers. The predictive
ability of amplitude integrated EEG32 and the neuro-
logical examination at 72 h are influenced by hypother-
mia.33 Thoresen and coworkers34,35 also demonstrated
that the cerebral resistance index (RI) on Doppler
ultrasound has lost the predictive value during HT. In
the pre-HT era, resistance index (RI)< 0.55 was found
to be a predictor of adverse outcome at 18 months fol-
lowing HIE in 84% of normothermic infants while it
predicted outcome in only 60% on infants on day 2
during HT.35

Several methodologies have been used to assess cere-
brovascular reactivity in both term and preterm
infants.36,37 Both transcranial Doppler and NIRS-
derived reactivity indices examined the relationship
between spontaneous slow wave oscillations (0.003–
0.05Hz) in mean arterial blood pressure (MABP),
Doppler flow velocity,37 cerebral blood volume
(CBV)16 and cerebral oxygenation38–42 in the time
domain. Similarly, coherence and gain have been used
in frequency domain analysis.43 One of the major
limitations for these techniques is the assumption of
stationary relationship between the variables.
Cerebrovascular autoregulation is dynamic, nonsta-
tionary and the signals vary both in time and frequency,
more under pathological conditions.44 Wavelet-based
analysis can overcome this issue and characterise auto-
regulation with improved time–frequency resolution
following brain injury both in adults45,46 and the
newborn.17

We hypothesised that a metabolic reactivity index
based on wavelet analysis of slow wave (SW) oscilla-
tions of oxCCO and MABP measured at 48 h after
birth – (a) will correlate with thalamic lactate/NAA
peak area ratio on 1H MRS, (b) will be able to identify
infants with severe HIE, and (c) will be able to differ-
entiate the infants with severe HIE from the group with
mild to moderate HIE based on both early biomarker
and neurodevelopmental assessment at one year of age.

We aimed to investigate the effects of disturbances in
brain metabolism following HIE on outcome, using a
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metabolic reactivity index derived from wavelet ana-
lysis between oxCCO and MABP in a cohort of infants
undergoing hypothermia (HT) following HIE.

Material and methods

This prospective observational study (Baby Brain
Study) was approved by the Research Ethics
Committee (REC) of University College London
Hospital and London Bloomsbury REC (reference:
13/LO/0106) in accordance with the declaration of
Helsinki. Written informed consent was obtained
from parents before each study.

Patients and clinical care

Stable term infants admitted to the neonatal unit in
University College London Hospital for HT following
HIE were eligible for the study. Unstable and sick
infants or infants with congenital abnormalities were
excluded from the study. Clinical decisions regarding
the care of the infant were taken by the intensive care
team in line with the local and national guidelines.
Whole body HT with intracorporeal temperature moni-
toring was instituted in infants with evidence of
moderate to severe HIE as early as possible after
birth as per the National Institute for Health and
Clinical Excellence (NICE) guidance.47 This diagnosis
was confirmed by clinical examination, umbilical cord
gas acidosis and abnormal electrical activity on electro-
encephalogram (EEG) or amplitude-integrated electro-
encephalogram (aEEG). A servo-controlled cooling
machine (Tecotherm neo, Inspiration healthcare, UK)
was used to maintain the temperature at 33.5�C for 72 h
before gradually increasing the temperature to 37�C
over 14 h.

Monitoring and data collection

Physiological and broadband NIRS data were collected
over 2–4 h, from which a 60-min period from each
infant during periods of clinical stability was selected
for this analysis. All infants were sedated (continuous
intravenous infusion of morphine sulphate), muscle-
relaxed (atracurium intravenous infusion) and venti-
lated during HT. Invasive blood pressure recording
was collected continuously from indwelling umbilical
arterial catheter. Physiological data from individual
patient monitors (Intellivue monitors, Philips
Healthcare, UK) were captured using ixTrend software
(ixcellence, Germany), down-sampled and synchronised
with broadband NIRS timeframe using a MATLAB
(MathWorks, Natick, MA)-based software using
spline interpolation. NIRS data were collected using a
customised software developed in LabView (National

Instruments, TX, USA). Figure 1 represents a scheme
of data processing and wavelet analysis. NIRS data
from both left and right sides revealed similar changes
and data from the left side were used for further ana-
lysis as thalamic Lac/NAA from MRS were obtained
using a single voxel positioned on left thalamus.

Broadband near infrared spectroscopy

CCO contains four active metal redox centres; one of
them, the CuA is a dominant near-infrared (NIR)
chromophore and the primary contributor for the
NIR spectral signature. Detection of CCO using
NIRS is more difficult than other chromophores as its
in-vivo concentration is less than 10% of that of
haemoglobin and has a broad spectral signature.
Broadband NIRS can accurately resolve the spectral
changes due to oxCCO without crosstalk from the
haemoglobin chromophores. We have recently devel-
oped a new broadband NIRS system,19,22–24 which is
capable of monitoring �[oxCCO] as well as �[HbO2]
and �[HHb] in the neonatal brain with improved signal
quality measured over 136 wavelengths. The system
consists of an optical fibre illuminator (ORIEL 77501,

Figure 1. Scheme of data processing and wavelet analysis. Both

systemic and NIRS data were checked for artefact after data

collection. Artefacts were removed before further processing to

reduce the high frequency noise maintaining the trend informa-

tion. Continuous wavelet transform was performed on both

MABP and NIRS data. The wavelet cross transform was then

used between these wavelets transform to calculate the meas-

ures of power (wavelet coherence) and the instantaneous phase

difference (wavelet semblance).
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Newport, UK) with a stable white light source. The
source is coupled to two optical fibre bundles which
illuminate the tissue. Four detector bundles collect the
attenuated light emerging from the tissue at increasing
distances from each source (1.5, 2, 2.5, 3 cm). The opti-
cal fibres are held to the tissue in a custom 3D printed
holder. At the detection end, a lens-based spectrometer
(LS785, Princeton Instruments, USA) and a front-illu-
minated CCD camera (PIXIS 512f, Princeton
Instruments, USA) resolve the intensity spectrum
across 770–906 nm for the eight detectors simultan-
eously. The longest source-detector distance of 3 cm
was chosen to ensure an optimal depth penetration
and the differential path length (DPF) of 4.99 was
used48 to calculate the concentration changes of differ-
ent chromophores using UCLn algorithm.19

Data processing

MABP and NIRS data were visually inspected for any
artefacts. Sudden changes in NIRS variables greater
than 15% from baseline and not consistent over all
the signals were identified as artefacts. Brief transient
artefacts in MABP were removed by simple
interpolation. Artefacts in NIRS data were removed
by using moving standard deviation and spline inter-
polation in MATLAB.49 After artefact removal, NIRS
data were processed with an automatic wavelet de-nois-
ing function in MATLAB to reduce the high frequency
noise but maintain the trend information.

Slow wave analysis

Keeping in mind the non-stationary aspect of CA, SWs
in MABP and NIRS signals were analysed using wave-
let-based techniques to achieve high time-frequency
resolution. The continuous wavelet transform (CWT)
with the complex Morlet wavelet has been shown50–54

to be a powerful mathematical tool for time-frequency
analysis for both stationary and non-stationary time
series. Our group have used this technique in multiple
studies54–55 including a recent study to illustrate and
characterise changes in cerebrovascular reactivity fol-
lowing adult brain injury.46 Tian et al.17 has also sug-
gested a potential clinical use of this technique to assess
the dynamic CA following HIE.

We have used the same MATLAB-based tools
described by Highton et al.46 to determine wavelet
coherence and semblance. Wavelet coherence based
on CWT was calculated as a measure of similarity in
spectral power and dynamic relationship between spon-
taneous oscillations in MABP and NIRS variables
(oxCCO and HbD). Wavelet coherence varies from 0
to þ1 depending on the strength of relationship
between the variables. Wavelet semblance was

calculated as a measure of instantaneous phase
difference and creates an index from þ 1 (when the
signals vary with close alignment) to �1 (when the sig-
nals are completely in antiphase). Wavelet semblance
bears a similarity to previously described time-domain
indices (PRx, Mx)28,57 and gives us the opportunity to
assess the cerebrovascular and cerebral metabolic
reactivity in a similar fashion.

The haemodynamic (semblance of MABP and HbD
or HbT) and metabolic (semblance of MABP with
oxCCO) reactivity indices were calculated across a 60-
min study period for each infant and the mean values
were used for comparison. Indices and variables were
documented using median, range or with mean� stand-
ard deviation as appropriate. Datasets were checked for
normality using D’Agostino-Pearson omnibus normal-
ity test before further statistical analysis in Graphpad
Prism 6 (GraphPad, USA). Welch’s correction was per-
formed while comparing between groups when stand-
ard deviation was different. Statistical significance was
considered as p< 0.05.

Magnetic resonance imaging and spectroscopy

MRI of brain is the imaging modality of choice follow-
ing HIE and together with MRS, clinically used to
assess the injury severity and for prognostication.11,58

Thalamic Lac/NAA peak area ratio obtained from 1H
MRS is a robust quantitative measurement within the
neonatal period for prediction of neurodevelopmental
outcome following HIE.10 Lac/NAA< 0.3 indicated
good motor outcome following HIE in this systematic
review and meta-analysis. We have used the NICHD
neonatal MRI brain injury scoring system described by
Shankaran et al.11 for prediction of neurodevelopmen-
tal outcome at six to seven years of age following
HIE. Specific patterns of MRI brain injury 2B (basal
ganglia thalamic (BGT), anterior or posterior limb
of internal capsule (ALIC or PLIC), or watershed
(WS) infarction and cerebral lesions) and three
(cerebral hemispheric devastation) in this study were
highly predictive of death or IQ< 70 at six to seven
years of age.

MRI and 1H MRS were performed between day 5
and 7 using a 3T Philips MRI scanner (Philips
Healthcare, UK). T1-weighted imaging was acquired
using an inversion-recovery prepared spoiled gradient
echo (inversion time¼ 1465ms; TR¼ 17ms;
TE¼ 4.6ms; excitation flip angle¼ 13�). T2-weighted
imaging was acquired using 2D fast spin echo (axial
and coronal sections; TR¼ 10721ms, TE¼ 130ms),
Diffusion tensor imaging was acquired with 32 direc-
tions of diffusion weighting with b-values of 0 and 750.
Apparent diffusion coefficient (ADC) and fractional
anisotropy (FA) maps were reconstructed inline on
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the scanner. For MRS, a single PRESS voxel of
1.5� 1.5� 1.5 cm was positioned to encompass as
much of left thalamus as possible while avoiding over-
lap with CSF (TR¼ 2288ms, TE¼ 288ms, 2048 data-
points with spectral bandwidth of 4000Hz; water
suppression was performed using chemical shift select-
ive suppression pulses; automated shimming was per-
formed by the scanner before each acquisition). A
dynamic series of 16 subspectra were acquired, each
with eight averages. These subspectra were subse-
quently and individually frequency and phase corrected
before summation to yield the final full spectrum.59

This methodology allows for any subspectra corrupted
by patient motion to be removed from the final sum-
mation. NAA, choline, creatine and lactate peaks were
identified at 2.02, 3.02, 3.24 and 1.33 ppm, respectively.
Spectra were fitted using AMARES60 as implemented
in the jMRUI magnetic resonance software package.61

A paediatric neuroradiologist (RG) scored all MRI
images.

Neurodevelopmental follow up

All infants born in our hospital had regular neurodeve-
lopmental follow-up andwere assessedwith Bayley Scales
of Infant Development-III. Infants born in other hos-
pitals and were transferred to us for management of
HIE were also offered the first assessment in our hospital
and had the opportunity to choose further assessments in
either our hospital or in their local units. A score of <85
was considered adverse outcome (mean 100, SD� 15). In
this study, infants with adverse neurodevelopmental out-
come and death were compared with the group who sur-
vived with a good outcome at one year of age.

Blood pressure variability

MABP variability in the SW spectrum (0.003–0.05Hz)
and the relationship with outcome biomarkers were
reviewed in the study population. It was important to
identify whether MABP variability was directly related
to outcome in this cohort and might have influenced
the relationship of metabolic reactivity index from
wavelet analysis with outcome. This was performed
in the frequency domain using established spectral
analysis techniques.62,63 Power spectral density (PSD)
analysis was performed using Welch’s method to
determine the power in the SW range and a power
index calculated based on SW power/Total power
using MATLAB.

Results

Twenty-three term newborn infants with moderate to
severe HIE participated in the study while undergoing

HT. Sixty-minute datasets collected during stable peri-
ods at a mean age of 48 h were analysed during which
transcutaneous CO2 (tcCO2) remained stable. All
infants had MRI and MRS of brain between day 5
and 7 of life. Four infants died either in the neonatal
period or within the first year of life. Patient character-
istics are presented in Table 1. No significant changes in
ventilatory requirements or systemic observations
(heart rate, peripheral arterial oxygen saturation
(SpO2) and MABP) were noted during the study
periods.

Wavelet coherence and semblance between oxCCO
and MABP were calculated as 0.37� 0.08 and
0.06� 0.13, respectively. HbD-MABP wavelet coher-
ence and semblance were 0.42� 0.09 and 0.12� 0.17,
while HbT-MABP coherence and semblance were
0.38� 0.06 and 0.07� 0.14. Thalamic Lac/NAA on
MRS varied between 0.11 and 2.64.

A significant correlation was noted between oxCCO-
MABP semblance and thalamic Lac/NAA (r¼ 0.48, r2

0.23, p¼ 0.02) (Figures 1(b) and 2(d)). oxCCO-MABP
coherence revealed poor correlation with thalamic Lac/
NAA (r¼ 0.1, r2 0.01, p¼ 0.62) (Figure 2(a)). The rela-
tionships of thalamic Lac/NAA with HbD-MABP
semblance and HbT-MABP semblance were non-signif-
icant (r¼ 0.26, r2 0.07, p¼ 0.22 and r¼ 0.24, r2 0.06,
p¼ 0.28) (Figure 2(e) and (f)). Wavelet coherence of
HbD-MABP and HbT-MABP did not correlate with
thalamic Lac/NAA (r¼ 0.03, r2 0.0009, p¼ 0.9 and
r¼ 0.06, r2 0.004, P¼ 0.8) (Figure 2(b) and (c)).

Metabolic reactivity as expressed by oxCCO-MABP
semblance, was significantly different between mild to
moderate and severe groups of infants (based on Lac/
NAA< 0.3 and Lac/NAA� 0.3) (two tailed p 0.04
(Figure 3(d)). HbD-MABP and HbT-MABP semblance
difference between groups were non-significant (two
tailed p¼ 0.18 and 0.51, respectively) (Figure 3(e) and

Table 1. Patient characteristics.

Gestational age (weeksþdays) 39 (34þ2–41þ6)

Age at study in hours 48�12

Sex (Male: Female) 1.5:1

Birth weight (g) 3137�426

Arterial cord pH 6.94�0.2

Base deficit 16.05�6.24

Apgar score at 1 min 2�2

Apgar score at 5 min 4�3

Apgar score at 10 min 5�3

Age at study in hours 48�12

Age at MRI (days) 5–7

Note: Gestational age is presented as mean (range) while other param-

eters are presented as mean� s.d. MRI: magnetic resonance imaging.
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Figure 2. Linear regression analysis between thalamic Lac/NAA and wavelet indices. Note that coherence indices did not reveal any

clear correlation with thalamic Lac/NAA (a to c). oxCCO-MABP semblance correlated well with thalamic Lac/NAA (Pearson cor-

relation 0.48, r2 0.23, p¼ 0.02) (d). Correlation of thalamic Lac/NAA with HbD-MABP semblance and HbT-MABP semblance were

non-significant (r¼ 0.26, r2 0.07, p¼ 0.22 and r¼ 0.24, r2 0.06, p¼ 0.28) (e, f).

Figure 3. Box and whiskers plots for comparison of mild to moderate and severe groups of infants based on the MRS biomarker

(Lac/NAA< 0.3 and Lac/NAA> 0.30) for the wavelet indices. OxCCO-MABP semblance was significantly different between two

groups (two tailed p 0.04) (d). HbD-MABP and HbT-MABP semblance difference between the groups were non-significant (two tailed

p¼ 0.18 and 0.51, respectively) (e, f). Wavelet coherence difference between the groups were also non-significant for oxCCO-MABP

(a), HbD-MABP (b) and HbT-MABP coherence (c) (two tailed p¼ 0.96, 0.88 and 0.35, respectively).
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(f)). Wavelet coherence difference between the groups
was also non-significant for oxCCO-MABP, HbD-
MABP and HbT-MABP coherence (two tailed
p¼ 0.96, 0.88 and 0.35, respectively) (Figure 3(a) to (c)).

OxCCO-MABP semblance compared between two
groups based on MRI score (MRI score< 2B
and� 2B) demonstrated a significant difference (two
tailed p¼ 0.04, effect size (Cohen’s d) 0.94) between
the groups (Figure 4(a)). Nine infants in this cohort
had an MRI score of 2B or more.

Neurodevelopmental outcome data were available
up to 12 months of age for 11 infants. Four infants
died within the first year. Mean oxCCO-MABP semb-
lance was significant different between two groups
(death or Bayley III motor composite score< 85 and
Bayley III motor composite score� 85) (two tailed
p¼ 0.04, effect size (Cohen’s d) 1.52) (Figure 4(b)).

A strength of wavelet analysis is the possibility to
investigate the relationships between MABP and
NIRS indices in detail for individual studies.
Figures 5 and 6 demonstrate examples of preserved
and disturbed metabolic reactivity in two infants with
good and adverse outcomes respectively following HIE.
MRI images and the MRS spectra for calculation of
Lac/NAA are also presented.

The power spectral density analysis of MABP
waveform was performed in all infants. Average
power in the SW frequency range (0.003–0.5Hz)
with SW/total power index was calculated. No signifi-
cant differences were noted (two-tailed p value 0.26
and 0.93 respectively, Mann–Whitney test) between
groups of infants with normal or poor outcome
(based on Lac/NAA< 0.3 and Lac/NAA� 0.3,
respectively).

Discussion

This study demonstrates that the metabolic reactivity
index, defined as the semblance of oxCCO and MABP
at 48 h of age calculated using wavelet transformation,
predicted outcome following HIE. This relationship
was demonstrated both for short-term outcome bio-
marker based on MRS-derived Lac/NAA between
days 5 and 7 and neurodevelopmental outcome
measured at one year. Infants with preserved cerebral
metabolic reactivity (low wavelet semblance ranging
from 0 to –1) had better outcome compared to infants
with disturbed metabolic reactivity (high wavelet
semblance 0 to þ1). Variability of MABP itself did
not influence the relationship of oxCCO-MABP
semblance with outcome. OxCCO-MABP wavelet
coherence as well as other wavelet indices between
MABP and haemoglobin-based indices (HbD and
HbT) did not correlate with outcome biomarkers
and did not differ among groups of newborn infants
with death or poor outcome and normal outcome.
Metabolic reactivity index (oxCCO-MABP semb-
lance) appears to be a promising cot side indicator
of outcome following HIE.

OxCCO-MABP semblance is likely to reflect the
metabolic response to blood flow changes and substrate
delivery to mitochondria and as a result becomes a
marker of metabolic reactivity. Our findings suggest
that oxCCO-MABP semblance can identify those neo-
nates where impaired CA is compromising flow-meta-
bolism coupling. Therefore, it is related to outcome
more closely than HbD and HbT indices from wavelet
analysis. Wavelet coherence indicates where signal
powers vary together between the variables and reflects

Figure 4. (a) Difference in oxCCO-MABP semblance in two groups of infants with MRI score< 2B (grey) and� 2B (red) (Shankaran

et al. 2016) indicating a significant difference (two tailed p¼ 0.04) between the groups (mean and SEM presented). (b) Relationship

between the oxCCO-MABP semblance and neurodevelopmental outcome at 12 months of age following HIE. OxCCO-MABP

semblance was presented for two groups of infants – death or motor disability at 12 months with Bayley III motor composite

score< 85 (red) and normal motor outcome with Bayley III motor composite score> 85 (grey). Significant difference (two tailed

p¼ 0.04) noted in oxCCO-MABP semblance between two groups of infants.
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change in power and synchronisation of phase. In con-
trast, wavelet semblance gives a measure of phase dif-
ference, making it a more effective index for assessment
of cerebral reactivity and autoregulation. The phase
dynamics derived from wavelet analysis between
MABP and cerebral blood flow velocity (CBFV)
reflected most of the linear and non-stationary
characteristics of CA in a study by Latka et al.53 This
corroborates with our findings of oxCCO-MABP wave-
let semblance being a superior index of reactivity com-
pared to wavelet coherence.

CA in the newborn brain attempts to maintain a
constant CBF over a range of perfusion pressure and
a key protective mechanism.64 Pressure passivity of the
cerebral circulation has been documented in sick term16

and preterm29 infants and has been related to outcome
in both newborns14 and adults.65 Recent studies in new-
born term infants following perinatal brain injury have

suggested the importance of early identification of loss
of autoregulation indicating the need for continuous
monitoring with appropriate indices of cerebrovascular
reactivity.13–17

Metabolic regulation of blood flow is well
established. CBF and cerebral metabolism are tightly
controlled in the healthy brain,66 but this relationship is
likely to be disturbed following HIE. Cerebral nitric
oxide (NO) maintains cerebrovascular tone by
modulating CBF.67 Under normal conditions, intra-
mitochondrial Caþþ activates mitochondrial phos-
phates, which in turn activates cytochrome c and
CCO. Following HIE, increased Caþþ influx inside
cell activates neuronal nitric oxide synthase (nNOS)
stimulating the production of NO from L-arginine
and oxygen.68 NO disrupts the mitochondrial respira-
tory chain by impairing the function of CCO (complex
4) and complex 1 and induce apoptosis.69–73

Figure 5. Individual example of wavelet coherence and semblance calculation in an infant admitted with moderate encephalopathy.

Mean coherence and semblance for the study were 0.46 and �0.11 respectively ((a). The infant was born in poor condition following

fetal bradycardia at 37þ6 weeks by emergency caesarean section and was resuscitated at birth. Arterial cord revealed pH 6.99, pCO2

12.81 and BE �10.2 with Apgar score 1 ant 1 min and 5 at 5 min. Infant completed 72 h of HT. There was generalised low signal

intensity was noted on the T1-weighted images and high signal intensity on the T2-weighted images on MRI on day 5, but no overt

acquired pathology was noted (b). 1H MRS-derived Lac/NAA peak area ratio was measured 0.25 with normal choline (Ch), creatinine

(Cr), N-acetyl aspartate (NAA) peak and a small lactate (Lac) peak (c).
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NO-mediated injury pathways may explain our
findings of passive (zero to þ1) cerebral metabolic
reactivity (oxCCO-MABP semblance) in infants with
severe perinatal brain injury and poor outcomes. It is
likely that increase in cerebral NO production follow-
ing hypoxic ischaemic injury is responsible for the
haemodynamic changes as well as the secondary
energy failure by inhibition of mitochondrial respir-
ation at the level of CCO.

Two periods of vasoparasis have been identified fol-
lowing HIE. The initial phase happens soon after the
hypoxic ischaemic insult and the second phase 12–24 h
later, which continues for hours or days depending on
the injury severity.27,29,74,75 This second phase of
increased cerebral perfusion is related to the secondary

energy failure,29,76 during which an increase in extracel-
lular concentration of citrulline77 has been documented
in late gestation fetal sheep. Citrulline is produced
during the production of NO from L-arginine by
NOS, suggesting an increased production of NO
during this period. NO induces cerebral vasodilation
as well as neuronal death through free radical injury.
Relationship of oxCCO-MABP semblance at 48 h with
outcome most likely reflects the effect of established
mitochondrial injury and vasoparasis at this point. It
is interesting to note that inhibiting NOS following
cerebral ischaemia in fetal sheep increased cerebral
injury,78 most likely by limiting the substrate delivery
to ETC within the already compromised
mitochondria.79,80

Figure 6. Example of passive oxCCO-MABP reactivity in an infant admitted with severe HIE. (a) Demonstrates calculation of

wavelet coherence and semblance between oxCCO and MABP – 0.54 and 0.37, respectively. Note the difference in semblance colour

map in contrast to the previous example with intact metabolic reactivity (Figure 6). This infant was born at 41þ2 weeks by emergency

caesarean section following fetal bradycardia and evidence of thick meconium. Baby was born with no respiratory effort with a heart

rate of �60/min and needed resuscitation. Arterial cord gas revealed pH 7.09. PCO2 8.30. BE �12.30 and Apgar score was 2 at 1 min,

3 at 5 min. Baby received HT. EEG throughout this period remained significantly suppressed). MRI of brain on day 5 revealed global

cerebral swelling and edema with restricted diffusion in keeping with global infarction due to severe HIE (b). 1H MRS revealed a split

choline peak, a smaller NAA peak and a raised Lac peak. Lac/NAA ratio was 1, also indicating a severe degree of deep grey matter

injury (c). Metabolite concentrations are reduced in the thalami of neonates with severe HIE.88 compared to normal/mild outcomes.

As a result, spectra acquired from the brains of neonates with severe HIE have a lower SNR. This effect can be seen by comparison of

Figures 5 and 6.
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Monitoring cerebrovascular reactivity and assessing
its relation to outcome has been an important focus
following newborn brain injury. A series of different
methodologies have been used to directly measure
CBF – Doppler ultrasound,81 Xenon-133 clearance,82

(positron emission tomography (PET),83 single photon
emission computed topography (SPECT)84 and perfu-
sion-weighted MRI.85 But these techniques are not suit-
able for continuous monitoring at cot side in the
neonatal intensive care. NIRS has emerged as an alter-
native tool for monitoring cerebrovascular reactivity at
the cot side.13–17 Identification of an optimal blood
pressure was examined in a group of infants with
HIE to find the optimal vasoreactivity.16 Infants with
significant injury following HIE spent a greater propor-
tion of time below optimal mean arterial blood pressure
(MAPOPT) and had a greater deviation from MAPOPT

compared to infants with normal outcome. Time spent
below MAPOPT was also associated with neurodevelop-
mental impairment at two years. Massaro et al.15

demonstrated a similar relationship using pressure pas-
sivity index (PPI), an indicator of duration of pressure
passive circulation.15 These methodologies were based
either in time or frequency domain. Several studies have
looked at the cerebrovascular reactivity but the meta-
bolic regulation or metabolic reactivity indices has long
been overlooked.

One of the major challenges for signal-processing for
analysis of CA is the dynamic and non-stationary
nature of cerebral slow-waves. Our group and recently
Tian et al.17 have demonstrated that using wavelet-
based tools, it is possible to characterise CA better.
Tian et al. described the time-scale-dependant nature
of CA with demonstration of in-phase and antiphase
coherence and their relationship to outcome following
HIE. Wavelet semblance in this study examined the
phase differences between MABP and NIRS indices.
It is the cosine of the instantaneous phase difference
and varies toward þ1 when signals are closely aligned
in phase and toward �1 when they are in antiphase.
Wavelet semblance46 being in a scale of �1 to þ1 can
be used more intuitively, like time domain-based
reactivity indices.45,86 The individual colour maps for
wavelet coherence and semblance also help to under-
stand the cerebral physiological changes over time in
individual cases (Figures 5(a) and 6(a)). Recently real-
time wavelet analysis has been used to study neurovas-
cular coupling (NVC) in neonatal encephalopathy.
NVC coherence between NIRS measured cerebral
tissue oxygenation and EEG was lower in cooled ence-
phalopathic infants compared to the non-encephalo-
pathic group. The coherence was also significantly
lower in the poor outcome group compared to those
with a normal outcome.87 Although the broadband
NIRS-derived marker of mitochondrial metabolism

(oxCCO) and EEG are two different physiological
measurements and a direct comparison between them
is not possible based on our study, it is interesting to
note that both wavelet approaches were able to differ-
entiate between the poor and normal outcome groups
after HIE.

Limitations

A significant proportion of infants admitted to our unit
for management for HIE were transferred ex-utero
from other local units. We could not obtain consent
for study on day 1 for these infants as parents were
not available. Findings of this study represent the
effect of hypoxic ischaemic injury on cerebral metabol-
ism at 48 h of life during HT. To interrogate the role of
this metabolic reactivity index for understanding of the
pathophysiological changes following HIE, measure-
ments need to be taken early after hypoxia ischaemia
and at regular intervals during HT and rewarming.
Cerebrovascular reactivity can be affected by changes in
pCO2, arterial oxygen saturation,CBF,CBVand cerebral
oxygen consumption. We have tried to keep these vari-
ables constant by choosing periods of clinical stability.We
have measured transcutaneous CO2, SpO2 and other sys-
temic variables continuously during the studies and
selected 60-min epochs when these variables remained
mostly stable with minimal changes. We also did not
have the neurodevelopmental outcome for all infants
and follow up at two years would be optimal, but it was
encouraging to note the clear relationship between the
metabolic reactivity index at 48 h and neurodevelopmen-
tal outcome at one year of age in our cohort.

Conclusion

Cerebral metabolic reactivity following HIE, as
quantified by oxCCO-MABP semblance using wavelet
analysis characterised and quantified cerebral meta-
bolic changes in babies with HIE. This reactivity
index, oxCCO-MABP semblance was associated with
outcome biomarkers used for early prognostication of
outcome after HIE as well as the neurodevelopmental
outcome measured at one year of age. These findings
support the feasibility of wavelet-based assessment of
dynamic changes in cerebral metabolism and haemo-
dynamics in newborn infants and the role of oxCCO-
MABP semblance as a useful cot side biomarker to
differentiate between the infants with good and poor
outcome following HIE.
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