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Abstract: Kidney transplant recipients (KTRs) have a suboptimal immune response to COVID-19
vaccination due to the effects of immunosuppression, mostly mycophenolic acid (MPA). This study
investigated the benefits of switching from the standard immunosuppressive regimen (tacrolimus
(TAC), MPA, and prednisolone) to a regimen of mammalian target of rapamycin inhibitor (mTORi),
TAC and prednisolone two weeks pre- and two weeks post-BNT162b2 booster vaccination. A single-
center, opened-label pilot study was conducted in KTRs, who received two doses of ChAdOx-1 and a
single dose of BNT162b2. The participants were randomly assigned to continue the standard regimen
(control group, n = 14) or switched to a sirolimus (an mTORi), TAC, and prednisolone (switching
group, n = 14) regimen two weeks before and two weeks after receiving a booster dose of BNT162b2.
The anti-SARS-CoV-2 S antibody level after vaccination in the switching group was significantly
greater than the control group (4051.0 [IQR 3142.0–6466.0] BAU/mL vs. 2081.0 [IQR 1077.0–3960.0]
BAU/mL, respectively; p = 0.01). One participant who was initially seronegative in the control group
remained seronegative after the booster dose. These findings suggest humoral immune response
benefits of switching the standard immunosuppressive regimen to the regimen of mTORi, TAC, and
prednisolone in KTRs during vaccination.

Keywords: COVID-19 vaccination; AZD1222; BNT162b2; kidney transplantation; immunosuppres-
sion; mycophenolic acid sparing; CNI reduction; anti-SARS-CoV-2 S antibody
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1. Introduction

Coronavirus disease 2019 (COVID-19) has a high mortality rate among solid organ
transplant recipients (SOTRs). The mortality rate has decreased over time among kidney
transplant recipients (KTRs). The mortality rate during March 2020 to February 2021 was
34.6% among KTRs. However, after the widespread use of Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2) vaccines, the mortality rate among KTRs declined
to 13.3% [1]. Nevertheless, the infection rate is still considered to be high among KTRs.
In our center, the infection rate of COVID-19 among KTRs was 12.8% during January
to June 2022 and 7% of them developed pneumonia. The immune response to vaccina-
tion in transplant recipient is poor compared to the general population [2]. Since the
efficacy of the vaccination among SOTRs was low, the Centers for Disease Control and
Prevention (CDC) recommended that SOTRs should receive a three-dose primary series
of messenger Ribonucleic Acid (mRNA) vaccine with at least one booster dose, which is
more than healthy people, who require only a two-dose primary series of mRNA vaccine
with at least one booster dose [3]. The reason why SOTRs should receive more doses
of the vaccine is due to the immunosuppressive regimen used to prevent graft rejection
after transplantation. The standard immunosuppressive regimen consists of tacrolimus
(TAC), mycophenolic acid (MPA), and prednisolone [4,5]. A regimen of mammalian target
of rapamycin inhibitor (mTORi), TAC and prednisolone provides comparable outcomes
with the standard regimen [6–8]. MPA is one of the most important factors that impairs
the immune response [9–15]. Hence, MPA dose pause during vaccination is one of the
strategies to improve immune response [16]. However, the short-term MPA pause may lead
to inadequate immunosuppression during vaccination and the long-term result remains
unanswered. Recent studies that compared the immune response after COVID-19 vaccina-
tion among patients who received the standard immunosuppressive regimen had poorer
immune response compared to those on mTORi, TAC and prednisolone; patients on mTORi,
TAC, and prednisolone had higher cellular and humoral immunity after vaccination [17,18].
Herein, we evaluated a strategy to improve the immune response to COVID-19 vaccination
among KTRs who were on the standard immunosuppressive regimen by switching the
immunosuppressive regimen to the mTORi, TAC, and prednisolone regimen to ensure that
KTRs had adequate immunosuppression during vaccination.

In the present pilot study, we compared the immune response to the booster dose of
BNT162b2 in KTRs who were on the standard immunosuppressive regimen and those who
switched to the mTORi, low-dose TAC, and prednisolone regimen.

2. Materials and Methods
2.1. Study Design

This is a single-center, pilot, open-label study conducted at the King Chulalongkorn
Memorial Hospital, Bangkok, Thailand, from March to September 2022. Three months
after receiving the BNT162b2 dose, we administered a booster dose (adapted from CDC
recommendation [3]) of homologous vaccine to KTRs in our center who mostly received
two doses of AZD1222 and a single dose of BNT162b2. Participants who were older than
18 years old, undergoing kidney transplantation for more than 6 months with stable graft
function, on a standard immunosuppressive regimen (TAC, MPA, and prednisolone), and
had two doses of AZD1222 and a single dose of BNT162b2 for more than 3 months were
enrolled into the study. Participants with a history of severe allergy to BNT162b2 and who
required hospitalization, had a history of SARS-CoV-2 infection (had a positive SARS-CoV-2
polymerase chain reaction [PCR] result), had active rejection or infection within 3 months,
had donor specific anti-HLA antibody (DSA), were pregnant or lactating, had metastatic
malignancy, and human immunodeficiency virus infection were excluded from the study.

2.2. Immunosuppressive Regimens and Vaccination

The participants were enrolled into the study by the research assistant using a com-
puter. The enrolled participants were randomly assigned in a 1:1 ratio using a block
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of four randomization to either continuing the standard immunosuppressive regimen
(control group) or switching to the mTORi, TAC, and prednisolone regimen (switching
group). The randomization was performed by an independent statistician. Sequentially
numbered, opaque and sealed envelopes were used for the allocation concealment. It is
not feasible to conduct a double-blinded study because there is a distinction in the drug
characteristics. The standard immunosuppressive regimen consisted of TAC (Prograf® or
Advagraf®, Astellas, Tokyo, Japan) with a trough level of 4–7 ng/mL, MPA (mycophenolate
mofetil; Cellcept®, Roche, Basel, Switzerland, 1000 to 1500 mg/day, or enteric coated-
mycophenolate sodium; Myfortic®, Novartis, Basel, Switzerland, 720 to 1080 mg/day),
and prednisolone. The immunosuppressive drugs in the switching group were mTORi
(Sirolimus, Rapamune®, Pfizer, New York, NY, USA) with trough level of 5–10 ng/mL,
low-dose TAC (Advagraf®, Astellas, Tokyo, Japan) with trough level of 2–4 ng/mL, and
prednisolone. The switching of the immunosuppressive regimen was started two weeks
before the BNT162b2 (Pfizer, New York, NY, USA) booster was administered to restore the
immune response which had been suppressed by MPA, and continued for two more weeks
after the booster vaccination to allow the immune response to build up against COVID-19
(a total of four weeks during this period). Sirolimus was administered as a loading dose
using 6 mg in day 1 and henceforth followed by 2 mg daily. Low-dose tacrolimus was ad-
ministered as a half dose of the previous dosage. After switching the drugs for 2 weeks, the
trough levels of tacrolimus and sirolimus were measured to adjust the dosage of the drugs.

This study was approved by the Institutional Review Board of the Faculty of Medicine,
Chulalongkorn University (IRB No.230/65). The study was conducted in compliance with
the international guidelines for human research protection as per the Declaration of Helsinki
and the International Conference on Harmonization in Good Clinical Practice (ICH-GCP).
The study protocol was registered in the Thai clinical trial registration (TCTR20220404001).
All participants provided written informed consent prior to their enrollment in the study
and the medical records were thoroughly reviewed.

2.3. Outcome Measurements

Baseline characteristics and biochemical data of the participants were obtained from
their electronic medical records. The mean of the previous three consecutive serum creati-
nine levels was used as the baseline serum creatinine for the participant. The outcome was
a change in anti-SARS-CoV-2 S antibody level pre- and post-BNT162b2 vaccination. Blood
samples were collected before vaccination and at 4 weeks after vaccination and centrifuged
at 3000 rounds per minute for 10 min at room temperature and frozen at −20 ◦C until the
anti-SARS-CoV-2 S antibody was measured (Elecsys®, by Cobas e 411 analyzer; Roche Di-
agnostics, Basel, Switzerland). The lower limit of detection was 0.36 binding antibody units
(BAU)/mL. The anti-SARS-CoV-2 S antibody ≥0.823 BAU/mL was considered reactive or
seroconverted. The adverse events were monitored for six months or until September 2022.

2.4. Statistical Analysis

Continuous data were presented as mean ± standard deviation (SD) for Gaussian
distributed data and median (interquartile range, IQR) for non-Gaussian distributed data.
Categorical data were described as proportion and percentages. Baseline characteris-
tics were compared between the groups using t-test for normal distributed data and the
Wilcoxon rank-sum test for non-normal distributed data. The serum antibodies which
were seronegative were imputed with 0.18 BAU/mL (50% of the lower limit of detection).
The difference in the increment of the anti-SARS-CoV-2 S antibody level between the
two groups was compared by t-test. The data were analyzed using Stata 14 (StataCorp LP,
College Station, TX, USA) and a p-value < 0.05 was considered statistically significant. The
visualizations were performed using GraphPad Prism 9 (GraphPad Software, San Diego,
CA, USA).
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3. Results
3.1. Baseline Characteristics of the Participants

A total of 693 active KTRs in our center were screened. Thirty-one patients met the in-
clusion criteria. Three patients declined to participate in the study. A total of 28 participants
were randomly assigned to the control group (14 participants) and the switching group
(14 participants). All participants completed the study (Figure 1). The mean age (±SD) of
the KTRs was 51.5 ± 8.7 years and was not different between the two groups. The median
(IQR) transplant vintage of the control and the switching groups were 3.2 (IQR 1.5–14.4)
years and 3.3 (IQR 1.8–7.3) years (p = 0.85), respectively. The duration since the last dose
of BNT162b2 was comparable at approximately 5 months between both groups (p = 0.66).
The white blood cells, neutrophil, and lymphocyte counts were also comparable between
the two groups (Table 1). In the switching group, a trough level achieved 3.3 ± 1.6 ng/mL
for TAC and 10.3 ± 4.0 ng/mL for sirolimus.
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Figure 1. Flow diagram of the study participants.

Table 1. Baseline characteristics of the study participants.

Variable Total
(n = 28)

Control Group
(n = 14)

Switching Group
(n = 14) p

Age, years; mean ± SD 51.5 ± 8.7 50.4 ± 9.2 52.6 ± 8.4 0.51

Male, n (%) 15 (53.6%) 9 (64.3%) 6 (42.9%) 0.45

DKT, n (%) 17 (60.7%) 6 (42.9%) 11 (78.6%) 0.12

Transplant vintage, years; median (IQR) 3.3 (1.6–7.5) 3.2 (1.5–14.4) 3.3 (1.8–7.3) 0.85

Baseline serum creatinine, mg/dL; mean ± SD 1.34 ± 0.48 1.40 ± 0.59 1.27 ± 0.37 0.51

White blood cells, cells/µL; median (IQR) 5725 (5110–7110) 5710 (5280–6930) 5985 (4680–7290) 0.95

Neutrophil, cells/µL; median (IQR) 3720 (3145–4800) 3525 (3180–4270) 4055 (3120–5100) 0.73

Lymphocyte, cells/µL; median (IQR) 1645 (1290–2085) 1755 (1540–2100) 1455 (1180–2070) 0.43

Dosage of MMF, mg/day; mean ± SD 1179 ± 69 1250 ± 126 1107 ± 57 0.31

Tacrolimus trough level, ng/mL; mean ± SD 4.8 ± 1.0 4.7 ± 1.2 5.0 ± 0.8 0.59
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Table 1. Cont.

Variable Total
(n = 28)

Control Group
(n = 14)

Switching Group
(n = 14) p

Duration between first and second vaccinations,
months; median (IQR) 2.8 (2.8–2.8) 2.8 (2.8–2.8) 2.8 (2.8–2.8) 0.14

Duration between second and third vaccinations,
months; median (IQR) 1.3 (1.1–1.5) 1.3 (1.1–1.5) 1.3 (1.2–1.4) 0.72

Time since the last BNT162b2, months; median
(IQR) 4.9 (4.6–5.3) 4.9 (4.6–5.3) 5.0 (4.8–5.2) 0.66

Baseline anti-SARS-CoV-2 S antibody, BAU/mL;
median (IQR) 170.2 (36.0–510.3) 204.9 (44.7–541.2) 164.5 (19.5–429.5) 0.61

BAU, binding antibody units; DKT, deceased donor kidney transplantation; MMF, mycophenolate mofetil.

3.2. Post-Vaccination Anti-SARS-CoV-2 S Antibody Level and Seroconversion Rate

The median (IQR) baseline anti-SARS-CoV-2 S antibody level was 170.2 (IQR 36.0–510.3)
BAU/mL, which was not different between the control group (204.9 [IQR 44.7–541.2]
BAU/mL) and the switching group (164.5 [IQR 19.5–429.5] BAU/mL) (p = 0.61). After vac-
cination, the overall anti-SARS-CoV-2 S antibody level significantly increased to 3338.0 (IQR
2081.0–4983.5) BAU/mL (p < 0.001). The anti-SARS-CoV-2 S antibody level significantly
increased in both groups (p = 0.001). The switching group had a significantly higher anti-
SARS-CoV-2 S antibody level compared to the control group (4051.0 [IQR 3142.0–6466.0] vs.
2081.0 [IQR 1077.0–3960.0], p = 0.01) (Figure 2).
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Figure 2. The anti-SARS-CoV-2 S antibody level (median [IQR]) pre- and post-fourth vaccination
with BNT162b2 between the control group and the switching group. Baseline anti-SARS-CoV-2
S antibody level was not different between both groups (* p > 0.05, NS [not significant]). After
vaccination with BNT162b2, anti-SARS-CoV-2 S antibody level increased in both groups († p = 0.001).
Anti-SARS-CoV-2 S antibody level post-fourth vaccination with BNT162b2 in the switching group
was significantly higher than the control group (* p = 0.01). The difference-in-differences was also
significant (‡ p = 0.006). The horizontal dotted line indicates the cutoff point at 0.823 BAU/mL.

In this study, there was only one seronegative participant which was in the control
group. The participant did not achieve seroconversion after the fourth vaccination.
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3.3. Adverse Events

Two participants in the switching group developed mild oral ulcers that spontaneously
resolved after changing the mTORi back to MPA at the end of the study. There were no
other adverse events related to mTORi, such as edema and pneumonitis. In the control
group, there were no serious local or systemic adverse events such as bleeding, bruises,
chest discomfort, severe headache, vomiting, seizure, or stroke-like symptoms after vac-
cination (Table 2). There were no significant changes in serum creatinine (1.40 ± 0.59
vs. 1.40 ± 0.67 mg/dL; p = 0.87 in control group and 1.30 ± 0.48 vs. 1.32 ± 0.43 mg/dL;
p = 0.50 in switching group) and urine protein (165 [IQR 0–300] vs. 160 [IQR 0–330] mg/day;
p = 0.27 in control group and 59.5 [IQR 0–350] vs. 199 [IQR 0–267] mg/day; p = 0.75 in
switching group) before and after the study, respectively.

Table 2. Adverse events related to the vaccination.

Adverse Events Control Group (n = 14) Switching Group (n = 14)

Immunosuppressant-related

Oral ulcers, n (%) 0 (0%) 2 (1.4%)

Edema, n (%) 0 (0%) 0(0%)

Diarrhea, n (%) 0 (0%) 0 (0%)

Pneumonitis, n (%) 0 (0%) 0 (0%)

Rejection, n (%) 0 (0%) 0 (0%)

Vaccine-related

Myalgia, n (%) 11 (78.6%) 13 (92.9%)

Fever, n (%) 3 (2.1%) 2 (1.4%)

Bleeding, n (%) 0 (0%) 0 (0%)

Chest discomfort, n (%) 0 (0%) 0 (0%)

Severe headache, n (%) 0 (0%) 0 (0%)

Vomiting, n (%) 0 (0%) 0 (0%)

Seizure, n (%) 0 (0%) 0 (0%)

Stroke-like symptoms, n (%) 0 (0%) 0 (0%)

4. Discussion

The results in the present study indicated that there was a higher immune response
after the booster dose of COVID-19 vaccine in the group that received the MPA-sparing
regimen with mTORi and low-dose TAC compared to the standard immunosuppressive reg-
imen. The only one seronegative KTR who was in the control group remained seronegative
after the fourth COVID-19 vaccination.

Many studies reported that SOTRs have lower immunological response to vacci-
nation compared to the healthy population [2,19–21]. The blunted vaccine immune re-
sponses among SOTRs was due to the use of immunosuppression, predominantly the
MPA [2,9–14,16]. Fifty-seven percent of SOTRs with antimetabolites (mycophenolic acid
or azathioprine) had negative antibody response after two doses of mRNA vaccine com-
pared to 18% of those without antimetabolites [2]. A recent meta-analysis in patients
with rheumatic diseases revealed that using MPA reduced the rate of seroconversion after
SARS-CoV-2 vaccination by 44% [22].

The regimen of TAC, MPA and prednisolone is the standard immunosuppressive
regimen widely used in kidney transplantation. However, the regimen which contained
MPA provided lower immune response to many vaccines, such as influenza [23], hepatitis
A [24], and SARS-CoV-2 [9–14,17,18]. Novel strategies to improve the immune response
by modifying the immunosuppressive regimen have been investigated [16]. MPA dose
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reduction or pausing provided better immune response compared to the patients without
MPA dose changing [16]. However, MPA dose modification or pause may lead to inade-
quate immunosuppression [25,26]. In this regard, a CNI reduction regimen with mTORi,
TAC, and prednisolone yielded comparable efficacy and lower infection rate compared to
patients on the standard regimen [6–8]. Therefore, this regimen can serve as MPA sparing
and effectively provide adequate immunosuppression.

In a subgroup vaccination study of an RCT by Boer et al., conducted in 32 patients
(16 patients on TAC [5 to 8 ng/mL] + MMF [1000 mg/day] + prednisolone and 16 patients
on low dose TAC [1.5 to 4 ng/mL] + everolimus [3 to 6 ng/mL] + prednisolone), it was
revealed that the SARS-CoV-2 anti-spike receptor binding domain IgG antibody levels
were significantly higher in the low dose TAC + everolimus + prednisolone group after
receiving two doses of mRNA vaccine [18]. All patients in the study were randomized to
this immunosuppressive regimen since kidney transplantation. In contrast, in our study,
we utilized the switching strategy to improve the immune response in KTRs who were on
the standard immunosuppressive regimen.

After the participants received the booster dose, the antibody level in the switching
group was higher than those on the standard immunosuppressive regimen. This can
be explained by two assumptions. Firstly, the cessation of MPA and use of low dose of
TAC resulted in an improvement of the immune response. Secondly, mTORi may also
augment the immune response. The poor immune response after vaccination in patients
who were on MPA could be explained by MPA inhibiting IL-4+ CD4 T-cell and B-cell
function, plasma cell formation, and antibody production [15,27]. Thus, interrupting MPA
during the period of vaccination is assumed to restore the immune response. The mTOR
inhibitor was assumed to promote the immune response but the mechanism is still unclear.
Previous studies showed that mTOR has a major role in regulating memory CD8 T-cell
differentiation. Studies in mice revealed that rapamycin, a specific inhibitor of mTOR,
increased the magnitude of acute lymphocytic choriomeningitis virus (LCMV)-specific CD8
T-cell response, increased the functional qualities of the memory CD8 T-cells, and promoted
memory CD4 T-cell differentiation [28,29]. mTOR blockage by rapamycin could boost Toll-
like receptor (TLR)-induced antigen-specific T- and B-cell responses to HBV vaccines [30].

In this study, a four-week period of switching to an MPA-sparing immunosuppressive
regimen (two weeks before and two weeks after vaccination) was sufficient enough to
improve antibody response. A recent study of MPA dose pause for one week before and
four weeks after vaccination also revealed improvement in serologic response [16]. In
another study with a shorter period, two weeks of immunosuppressive drug modification
revealed an inadequate immune response [31]. Since the immune system requires a certain
amount of time to respond after suppression or cessation of immunosuppression [32], thus,
a two-week duration of immunosuppressive regimen switching prior to vaccination will
allow the immune system to be restored, and another two weeks after vaccination can help
the body to build an immune response to vaccination. The strategy used in this study is
beneficial for KTRs to develop an immune response after the vaccination.

The immune response to vaccination can be affected by various factors, such as the pre-
vious vaccination regimen and the duration after the last dose. The regimen of vaccination
of all participants prior to entering this study was tightly controlled to be homogeneous,
which was two doses of AZD1222 and a single dose of BNT162b2. Furthermore, the dura-
tion since the last vaccination was comparable between the two groups. Admittedly, this
study only measured the anti-SARS-CoV-2 S antibody level. In this respect, it has been
demonstrated that anti-SARS-CoV-2 S antibody level together, with neutralizing antibodies,
could prevent the acquisition of SARS-CoV-2 infection and had a good correlation [33,34].
However, in this study, follow-up antibody tests were not performed so we do not know
whether the benefits of immunosuppression switching persisted. It should be noted that
the cellular immune response was not measured in our study. Asymptomatic infected par-
ticipants might be not detected because we did not perform anti-nucleocapsid (N) antibody
tests. This study was a pilot study with a small sample size and the participants in the study
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were not at high risk for graft rejection. The seroconversion rate could not be assessed since
most of the participants were seropositive for anti-SARS-CoV-2 S antibody except for one
participant. Additional studies with a larger sample size, with a higher immunologic risk
and a longer follow-up period, are warranted to assess the anti-SARS-CoV-2 S antibody
level, seroconversion rate, and vaccination efficacy.

5. Conclusions

Immunosuppressive drug switching from TAC, MPA, and prednisolone to the regimen
of mTORi, TAC and prednisolone for two weeks before and two weeks after booster dose
of COVID-19 vaccination can improve humoral response in stable KTRs.
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