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Introduction
Small or noncoding ribonucleic acids (sRNAs or ncRNAs) 
play a major role in the regulation of several molecular pro-
cesses within a bacterial cell. They are usually between 50 and 
500 nucleotides long and can be classified into two major cat-
egories: cis-encoded (or antisense), and trans-encoded sRNAs.1 
The basis of this classification relies on the location of the 
sRNA sequence within DNA regarding its corresponding 
messenger RNA (mRNA) target, as well as the base-pair inter-
action between sRNA and mRNA transcript.2 As sRNAs are 
transcribed from DNA strands but do not undergo translation, 
they are usually located in non-coding regions of DNA (also 
referred to as intergenic regions).3 Cis-encoded sRNAs can be 
found in regions of the genome that overlap with the sequence 
of their mRNA target, resulting in extensive and complete 
complementarity of the sRNA-mRNA hybrid.4 Trans-encoded 
sRNAs are found in regions separate from their target mRNA 
genes; thus, they resemble minimal, but are with effective com-
plementarity to their targets.5 In addition, the nonspecific 
binding of sRNA molecules allows for multiple targets to be 
accessed by a single trans-encoded sRNA.6

The binding of sRNAs to mRNA transcripts plays an 
important role in regulating transcriptional and/or transla-
tional processes. A majority of sRNAs, both cis- and trans-
encoded, regulate their respective targets in a negative manner 
through different mechanisms that interfere with translational 
machinery.7 Small RNAs, such as RyhB8 and CsrA9 in 
Escherichia coli, bind to important translation initiation 
sequences and block translational machinery from recognizing 
the mRNA transcript. Other sRNAs, such as SgrS in Escherichia 
coli and Salmonella strains,10 bind to regions further upstream 
the translation initiation sites, covering sequences required for 
promoting translation. Positive effects of sRNAs on translation 
have also been identified, where sRNAs can bind and alter the 
structure of a mRNA to be easily accessed by translational 
machinery.11 In addition, sRNAs can have an impact on the 
transcriptional activity of a target gene by inhibiting proper 
termination of a pre-determined transcript.12

The recognition of sRNAs in bacteria is useful in under-
standing the way bacteria regulate gene expression under vari-
ous environmental conditions. Previous research has revealed 
the value of sRNAs in regulating gene expression when a 
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bacterium is placed under stress.13 Certain stressors, such as 
nutrient deficiency,14,15 cell envelope stress,16-18 and oxidative 
stress,19-22 are a few examples where sRNAs are found to be 
most prevalent in bacterial regulatory systems. In addition, 
sRNAs play a big role in regulating genes responsible for viru-
lency in pathogenic microbes.23 Aside from sRNAs being pre-
sent under stress and virulence, these regulatory molecules 
have been shown to influence everyday cellular metabolism at 
primary and secondary levels in different bacterial species.24 
While sRNA identification has been thoroughly examined in 
bacterial model organisms such as Escherichia coli and 
Salmonella enterica,25 a large majority of bacterial species have 
yet to be explored for the presence of regulatory sRNAs. The 
ability to efficiently recognize sRNA sequences in different 
bacterial genomes can assist in conducting experiments to 
understand how these regulatory molecules impact cellular 
processes. Furthermore, identifying sRNAs across different 
groups of bacteria can shine a light on the evolutionary history 
of bacterial strains.7

To verify the presence of any potential sRNA sequence, 
various laboratory techniques such as microarrays, Northern 
blotting, and size-selective RNA sequencing are necessary.26 
This verification is necessary to correctly determine the pres-
ence of a sRNA in vivo. In addition, other laboratory experi-
mentations are required to validate the mechanisms by which 
an sRNA interacts with its respective target(s).27 However, 
such wet-lab experiments are tedious, time-consuming, and 
costly for laboratory researchers. To maximize efficiency for 
experimental design, it is crucial to utilize cost-efficient meth-
ods of accurately predicting novel sRNA sequences and their 
potential mRNA targets. Therefore, it is beneficial to employ 
computational approaches that can streamline experimental 
verification processes for detecting sRNAs and their interac-
tions with targets.

Recently, various machine learning-based approaches have 
been applied to predict sRNAs in any given bacterial genome. 
Grüll et al28 identified putative sRNAs in Rhodobacter capsu-
latus by the sequence similarity to sRNAs in a sRNA collec-
tion and represented each putative sRNA (or a random 
genomic sequence) as a group of seven numerical attributes 
that biologically characterize the putative sRNAs’ distinct 
genomic contexts and characteristics. Then, using the logistic 
regression model, they obtained the likelihood of the putative 
sRNAs to be a potential candidate for sRNA. Tang et  al29 
integrated various sequence-derived 17 feature groups and 
built two ensemble learning models, the Weighted Average 
Ensemble Method (WAEM) and the Neural Network 
Ensemble Method (NNEM), for the sRNA prediction. In 
another study, Eppenhof and Peña-Castillo30 adopted seven 
biological features by Grüll et al,28 employed five traditional 
machine learning algorithms (including Logistic Regression 
(LR),31 Multi-Layer Perceptron (MLP),32 Adaptive Boosting 
(AB),33 Gradient Boosting (GB),34 and Random Forest 

(RF)),35 and assessed the performance of the algorithms on 
benchmark datasets.

Motivated by the encouraging result from the related 
research work28-30 that utilized varied individual feature sets 
along with several machine learning algorithms, we aim to lev-
erage the classification performance by identifying and com-
bining best features, varying positive to negative data ratios, 
utilizing another decision tree-based ensemble learning algo-
rithm, eXtreme Gradient Boosting (XGBoost),36 and employ-
ing seven evaluation metrics. As in the existent studies,29,30 we 
make use of the Salmonella typhimurium LT2 (SLT2) and the 
Escherichia coli K12 (E. coli K12) datasets. Specifically, we 
concatenated seven numerical attributes (or features) published 
work by Eppenhof and Peña-Castillo30 and let G1 denote the 
group of seven attributes. In addition, we extracted 2,222 
sequence-derived features by utilizing the python package rep-
DNA37 and let G2—G15 denote each of 14 sets of attributes, 
respectively. Characteristics of two previous research that moti-
vated the current study are summarized in Table 1 and details 
of 15 feature groups are described in Table 2.

As in Table 1, the sRNA datasets are imbalanced as the 
class of interest (i.e. positive, or minority class) is relatively 
rare, compared to the other class (i.e. negative, or major 
classes). One of the most common challenges while trying to 
classify imbalanced data is that the classifier can be heavily 
biased toward the majority negative class.38,39 To illustrate the 
challenge in evaluating classification performance on imbal-
anced data, let us consider that accuracy, the most often used 
metric that measures the fraction of correctly classified 
instances, is employed to evaluate the classification perfor-
mance with the skewed dataset, whose positive to negative 
data ratio is 1-to-10. As the minority class makes 10% of the 
instances while the majority occupies the remaining 90% of 
the instances, one can obtain an accuracy of 0.9 (i.e. 90%) by 
simply predicting all instances as the majority class. The 
minority class has very little impact on the accuracy as com-
pared to that of the majority class. An accuracy of 0.9 (i.e. 
90%) seems high; however, it can be misleading as it has no 
predictive power on the minority class. This is called accuracy 
paradox, which states that predictive model with a given level 
of accuracy may have greater predictive power than models 
with higher accuracy.40 Accuracy paradox has been identified 
and discussed in real-life applications with skewed or imbal-
anced datasets.41-43

In this research, we interpreted the prediction of sRNAs as 
a supervised learning with imbalanced data. Then, we aimed to 
comparatively assess three questions on the learning problem: 
what numerical features extracted from sRNAs are suitable for 
learning; what traditional classification algorithms are robust 
to various feature groups, and what evaluation metrics are 
appropriate for measuring the performance of learning from 
imbalanced data, using published data and well-studied met-
rics for classification performance.
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Materials and Methods
Datasets

To effectively compare our classifier performance against cur-
rently existing predictive models, we utilized the same training 
and testing datasets originally generated and used by Tang et al29 
and Eppenhof and Peña-Castillo.30 Specifically, we used data 
from the Salmonella typhimurium LT2 (SLT2) genome and the 
Escherichia coli K12 (E. coli K12) genome. Browser Extensible 
Data (BED) files from the study by Eppenhof and Peña-
Castillo30 contain information about all experimentally verified 
sRNAs in SLT2, such as genomic coordinates, length, and strand 
in which the sRNAs are located. First, we processed the BED 
files and extracted the respective sRNA sequences from the 
genome. For sequences located on the negative strand, we gener-
ated the reverse complement of the equivalent sequence on the 
positive strand. After compiling these sequences, we stored this 
list of verified sRNAs as a positive dataset.

An ideal negative dataset is one that is clearly separable 
from the positive dataset. We used the dataset used by 
Eppenhof and Peña-Castillo.30 They generated the negative 
instances from the coding regions of DNA that are character-
istically distinct from the intergenic/non-coding sRNA 
sequences and then they removed any negative data that 

overlapped with positive sRNA sequences to ensure that this 
negative dataset would perform optimally. The remaining data-
set had approximately 10 times as many negative instances as 
positive instances. Therefore, we assessed the performances of 
learning models with varying positive-to-negative instance 
ratios to consider all the spectrum of the data ratios, where 
1-to-1 ratio is balanced, and the others are imbalanced.

The two specific datasets were publicly available for SLT2. 
The first STL2 dataset is the fixed training-test split with a 
total of 1239 instances, including 361 (90(+) and 271(-)) 
training instances and 878 (23(+) and 855(-) test instances 
and the other one is the whole positive-negative split with the 
total of 1986 (182(+) and 1804(-)) instances, where plus (+) 
and minus (-) symbols denote positive and negative sRNAs, 
respectively. We used the fixed training-test data to compare 
the performance between the training-test split and the k-fold 
cross-validation. The fixed training-test dataset with the 
reduced number of instances, selected from the whole positive-
negative split, was originally used by Tang et al29 and later by 
Eppenhof and Peña-Castillo.30 The whole positive-negative 
split is the second STL2 dataset and it is available in the BED 
files by Eppenhof and Peña-Castillo.30 The whole positive-
negative split dataset with 1986 instances of SLT2 was used to 
assess the feature importance and feature group importance. E. 

Table 1. Characteristics of related research and this study.

SOURCE TANg ET Al29 EPPENHOF AND PEñA-CASTIllO30 THIS STUDy

Algorithms Weighted Average 
Ensemble Method (WAEM) 
and
Neural Network Ensemble 
Method (NNEM)

logistic Regression (lR),
Multilayer Perceptron (MP or MlP),
Random Forest (RF),
Adaptive Boosting (AB, or AdaBoost),
and gradient Boosting (gB)

logistic Regression (lR),
Multilayer Perceptron (MlP),
Random Forest (RF),
Adaptive Boosting (AB),
gradient Boosting (gB), and
eXtreme gradient Boosting (XgB, or XgBoost)

Training 
Datasets

Salmonella typhimurium 
lT2

Rhodobacter capsulatus 
Streptococcus pyogenes, Salmonella 
enterica,
and combined

Salmonella typhimurium lT2 and Escherichia 
coli K12

Test Datasets Salmonella typhimurium 
lT2

Rhodobacter capsulatus,
Streptococcus pyogenes,
Salmonella enterica,
Escherichia coli K12, and 
Mycobacterium tuberculosis

Salmonella typhimurium lT2 and Escherichia 
coli K12

Features 2,222 sequence-derived 
features

7 biological features 7 biological features and
2,222 sequence-derived features

Feature groups g2—g15 g1 g1—g15

Positive to 
Negative Data 
Ratio

1-to-1, 1-to-2, 1-to-3, 1-to-4, 
and 1-to-5

1-to-3 for training data, and
either 1-to-37 or 1-to-10 for test data

1-to-1, 1-to-2, 1-to-3, 1-to-4, 1-to-5, 1-to-6, 
1-to-7, 1-to-8, 1-to-9, and 1-to-10

Metrices Accuracy and
Area Under the ROC curve 
(AUROC, or AUC)

AUROC and
Area Under the Precision Recall curve 
(AUPR)

Accuracy, Balanced Accuracy, Precision, 
Recall, F1-measure, AUROC, and AUPR

Validation 5–fold cross-validation Random 80% – 20% split for each of 5 
training runs

Stratified k–fold cross-validation with k = 5 and 
k = 10

Abbreviations: AB, Adaptive Boosting; AUPR, Area Under the Precision Recall curve; AUROC, Area Under the ROC curve; gB, gradient Boosting; lR, logistic 
Regression; MlP, Multilayer Perceptron; NNEM, Neural Network Ensemble Method; RF, Random Forest; WAEM, Weighted Average Ensemble Method; XgB, eXtreme 
gradient Boosting.
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coli K12 dataset has only the positive-negative split with the 
total of 1369 (125(+) and 1244(-)) instances. As the positive-
to-negative instance ratio is approximately 1-to-10, the posi-
tive-negative split datasets were used to assess how the different 
data ratios affect the classification performance.

Sequence-derived feature sets

From the positive and negative sRNAs in SLT2 and E. coli 
K12, we extracted the total of 15 groups of distinct numerical 
features, which have been already studied in the related 
approaches.28-30 Using a Python pipeline tool, sRNACharP30 
(available at https://github.com/BioinformaticsLabAtMUN/
sRNACharP), we obtained numerical features that character-
ize various biochemical aspects of each sequence. Specifically, 
the tool generates the group (denoted as G1) of seven features, 
including free energy of the sRNA secondary structure (f1), 
distance to the closest promoter upstream of the sRNA (f2), 
distance to the closest Rho-independent terminator (f3), dis-
tance to the closest left Open Reading Frame (ORF) (f4), 
Boolean value (0 or 1) indicating if sRNA is on the same strand 
as left ORF (f5), distance to the closest right ORF (f6), and 
Boolean value indicating if sRNA is on the same strand as 
right ORF.

In addition to above seven biological features extracted, uti-
lizing another python package, repDNA37 (available at http://
bioinformatics.hitsz.edu.cn/repDNA/), we converted each 
input sequence into a list of L1-norm normalized values relat-
ing to different sequence-derived characteristics. Tang et al29 
extracted a total of 17 distinct numerical feature groups 
(indexed from F1 to F17) from the 182 experimentally verified 
sRNAs in SLT2 for their study. However, using repDNA, we 
were able to generate only a total of the 14 feature groups as 
follows: K-mer (with k ranging from 1 to 5) (G2—G6), reverse 
compliment k-mer (with k ranging from 1 to 5) (G7—G11), 
parallel correlation pseudo dinucleotide composition (G12), 
parallel correlation pseudo trinucleotide composition (G13), 
series correlation pseudo dinucleotide composition (G14), and 
series correlation pseudo trinucleotide composition (G15). 
Specifically, mismatch profile group,30 including the three fea-
ture sets F5—F7, was not used for our study. For the reference, 
the indices of our feature groups and the matched feature 
groups by Tang et al29 are given in Table 2.

The k-mer features represent the frequency of the unique 
k-sized subsequences in each given sequence. For example, 
1-mer would return the four frequency values, corresponding 
to the four mononucleotides (i.e. adenosine (A), cytosine 
(C), guanine (G), and thymine (T)). For 2-mer, it would 
return 16 frequency values for the 16 dinucleotides, respec-
tively. The reverse compliment k-mer functions act in a simi-
lar fashion; however, it removes redundancies based on 
sub-sequences that are the reverse complement of each other. 
The four pseudo-nucleotide composition features return the 

frequencies of different dinucleotide and trinucleotide 
sequences relating to specific physiochemical properties. A 
more in-depth explanation can be found in the repDNA 
manual. The entire feature set collected for this study con-
sists of 2,229 features over 15 feature groups, which include 
both G1 with seven features and G2—G15 with 2,222 fea-
tures, as summarized in Table 2.

Tools and software

The entire experiment was performed on Google Colab, a col-
laborative Python Integrated Development Environment (IDE). 
repDNA37 package and sRNACharP30 pipeline tool were utilized 
to extract numerical sequence-derived features that characterize 
various biochemical aspects of each RNA sequence for our study. 
Scikit-learn (sklearn) (ver. 1.0)44 for the implementation of 
the six machine learning algorithms in Python: Logistic 
Regression (LR) (LogisticRegression()), Multi-Layer 
Perceptron (MP or MLP) (MLPClassifier()), Random 
Forest (RF) (RandomForestClassifier()), Adaptive 
Boosting (AB or AdaBoost) (AdaBoostClassifier()), Gradient 
Boosting (GB) (GradientBoostingClassifier()), 
and eXtreme Gradient Boosting (XGB or XGBoost) 
(XGBClassifier()), which is the scikit-learn wrapper class 

Table 2. Feature groups publicly available and used for this study.

ABBREVIATION FEATURE 
gROUP

NUMBER OF 
FEATURES

REFERENCE

g1 Biological 
features

7 Eppenhof & 
Peña-Castillo30

g2 (F1) 1-mer 4 Tang et al29

g3 (F2) 2-mer 16

g4 (F3) 3-mer 64

g5 (F4) 4-mer 256

g6 (F5) 5-mer 1,024

g7 (F9) 1-RCkmer 2

g8 (F10) 2-RCkmer 10

g9 (F11) 3-RCkmer 32

g10 (F12) 4-RCkmer 136

g11 (F13) 5-RCkmer 512

g12 (F14) PCPseDNC 17

g13 (F15) PCPseTNC 65

g14 (F16) SCPseDNC 18

g15 (F17) SCPseTNC 66

Abbreviations: PCPseDNC, parallel correlation pseudo dinucleotide composition; 
PCPseTNC, parallel correlation pseudo trinucleotide composition; RCkmer, 
reverse complement k-mer; SCPseDNC, series correlation pseudo dinucleotide 
composition; SCPseTNC, series correlation pseudo trinucleotide composition.

https://github.com/BioinformaticsLabAtMUN/sRNACharP
https://github.com/BioinformaticsLabAtMUN/sRNACharP
http://bioinformatics.hitsz.edu.cn/repDNA/
http://bioinformatics.hitsz.edu.cn/repDNA/
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for the XGBoost library.36 Finally, all figures based on the perfor-
mance metrics were generated through MATLAB (ver. R2021a).

Hyperparameter values for classif ication algorithms

Eppenhof and Peña-Castillo30 used five traditional classifica-
tion algorithms, including Logistic Regression (LR), Multi-
Layer Perceptron (MP or MLP), Adaptive Boosting (AB or 
AdaBoost), Gradient Boosting (GB),34 and Random Forest 
(RF), with specific hyperparameter values to fit each model. 
They obtained best parameter values for each algorithm in 
terms of maximizing the average area under the ROC curve 
(AUROC or AUC) with leave-one-out cross-validation (LOO 
CV) on the training data. Finding best hyperparameters and 
values that optimize each learning algorithm and specific data-
sets is another challenging research problem. Therefore, we 
used the identical hyperparameters and values originally found 
by Eppenhof and Peña-Castillo.30 They performed leave-one-
out cross-validation (LOO CV) on the training data as 
depicted in Figure 2 of Eppenhof and Peña-Castillo30 and 
identified best parameter values per each classifier that maxi-
mized the average area under the ROC curve (AUROC).

Specifically, for LR (LogisticRegression()), the 
maximum likelihood and the balanced mode are used to adjust 
class weights inversely proportional to class frequencies in the 
input data (i.e. class_weight ='balanced'). For MLP 
(MLPClassifier()), the standard backpropagation with the 
logistic sigmoid activation function, a hidden layer with 400 neu-
rons, the maximum iteration of 200, the quasi-Newton optimizer, 
the L2 penalty of 0.0001, a constant running rate, the initial 
learning late with 0.9, the exponent for inverse scaling learning 
rate with 0.8 are used (i.e. hidden_layer_sizes = (400), 
activation ='logistic', solver ='lbfgs', max_
iter = 200, alpha = 0.0001, verbose = 0, learn-
ing_rate ='constant', learning_rate_init = 0.9,  
power_t = 0.8). For AB (AdaBoostClassifier()), a  
random forest (RF) (RandomForestClassifier()) classi-
fier with 100 decision trees (estimators) and a maximum depth of 
1 is used. (i.e. n_jobs = 3, n_estimators = 100, max_
depth = 1). For GB (GradientBoosting 
Classifier()), a total of 50 decision trees (estimators) with 
a maximum depth of 15, maximum features of 7, minimum sam-
ples (at a leaf node) of 5, stochastic gradient boosting with sub-
sampling of 0.9 are used (i.e. n_estimators = 50, 
max_depth = 15, max_features = 7, min_samples_
leaf = 5, verbose = 1, subsample = 0.90). For RF 
(RandomForestClassifier()), the maxim number of 
decision trees (estimators) of 400 and the maximum number of 
features (for the best split in a node) of 2 are set (i.e. n_jobs = 3, 
n_estimators = 400, max_features = 2).
EXtreme Gradient Boosting (XGBoost, or XGB) is the one of 
the latest evolutions of the traditional decision tree algorithm.36 
As it is known to optimize the performance of existing decision 
tree-based models, we employed XGBoost to see if it further 

improves upon the results of the existing studies. Particularly, 
we executed XGBoost (XGBoostClassifier()) with no 
search for best hyperparameter values; thus, the baseline experi-
mental performance of XGBoost reported here can be improved 
further with a grid search of hyperparameter values if needed.

Evaluation metrics

Confusion matrix summarizes a model’s capability for generat-
ing true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN), where TP is the number of 
positive instances correctly classified as positive, TN is the 
number of negative instances correctly classified as negative, 
FP is the number of negative instances incorrectly classified as 
positive, and FN is the number of positive instances incorrectly 
classified as negative.

Evaluation metrics can be defined directly from a confusion 
matrix as follows.

Accuracy, defined as (TP + TN)/(TP + FP + TN + FN), is 
the most often used metric that measures the fraction of cor-
rectly classified instances. As discussed previously, accuracy is 
not an appropriate evaluation metric for imbalanced data since 
it does not distinguish between the numbers of correctly classi-
fied examples of different classes. Specifically, it ignores two 
different types of errors, false positive (i.e. Type I error) and 
false negative (i.e. Type II error).

Precision (also known as positive predictive value), defined 
as TP/(TP + FP), measures how often an instance was pre-
dicted as positive that is originally known positive.

Recall (also known as TP rate or sensitivity), defined as TP/
(TP + FN), measures how many of positive instances in a data-
set were detected. Note that specificity (also known as true 
negative rate or 1—FP rate), defined as TN/(TN + FP), meas-
ures how many of negative instances in a dataset were detected. 
In evaluation performance for imbalanced data, it is desirable 
to improve recall without hurting precision. However, this goal 
is often conflicting, as we try to increase the TP for the minor-
ity class, the FP is also often increased, which results in reduced 
precision. Also, precision can be biased by very unbalanced 
class priors in the test sets.

More advanced evaluation metrics have been proposed to 
remedy for accuracy paradox for imbalanced data as follows.

The first alternative is balanced accuracy,45,46 which is 
designed to avoid inflated performance estimates on imbal-
anced data. It is defined as the macro average of recall scores 
per class (or equivalently, raw accuracy where each sample is 
weighted according to the inverse prevalence of its true class). 
Notice that for a balanced dataset, balanced accuracy score is 
equal to accuracy and for a binary case, it is equivalent to the 
arithmetic mean of sensitivity (TPN) and specificity (TNR) 
(= ½ (TP/(TP + FN) + TN/((TN + FP)). Therefore, different 
from accuracy, balanced accuracy computes the average of the 
percentage of positive class instances correctly classified and the 
percentage of negative class instances correctly classified, taking 
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into consideration to give an equal weight to the relative pro-
portions for the two classes.

The second alternative is F1 score (also known as balanced 
F-score or F-measure), a special case of the general equation 
Fβ-measure,47 defined as Fβ = (1 + β2)*(precision*recall) / 
((β2*precision) + recall). Fβ-measure is a family of metrics that 
can measure trade-offs between precision and recall by output-
ting a single value that reflects the goodness of a classifier in the 
presence of rare classes. With a higher β, the more weight or 
emphasis is on recall over precision. Specifically, F1 score (i.e. 
β = 1) is a harmonic mean of precision and recall; thus, both 
precision and recall are equally weighted.

The third alternative is Area Under the Receiver Operating 
Characteristic curve (AUROC)48 (also known as area under the 
curve (AUC)), which is a numerical representation of a binary 
classifier’s ability to differentiate between positive and negative 
inputs. AUROC is based on a ROC curve, which is plotted to 
visualize the classification performance between TP rate (also 
known as Recall or sensitivity) at the y-axis and FP rate 
(= 1–specificity = 1–TN/(TN + FP) = FP/(FP + TN)) at all 
classification thresholds. Therefore, ROC curves represent the 
trade-off between different TP rates and FP rates.

The fourth alterative metric to better understand the trade-
offs between precision and recall for imbalanced data is Area 
Under the Precision-Recall curve (AUPR),49,50 which is another 
numerical representation of a binary classifier’s ability to dif-
ferentiate between positive and negative inputs. AUPR is based 
on a PR curve like AUROC on a ROC curve. Notice that while 
in a ROC curve, FP rate (also as recall) is at x-axis and TP rate 
at y-axis, in PR curves, recall is at x-axis and precision at y-axis. 
Previous research suggests that AUPR provide more robust  
and better performance metrics for imbalanced data.49-51 
Furthermore, AUPR is considered a better discriminator of 
classification performance than AUROC.

Throughout the empirical study, we aimed to gain insight 
on characteristics of target datasets, importance of numerical 
features extracted from sRNAs, effectiveness of seven metrics 
on imbalanced class distributions, and effect of positive-to-
negative data ratio (from 1-to-1 to 1-to-10). The predictive 
power of all six classification models were assessed by seven 
metrics over k-fold cross-validation.52 Both 5-fold cross-vali-
dation (5-fold CV) and 10-fold cross-validation (10-fold CV) 
were performed, where each dataset was split into k equal-sized 
folds using the stratified sampling and all the performance 
metrics were macro-averaged over the k-fold iterations for k = 5 
and 10, respectively. Particularly, stratified k-fold cross-valida-
tion is employed to unbiasedly learn from imbalanced class 
distributions. Note that the range of all seven metrics used in 
this study is [0, 1] with no unit, which can be interpreted as 
percentages; however, for simplicity, the real values in [0, 1] are 
used as they are. Also, mean and standard deviation (std) of 
metric values from k-fold cross-validation are denoted by 
(mean±std) for reference.

Results and Discussion
Conformity test for Benford’s law on lengths of 
sRNAs in Salmonella typhimurium LT2 (SLT2) 
and Escherichia coli K12 (E. coli K12)

In 1881, Simon Newcomb53 originally found that numbers more 
frequently begin with smaller digits than with larger digits and 
the probability of each following digit at the most significant 
position progressively decreases. Later in 1938, Frank Benford54 
rediscovered and extended it with extensive testing and analysis 
with a wide variety of observations of natural numbers in numer-
ous real-life datasets. Therefore, it is known as a first digit law, 
leading digit phenomenon, or Benford-Newcomb phenomenon. 
According to Benford’s law, there are expected frequencies of 
digits in a randomly generated dataset. Specifically, the leading 
digits of numbers in a naturally occurring set of numbers do not 
occur with uniform probability; thus, it has become one of the 
most popular digital analytical techniques for numerous applica-
tions such as accounting, economies, natural sciences, engineer-
ing, medicines, to name a few. Some known criteria for data to 
obey Benford’s law include that the quantities are geometrically 
distributed, the mean is greater than the median, and data span 
several orders of magnitude.55-57

Our focus is to examine whether sRNA lengths conform 
the leading digit phenomenon as observed in various natural 
numbers in real-life applications. sRNAs maintain variation 
under different selection pressures in genomes. Although pri-
mary sequence variation is originated by random mutation, 
mutated sequences coevolve with their corresponding target 
gene sequences, resulting in optimal gene regulating mecha-
nisms. Therefore, sRNA lengths may not comply a leading 
digit phenomenon of the Benford’s law. If there are deviations 
from Benford’s law, we may conclude that sRNAs do not evolve 
through random mutation alone. Instead, specific nucleotide 
locations are differentially constrained due to biological adap-
tation to complementary sequences in target genes.

The summary statistics of the lengths of the known sRNAs of 
the two datasets are as follows: SLT2 (count = 182, mean = 206.98, 
std = 184.20, median = 145.50, min = 45, Q1= 95.25, Q2= 145.50, 
Q3= 258.50, max = 1,236) and E. coli K12 (count = 125, 
mean = 156.63, std = 148.56, median = 113.0, min = 40, Q1 = 82, 
Q2 = 113, Q3 = 184, and max = 1454), where Q1, Q2, and Q3 
stand for first, second, and third quartile, respectively. The length 
distribution of sRNAs in SLT2 can be found in Figure 1 by Tang 
et al.29 Other detailed stochastic properties or characteristics of 
the sRNAs are yet to be analyzed, but we noticed that the mean 
of the lengths of the known sRNAs is greater than the corre-
sponding median as well as the grouped length distribution in 
Figure 1 by Tang et al29 is skewed. Therefore, to further character-
ize the sRNAs, we investigated whether there might exist any 
regularities in the sRNA-size distribution, using the conformity 
test for Benford’s law.53-55

The first 1 digits (F1Ds) of the sRNA size of SLT2 do not 
conform to Benford’s law as the Mean Absolute Deviation 
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(MAD) of 0.035434 is greater than the critical value of 
0.015000. For the 95% confidence interval, it fails both 
Kolmogorov-Smirnov (K-S) test (0.111058 > 0.100662 (criti-
cal value)) and Chi-square test (24.564711 > 15.507000 (criti-
cal value)). Particularly, F1D 1 is with significant positive 
deviation (0.30103 (expected), 0.412088 (observed), and 
3.185464 (z-score)) and F1D 4 is with significant negative 
deviation (0.096910 (expected), 0.038462 (observed), and 
2.540099 (z-score)). However, for the 99.9% confidence inter-
val, it passes both K-S test (0.111058 < 0.183089 (critical 
value)) and Chi-square test (24.564711 < 37.332000 (critical 
value)).

The F1Ds of the sRNA size of E. coli K12 do not conform 
to Benford’s law, either. The MAD of 0.048015 is greater than 
critical value of 0.015000. For the 95% confidence interval, it 
passes K-S test (0.109098 < 0.121463 (critical value)), but it 
fails Chi-square test (29.896199 > 15.507000 (critical value)). 
Particularly, the two entries are with significant positive devia-
tions: F1D 8 (0.051153 (expected), 0.112 (observed), and 
2.884925 (z-score)) and F1D 1 (0.301030 (expected), 0.408 
(observed), and 2.509756 (z-score)) and two entries are with 
significant negative deviations: F1D 4 (0.096910 (expected), 
0.032 (observed), and 2.301939 (z-score)) and F1D 2 (0.176091 

(expected), 0.096 (observed), and 2.233476 (z-score)). However, 
for the 99.9% confidence interval, it passes both K-S test 
(0.111058 < 0.183089 (critical value)) and Chi-square test 
(24.564711 > 37.332000 (critical value)).

Even though the F1Ds of the lengths of the known sRNAs 
in SLT2 and E. coli K12 have the cases of nonconformity to 
Benford’s law in terms of MAD, both datasets have cases of 
passing the K-S test and the Chi-square test with the small 
number of instances as discussed above. Therefore, it might be 
too early to draw a conclusion. The deviations from Benford’s 
law might be attributed to the small subset (or sample) prob-
lem, lacking statistical power and representativeness, or the 
latent bias toward different dynamics of biological domains as 
discussed by Friar et al.57

Classif ication with G1 feature group of f ixed 
training-test split data of SLT2

We analyzed the learning models’ performance on the fixed G1 
dataset published by Eppenhof and Peña-Castillo.30 The dataset 
captures a unique set of seven biological features for sRNAs. First, 
these seven features are extracted for each instance (or sequence) 
in the fixed G1, which consists of the reduced set (i.e. the selected 

Figure 1. The first 1 digit test for the lengths of sRNAs in SlT2 (top) and E. coli K12 (bottom). Each graph depicts distribution of first 1 digits (in bar 

graphs), region of confidence level, and entries with significant positive or negative deviations (in orange bar graphs). The region of 95% confidence 

interval is shown in the left graph and the region of 99.9% confidence interval in the right graph, respectively. The graphs and results are generated using 

the python package Benford_py (available at https://github.com/milcent/benford_py).
E. coli K12 indicates Escherichia coli K12; SlT2, Salmonella typhimurium lT2; sRNA, Small Ribonucleic Acid.

https://github.com/milcent/benford_py
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instances) from the full SLT2 data. Then, we assessed classifica-
tion performance of six classification models (LR, MLP, 
AdaBoost, GB, RF, and XGBoost). The fixed training-testing 
split of G1 executed one time execution, while k-fold cross-vali-
dation (CV) performed k iterations. Eppenhof and Peña-
Castillo30 originally found the optimized hyper-parameter values 
for LR, MLP, AdaBoost, GB, and RF, that could maximize 
AUROC; thus, we used the optimized hyper-parameters for the 
five algorithms as they were. However, we did not exploit optimal 
parameter values for XGBoost in our study. We assessed the clas-
sification performance using both 5–fold CV and 10–fold CV as 
shown in Figure 2. We found that the difference of mean perfor-
mance between 5–fold CV and 10–fold CV was not significant. 
For example, two-tailed t-test for two independent means at sig-
nificant levelα = .01 for AUPR is as follows: LR (t(13) =-0.369, 
P = .726) with 5-fold CV (0.37 ± 0.04) and 10-fold CV (0.41 ± 
0.17); MLP (t(13) = -0.845, P = .414) with 5-fold CV (0.62 ± 
0.01) and 10-fold CV (0.67 ± 0.11); AdaBoost (t(13) = -0.341, 
P = .738) with 5-fold CV (0.82 ± 0.01) and 10-fold CV (0.84 ± 
0.05); GB (t(13) = -0.186, P = .855) with 5-fold CV (0.79 ± 0.02) 
and 10-fold CV (0.80 ± 0.07); RF (t(13) = -0.314, P = 0.759) 
with 5-fold CV (0.80 ± 0.01) and 10-fold CV (0.82 ± 0.07); 
and XGBoost (t(13) = -0.875, P = 0.397) with 5-fold CV (0.82 ± 
0.02) and 10-fold CV (0.85 ± 0.05). Therefore, we rather discuss 
the result with 10-fold CV in the remaining sections, unless oth-
erwise specified.

In terms of accuracy, precision, and recall, it is ambiguous to 
rank the performance. However, the other four metrics clearly 
helps identify algorithms’ performance. Overall, LR and MLP 
performed poorly; GB and RF did reasonably better; and 
AdaBoost and XGBoost demonstrated best performance. As 
GB, RF, AdaBoost, and XGBoost are tree-based ensemble 
models, similar results could be expected in fact. It is important 
to note that XGBoost without optimized parameters performs 
roughly as similar as or even a little bit better than AdaBoost 
with optimized parameters. Specifically, with G1 feature group 
of the fixed training-test split of SLT2, AdaBoost and XGBoost 
achieved AUROC (0.97 ± 0.02, 0.97 ± 0.02) and AUPR 
(0.835 ± 0.028, 0.847 ± 0.048), respectively.

Figure 2 clearly illustrates that training-test split experi-
ences the accuracy paradox we discussed earlier. Specifically, 
accuracy values by all six algorithms for the training-test split 
are high. High recall values attribute to high accuracy values, 
although corresponding precision values are very low.

It was trained once with the dedicated training dataset and 
then tested once with the dedicated test dataset; thus, classifi-
cation performance was affected by the bias latent in the fixed 
training-test split. It means that if the original training-test 
split is biased, this biased data split causes low precision, and 
the one-time running does not help resolve the bias. As illus-
trated in Figure 2, stratified k-fold CV helps distribute bias 
over k iteration, resulting in improved precision performance 
without deteriorating recall performance. Stratified k-fold CV 
and advanced metrics (including balanced accuracy, F1-score, 

AUROC, and AUPR), which have been proposed to address 
the accuracy paradox for imbalanced class distributions, worked 
properly with the fixed G1 feature group.

Analysis of importance of individual features in G1 
feature group

Individual feature quality is critical to overall performance of 
learning algorithm. Therefore, we analyzed the importance of 

Figure 2. Classification performance on fixed training-test split of g1 

feature group of sRNAs in SlT2. Each subplot shows classification 

performance of six classification algorithms, measured by one of seven 

metrics. The x-axis displays the tree groups of experiments, including the 

fixed (or published) training-test split, 5-fold CV, and 10-fold CV. The 

range of y-axis is adjusted to emphasize changes in values. Only single 

mean value is available for fixed training-test split, while both micro-

average means and standard deviations are calculated over 5-/10-fold 

cross-validations.
AUPR indicates Area Under Precision-Recall curve; AUROC, area under 
the ROC curve; CV, cross-validation; gB, gradient Boosting; lR, logistic 
Regression; MlP, Multi-layer Perceptron; RF, Random Forest; SlT2, Salmonella 
typhimurium lT2; sRNA, Small Ribonucleic Acid.
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seven individual numerical features (or attributes) within G1 
feature group. Previously, Eppenhof and Peña-Castillo30 iden-
tified three levels of the attribute importance as follows: high 
(distance to the closest left Open Reading Frame (ORF) (f4), 
distance to the closest right ORF (f6), and distance to the clos-
est Rho-independent terminator (f3)); medium (free energy of 
secondary structure (f1) and distance to the closest promoter 
(f2)); and low (on the same strand as its left ORF (f5) and on 
the same strand as its right ORF (f7)).

Eppenhof and Peña-Castillo30 determined the attribute 
importance by measuring the decrease in accuracy caused by 
the exclusion of a single attribute upon running the RF algo-
rithm in their study. Different from their approach, we recog-
nized feature importance by measuring the classification 
performance in terms of seven metrics caused by a single 
attribute-based learning with the four learning algorithms as 
shown in Figure 3. The performance with GB and RF was not 

reported as the two algorithms were not feasible with a single 
feature. Specifically, we observed that learning algorithms with 
a single scalar attribute as an input feature was challenging as 
ill-defined conditions such as the zero division were introduced 
during the algorithmic steps or metric computation. As shown 
in Figure 3, accuracy metric was not able to reveal the impor-
tance of individual features for all four learning algorithms. 
However, the remaining six metrics worked well with each sin-
gle feature and were able to identify three levels of attribute 
importance, previously identified by Eppenhof and Peña-
Castillo,30 for seven individual features (i.e. f1–f7) of G1 in 
SLT2 and E. coli K12.

We further investigated feature importance by combining 
multiple features as follows: f4 and f6 (denoted as f4/6); f3, f4, 
and f6 (denoted as f3/4/6); and all seven features, which is G1 
(also denoted as f1–7) in Figure 3. The three attributes, f3, f4, 
and f6, are the high important attributes by Eppenhof and 

Figure 3. Classification performance on individual features within g1 feature group. Seven individual features are denoted by f1, f2, etc. and combined 

features are denoted by f4/6, f3/4/6, and f1-7, respectively. Standard deviation is represented by error bars and the range of y-axis is adjusted to 

emphasize changes in values.
AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; lR, logistic Regression; MlP, Multi-layer Perceptron; SlT2, Salmonella 
typhimurium lT2.
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Peña-Castillo.30 The intuition behind this combination is that 
combining important attributes results in a more important fea-
ture set. More careful visual inspection was needed to observe 
the improvement of accuracy with the extension as the change is 
relatively small, while the other five metrics clearly demonstrated 
improved performance along with the increased size of com-
bined feature set, i.e. f4/6 ⩽ f3/4/6 ⩽ f1-7, where “⩽” indicates 
improved performance. Accordingly, G1 itself turned out to be 
the best combined feature group and it worked well with all 
seven metrics and four algorithms. Particularly, we found that 
AB and XGB performed well overall. Specifically, with G1 of 
STL2, AdaBoost and XGBoost achieved accuracy (0.937 ± 
0.009, 0.942 ± 0.008), balanced accuracy (0.758 ± 0.053, 0.78 
± 0.049), precision (0.72 ± 0.088, 0.748 ± 0.09), recall (0.539 
± 0.113, 0.583 ± 0.107), F1-score (0.606 ± 0.068, 0.642 ± 
0.056), AUROC (0.938 ± 0.038, 0.936 ± 0.041), and AUPR 
(0.698 ± 0.079, 0.701 ± 0.092), respectively. Also, with G1 of E. 
coli K12, AB and XGB achieved accuracy (0.925 ± 0.022, 0.933 
± 0.018), balanced accuracy (0.693 ± 0.08, 0.72 ± 0.076), pre-
cision (0.648 ± 0.217, 0.707 ± 0.185), recall (0.411 ± 0.154, 
0.46 ± 0.15), F1-score (0.493 ± 0.165, 0.547 ± 0.148), AUROC 
(0.884 ± 0.058, 0.881 ± 0.055), and AUPR (0.569 ± 0.163, 
0.575 ± 0.174), respectively.

The models evaluated with a single non-inclusive numerical 
feature and accuracy metric didn’t provide useful information 
regarding the importance of individual features. It rather gets 
stuck with the accuracy paradox as there exist imbalanced class 
distributions in both datasets. However, we observed that every 
feature captures a unique characteristic; thus, the combination 
of all seven features results in best classification performance. 
Our data confirm that features by Tang et al29 and Eppenhof 
and Peña-Castillo30 features work well for predicting sRNAs in 
our tested genomes.

Analysis of importance of individual feature groups 
(G1–G15)

We adopted the same idea of exploiting the importance of the 
individual features of G1 and recognized the importance of the 
individual feature groups. Like the individual features in the 
previous section, we measured classification performance on 
every individual feature group from G1 to G15 in terms of six 
learning algorithms with seven metrics. The overall perfor-
mance was consistently similar, regardless of learning algo-
rithms, evaluation metrics, and datasets with some variations; 
thus, we reported the performance only with the two best per-
forming classifiers, AB and XGB in Figure 4.

Tang et al29 analyzed contributions of individual feature-
based predictors as weights to their ensemble model, called 
WAEM, and concluded that all individual feature-based pre-
dictors were useful for improving the sRNA predicting per-
formance. Specifically, they recognized the importance of 
individual features as follows: high (G4 (F4), G6 (F5), G10 
(F12), G11 (F13), and G13 (F14)); and low (G2 (F1), G3 

(F2), G7 (F9), G8 (F10), G12 (F14), and G15 (F17)). See the 
detailed discussion on the optimal weights for their WAEM 
models in Figure 4 by Tang et al.29 Referring the seven sub-
plots in Figure 4, we recognized the importance of individual 
feature groups as follows: high (G10 and G11), medium high 
(G4, G5, G6, and G13), medium low (G8 and G12), and low 
(G2, G7, and G15), which is consistent with what Tang et al29 
observed in their study. Notice that Tang et al29 obtained the 
feature group importance as the contribution (or weight) to 
their specific ensemble model, while we recognized the fea-
ture group importance by directly measuring the classifica-
tion performance in terms of evaluation metrics, when a 
single feature group was used as an input for learning algo-
rithms, as we did for the assessment of the feature 
importance.

Still, G1 yielded stable results over all the algorithms as well 
as it performed better than the remaining 14 feature groups 
(G2–G15). Among the remaining 14 feature groups, G11 
results in the second-best performance and G7 performed the 
worst. We observed during the experimental study that the low 
performing single feature groups, particularly G2 and G7, 
incorrectly classified all test data into the negative class (i.e. one 
class assignment). Tang et  al29 hinted that no feature groups 
extremely poorly performed and different features could bring 
different information. Thus, we tested the performance with 
the two combined groups: G2–14 and G1–15. As displayed in 
Figure 4, G2–14 improved performance better than the other 
14 feature groups (i.e. G2 to G15) and G1–15 improved it fur-
ther, close to or slightly better than G1’s performance. 
Therefore, we conclude that the most consistent and optimal 
performance for each model comes from the use of all com-
bined feature groups (G1–15) rather than a single feature 
group.

Assessment of classif ication performance on 
combined feature groups

We considered 15 sequence characterizations (G1–G15) of 
each single sRNA sequence to numerical features. We 
employed six classification algorithms and seven performance 
assessment metrics. Then, we separately explored how classi-
fication performance changed with individual features, with 
individual feature groups, and with combined feature groups. 
Through stratified 10-fold CV, we recognized the three best 
forming groups of features, G1(7), G2–15(2222), and G1–
15(2229) and illustrated their performance in Figures 3 and 4.

G2–15(2222) feature group is a combination of 14 feature 
groups, which was a subset of the original feature groups by 
Tang et  al.29 It includes 2222 numerical features, which are 
independent from the seven features of G1(7) feature group. 
The 10-fold CV performance for G2–15(2222) feature group 
is better than each of the 14 individual feature groups as shown 
in Figure 4; however, it turned out that its performance is worse 
than the performance of G1(7).
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G1–15(2229) is a combination of G1(7) and G2–15(2222), 
by which it was intended to combine different information in 
the two sets of feature groups. It results in a total of 2229 
numerical features. We found that G1–15 performed consist-
ently better than G2–15 feature group and G1(7) feature 
group as shown Figures 4 and 5. Particularly, G1–15(2229) 
achieves best performance with AdaBoost and XGBoost 
algorithms, beating the two other tree-based ensemble meth-
ods, GB and RF. Furthermore, it highlights best performance 
when it is combined with AUROC and AUPR with stratified 
k-fold CV.

After inspecting the confusion matrix for each of the 10-fold 
CV folds, we found that both GB and RF assigned every input 
to the negative label instead of learning to differentiate the two 
class labels. This one class assignment resulted in a low AUROC 
for both models. Meanwhile, both AdaBoost and XGBoost 
demonstrated similar performance, maintaining the high per-
formance with the larger feature set. Specifically, this result 
hinted that the combined feature group, G1–15, might be a 
good feature set that matched well with specific 

learning models and evaluation metrics, resulting in the robust 
classification performance in learning the imbalanced class 
distributions.

As recommended in the literature, the four metrics, includ-
ing balanced accuracy, F1-score, AUROC, and AUPR, worked 
consistently with imbalanced class distributions. Particularly, 
AdaBoost and XGBoost with the largest feature set (G1–15) 
were consistently learning and accurately classifying the 
sequences. Another result worth noting is that the model com-
parisons consistently hold for the two datasets that were tested.

Performance with varying positive-to-negative 
instance ratios

Another variable factor that may affect the performance of 
machine learning models is the positive-to-negative (or nega-
tive-to-positive) instance ratio. We assessed the performance of 
all six learning algorithms using the positive-to-negative 
instance ratios from one balanced ratio (1-to-1) to nine imbal-
anced ones (from 1-to-2 to 1-to-10). For example, we used all 

Figure 4. Classification performance on individual feature groups with AdaBoost and XgBoost. left graphs represent classification performance for SlT2 

and right ones are for the E. coli K12 dataset. Standard deviation is represented by error bars and y-axis range is adjusted to emphasize changes in 

values.
AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; E. coli K12, Escherichia coli K12; SlT2, Salmonella typhimurium lT2.
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the known sRNA sequences as positive ones and adjusted the 
number of negative sequences so that the correct number of 
negative sequences for the specified ratio can be fed to the 
learning algorithm.

As before, the overall performance was consistently similar 
with a little variation, regardless of algorithms, metrics, and fea-
ture groups. Specifically, we observed three patterns of classifica-
tion performance change over varying positive-to-negative data 
ratios of the largest feature group (i.e. G1-15 with 2,229 fea-
tures) as shown in Figure 6: increasing, stable, and decreasing 
upon increasing negative-to-positive instance ratios. Similar pat-
terns were also observed in other individual feature groups (not 
reported). Specifically, as in the previous study by Tang et al,29 we 
found that accuracy increases as the number of negative instances 
increases, which means that the highest accuracy value was 
obtained at the positive-to-negative instance ratio of 1-to-10. In 
this case, it is highly probable that the learning algorithm experi-
ences the accuracy paradox condition, simply by assigning class 
labels to the major class. Therefore, it is known that accuracy is 

not a reasonable metric for imbalanced data distributions. Only 
AUROC performance maintains the stable (or horizontal) pat-
tern without much up and down fluctuations over varying 
imbalance ratios. Assume the case that the learning algorithm 
experiences the accuracy paradox because of the imbalanced 
class distributions. Therefore, if AUROC remaining the stable 
pattern as shown in Figure 6, then AUROC might not be appro-
priate for the case. We found that the remaining performance 
plots with precision, recall, balanced accuracy, F1-score, and 
AUPR show a decreasing trend along with an increase of the 
positive-to-negative imbalance instance ratios.

The increasing or decreasing trends over the increasing neg-
ative-to-positive instance ratios might be applicable to recog-
nize the balancing factor (i.e. the ratio between positive and 
negative instances) and/or the class labels of a set of instances 
as the expected trends can be estimated with adding and 
removing known instances. Accordingly, it can be a potential 
future work as it might be also adaptable to an online learning 
scenario with streamlining data.

Figure 5. Classification performance on combined feature groups. left graphs represent classification performance for SlT2 and right ones are for E. coli 

K12 dataset. Standard deviation is represented by error bars and y-axis range is adjusted to emphasize changes in values.
AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; E. coli K12, Escherichia coli K12; gB, gradient Boosting; lR, logistic 
Regression; MlP, Multi-layer Perceptron; RF, Random Forest; SlT2, Salmonella typhimurium lT2.
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Conclusion
The mean lengths of sRNAs in SLT2 and E. coli K12 are 
greater than the corresponding median as well as the grouped 
length distributions are skewed, which partially supports the 
criteria that obey Benford’s law. However, the expanded con-
formity tests (MAD, K-S test, and Chi-square test) do support 
for the 99.9% confidence interval, while it does not fully sup-
port for the 95% confidence interval. The deviations from 
Benford’s law might be attributed to the small subset (or sam-
ple) problem, lacking statistical power and representativeness, 
or a latent bias of different sRNA dynamics of functional 
domains toward interaction with their target genes.

Different from Eppenhof and Peña-Castillo30 and Tang et al,29 
we identified importance individual features (or feature groups) by 
directly measuring the performance of the metrics when a single 
attribute (or a single feature group) was used as an input for each 
learning algorithm, which is simpler and straight-forward. Three 
levels of feature importance in features in G1 feature group, 

previously identified in the literature, were recognized, including 
distance to the closest left ORF (f4), distance to the closest right 
ORF (f6), and distance to the closest Rho-independent termina-
tor (f3)). Also, the levels of feature group importance, previously 
identified in the literature, were recognized, including 4-RCkmer 
(G10) and 5-RCkmer (G11) as best feature groups, while 1-mer 
(G2) and 1-RCkmer (G7) as worst performing feature groups.

Combining a few well-performing features worked better 
than a single feature and combining all seven features (i.e. 
G1(7)) performed better than combining a few features as well 
as G2–15(2222) feature group. The best performing feature set 
is G1–15(2229), which consists of G1(7) and G2–15(2222). 
We validated that no single feature group performed extremely 
poorly, and different features could bring different information. 
GB and RF tended to result in one-class assignment as the fea-
ture set size increased. AdaBoost and XGBoost with G1–15 
feature group consistently generated high AUROC and AUPR 
values, indicating that both models similarly learned well for all 

Figure 6. Classification performance change over varying positive-to-negative data ratios of g1-15 feature group. left graphs represent classification 

performance for SlT2 and right ones are for E. coli K12 dataset. Standard deviation is represented by error bars and y-axis range is adjusted to 

emphasize changes in values.
AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; E. coli K12, Escherichia coli K12; gB, gradient Boosting; lR, logistic 
Regression; MlP, Multi-layer Perceptron; RF, Random Forest; SlT2, Salmonella typhimurium lT2.
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experimental settings. AdaBoost and XGBoost with G1–15 
feature group performed better with increased features. 
Therefore, it is worth extending this study to validate the per-
formance of the two ensemble learning algorithms with sRNAs 
in more genomes available in biological databases.

Author Contributions
This work is a product of the intellectual effort of the whole 
team and that all members have contributed in various degrees 
to the analytical methods used, the research concept, the exper-
iment design, and the manuscript preparation.

Supplemental Material
Supplemental material for this article is available online.

RefeRenCeS
 1. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell. 2009;136:615-628. 

doi:10.1016/j.cell.2009.01.043.
 2. Li W, Ying X, Lu Q , Chen L. Predicting sRNAs and Their Targets in Bacteria. 

Genomics Proteomics Bioinformatics. 2012;10:276-284. doi:10.1016/j.
gpb.2012.09.004.

 3. Fuli X, Wenlong Z, Xiao W, et al. A genome-wide prediction and identification 
of intergenic small RNAs by comparative analysis in Mesorhizobium huakuii 
7653R. Front Microbiol. 2017;8:1730-1730. doi:10.3389/fmicb.2017.01730.

 4. Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA 
secondary structure act independently to suppress IS200 transposition. Nucleic 
Acids Res. 2015;43:6511-6527. doi:10.1093/nar/gkv584.

 5. Bloch S, Węgrzyn A, Węgrzyn G, Nejman-Faleńczyk B. Small and smaller-
sRNAs and MicroRNAs in the regulation of toxin gene expression in prokary-
otic cells: a mini-review. Toxins (Basel). 2017;9:181. doi:10.3390/toxins9060181.

 6. Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria. 
Trends Genet. 2005;21:399-404. doi:10.1016/j.tig.2005.05.008.

 7. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: 
expanding frontiers. Mol Cell. 2011;43:880-891. doi:10.1016/j.molcel.2011. 
08.022.

 8. Bos J, Duverger Y, Thouvenot B, et al. The sRNA RyhB regulates the synthesis 
of the Escherichia coli methionine sulfoxide reductase MsrB but Not MsrA. PLoS 
ONE. 2013;8:e63647. doi:10.1371/journal.pone.0063647.

 9. Baker CS, Eöry LA, Yakhnin H, Mercante J, Romeo T, Babitzke P. CsrA inhib-
its translation initiation of Escherichia coli hfq by binding to a single site overlap-
ping the Shine-Dalgarno sequence. J Bacteriol. 2007;189:5472-5481. doi:10.1128/
jb.00529-07.

 10. Azam MS, Vanderpool CK. Translation inhibition from a distance: The small 
RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol Microbiol. 
2020;114:391-408. doi:10.1111/mmi.14514.

 11. Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA. Positive regula-
tion by small RNAs and the role of Hfq. Proc Natl Acad Sci USA. 2010;107:9602-
9607. doi:10.1073/pnas.1004435107.

 12. Chen J, Morita T, Gottesman S. Regulation of transcription termination of 
small RNAs and by small RNAs: molecular mechanisms and biological func-
tions. Front Cell Infect Microbiol. 2019;9:201. doi:10.3389/fcimb.2019.00201.

 13. Holmqvist E, Wagner EGH. Impact of bacterial sRNAs in stress responses. Bio-
chem Soc Trans. 2017;45:1203-1212. doi:10.1042/bst20160363.

 14. Mohd-Padil H, Damiri N, Sulaiman S, Chai S-F, Nathan S, Firdaus-Raih M. 
Identification of sRNA mediated responses to nutrient depletion in Burkholderia 
pseudomallei. Sci Rep. 2017;7:17173. doi:10.1038/s41598-017-17356-4.

 15. Thomason MK, Fontaine F, De Lay N, Storz G. A small RNA that regulates 
motility and biofilm formation in response to changes in nutrient availability in 
Escherichia coli. Mol Microbiol. 2012;84:17-35. doi:10.1111/j.1365-2958. 
2012.07965.x.

 16. Coornaert A, Lu A, Mandin P, Springer M, Gottesman S, Guillier M. MicA 
sRNA links the PhoP regulon to cell envelope stress. Mol Microbiol. 2010;76:467-
479. doi:10.1111/j.1365-2958.2010.07115.x.

 17. Guo MS, Updegrove TB, Gogol EB, Shabalina SA, Gross CA, Storz G. MicL, 
a new σE-dependent sRNA, combats envelope stress by repressing synthesis of 
Lpp, the major outer membrane lipoprotein. Genes Dev. 2014;28:1620-1634. 
doi:10.1101/gad.243485.114.

 18. Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC, Vogel J. SigmaE-
dependent small RNAs of Salmonella respond to membrane stress by 

accelerating global omp mRNA decay. Mol Microbiol. 2006;62:1674-1688. 
doi:10.1111/j.1365-2958.2006.05524.x.

 19. Barshishat S, Elgrably-Weiss M, Edelstein J, et al. OxyS small RNA induces cell 
cycle arrest to allow DNA damage repair. Embo J. 2018;37:413-426. doi:10.15252/
embj.201797651.

 20. Gao L, Chen X, Tian Y, et al. The novel ncRNA OsiR positively regulates 
expression of katE2 and is required for oxidative stress tolerance in Deinococcus 
radiodurans. Int J Mol Sci. 2020;21:3200. doi:10.3390/ijms21093200.

 21. Fröhlich KS, Gottesman S. Small regulatory RNAs in the enterobacterial 
response to envelope damage and oxidative stress [published online ahead of 
print July 6, 2018]. Microbiol Spectr. doi:10.1128/microbiolspec.RWR-0022- 
2018.

 22. Lalaouna D, Baude J, Wu Z, et al. RsaC sRNA modulates the oxidative stress 
response of Staphylococcus aureus during manganese starvation. Nucleic Acids 
Res. 2019;47:9871-9887. doi:10.1093/nar/gkz728.

 23. Chakravarty S, Massé E. RNA-dependent regulation of virulence in pathogenic 
bacteria. Front Cell Infect Microbiol. 2019;9:337-337. doi:10.3389/fcimb.2019. 
00337.

 24. Bobrovskyy M, Vanderpool CK. Regulation of bacterial metabolism by small 
RNAs using diverse mechanisms. Annu Rev Genet. 2013;47:209-232. 
doi:10.1146/annurev-genet-111212-133445.

 25. Jørgensen MG, Pettersen JS, Kallipolitis BH. sRNA-mediated control in bacte-
ria: An increasing diversity of regulatory mechanisms. Biochim Biophys Acta Gene 
Regul Mech. 2020;1863:194504. doi:10.1016/j.bbagrm.2020.194504.

 26. Altuvia S. Identification of bacterial small non-coding RNAs: experimental 
approaches. Curr Opin Microbiol. 2007;10:257-261. doi:10.1016/j.mib.2007.05. 
003.

 27. Georg J, Lalaouna D, Hou S, et al. The power of cooperation: experimental and 
computational approaches in the functional characterization of bacterial sRNAs. 
Mol Microbiol. 2020;113:603-612. doi:10.1111/mmi.14420.

 28. Grüll MP, Peña-Castillo L, Mulligan ME, Lang AS. Genome-wide identifica-
tion and characterization of small RNAs in Rhodobacter capsulatus and identi-
fication of small RNAs affected by loss of the response regulator CtrA. RNA Biol. 
2017;14:914-925.

 29. Tang G, Shi J, Wu W, Yue X, Zhang W. Sequence-based bacterial small RNAs 
prediction using ensemble learning strategies. BMC Bioinformatics. 2018;19:503. 
doi:10.1186/s12859-018-2535-1.

 30. Eppenhof EJJ, Peña-Castillo L. Prioritizing bona fide bacterial small RNAs 
with machine learning classifiers. PeerJ. 2019;7:e6304. doi:10.7717/peerj. 
6304.

 31. Ostir GV, Uchida T. Logistic regression: a nontechnical review. Am J Phys Med 
Rehabil. 2000;79:565-572. doi:10.1097/00002060-200011000-00017.

 32. Castro W, Oblitas J, Santa-Cruz R, Avila-George H. Multilayer perceptron 
architecture optimization using parallel computing techniques. PLoS ONE. 
2017;12:e0189369. doi:10.1371/journal.pone.0189369.

 33. Freund Y, Schapire RE. Experiments with a new boosting algorithm. Paper pre-
sented at: Proceedings of the Thirteenth International Conference on Interna-
tional Conference on Machine Learning; July 3-6, 1996; Bari, Italy.

 34. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 
2013;7:21-21. doi:10.3389/fnbot.2013.00021.

 35. Breiman L. Random forests. Machine Learn. 2001;45:5-32. doi:10.102
3/A:1010933404324.

 36. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Paper presented 
at: Proceedings of the 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining; August 13-17, 2016:785-794; San 
Francisco, CA.

 37. Liu B, Liu F, Fang L, Wang X, Chou KC. repDNA: a Python package to gener-
ate various modes of feature vectors for DNA sequences by incorporating user-
defined physicochemical properties and sequence-order effects. Bioinformatics. 
2015;31:1307-1309. doi:10.1093/bioinformatics/btu820.

 38. Krawczyk B. Learning from imbalanced data: open challenges and future direc-
tions. Progress in Artificial Intelligence. 2016;5:221-232. doi:10.1007/
s13748-016-0094-0.

 39. Haibo H, Yunqian M. Imbalanced datasets: from sampling to classifiers. In: He 
H, Ma Y, eds. Imbalanced Learning: Foundations, Algorithms, and Applications. 
New York, NY: IEEE; 2013:43-59.

 40. Valverde-Albacete FJ, Peláez-Moreno C. 100% Classification Accuracy Consid-
ered Harmful: The Normalized Information Transfer Factor Explains the Accu-
racy Paradox. PLoS ONE. 2014;9:e84217. doi:10.1371/journal.pone.0084217.

 41. Xingquan Z, Ian D, eds. Knowledge Discovery and Data Mining: Challenges and 
Realities. Hershey, PA: IGI Global; 2007.

 42. Ciza T, Balakrishnan N. Improvement in minority attack detection with skew-
ness in network traffic. https://ui.adsabs.harvard.edu/abs/2008SPIE.6973E. 
.0NT/abstract. Published 2008.

 43. Fernandes J, Irigoien X, Goikoetxea N, et al. Fish recruitment prediction, using 
robust supervised classification methods. Ecol Model. 2010;221:338-352. 
doi:10.1016/j.ecolmodel.2009.09.020.

https://ui.adsabs.harvard.edu/abs/2008SPIE.6973E


Jha et al 15

 44. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in 
Python. J Mach Learn Res. 2011;12:2825-2830.

 45. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced accuracy and 
its posterior distribution. Paper presented at: 2010 20th International Confer-
ence on Pattern Recognition; August 23-26, 2010:3121-3124; Istanbul, Turkey.

 46. Kelleher JD, Namee BM, D’Arcy A. Fundamentals of Machine Learning for Pre-
dictive Data Analytics: Algorithms, Worked Examples, and Case Studies. Cambridge, 
MA: The MIT Press; 2015.

 47. van Rijsbergen CJ. Information retrieval: new directions: old solutions. Paper 
presented at: Proceedings of the 6th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval; June 6-8, 1983; 
Bethesda, MD. doi:10.1145/511793.511831.

 48. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27:861-
874. doi:10.1016/j.patrec.2005.10.010.

 49. Davis J, Goadrich M. The relationship between Precision-Recall and ROC 
curves. Paper presented at: Proceedings of the 23rd International Conference on 
Machine Learning; June 25, 2006; Pittsburgh, PA. doi:10.1145/1143844.1143874.

 50. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the 
ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 
2015;10:e0118432. doi:10.1371/journal.pone.0118432.

 51. Lever J, Krzywinski M, Altman N. Classification evaluation. Nat Methods. 
2016;13:603-604. doi:10.1038/nmeth.3945.

 52. Jung Y, Hu J. A K-fold averaging cross-validation procedure. J Nonparametr Stat. 
2015;27:167-179. doi:10.1080/10485252.2015.1010532.

 53. Newcomb S. Note on the frequency of use of the different digits in natural num-
bers. Am J Math. 1881;4:39-40.

 54. Benford F. The law of anomalous numbers. Proc Am Philos Soc. 1938;78:551-572.
 55. Nigrini MJ, Wells JT. Benford’s Law: Applications for Forensic Accounting, Audit-

ing, and Fraud Detection. New York, NY: Wiley; 2012.
 56. Pietronero L, Tosatti E, Tosatti V, Vespignani A. Explaining the uneven distri-

bution of numbers in nature: the laws of Benford and Zipf. Physica A. 
2001;293:297-304. doi:10.1016/S0378-4371(00)00633-6.

 57. Friar JL, Goldman T, Pérez-Mercader J. Genome sizes and the Benford distribu-
tion. PLoS ONE. 2012;7:e36624. doi:10.1371/journal.pone.0036624.


