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Objective: Neuroimaging meta-analysis identified abnormal neural activity

alterations in patients with type 2 diabetes mellitus (T2DM), but there was

no consistency or heterogeneity analysis between di�erent brain imaging

processing strategies. The aim of this meta-analysis was to determine

consistent changes of regional brain functions in T2DM via the indicators

obtained by using di�erent post-processing methods.

Methods: Since the indicators obtained using varied post-processingmethods

reflect di�erent neurophysiological and pathological characteristics, we

further conducted a coordinate-based meta-analysis (CBMA) of the two

categories of neuroimaging literature, which were grouped according to

similar data processing methods: one group included regional homogeneity

(ReHo), independent component analysis (ICA), and degree centrality (DC)

studies, while the other group summarized the literature on amplitude of

low-frequency fluctuation (ALFF) and cerebral blood flow (CBF).

Results: The final meta-analysis included 23 eligible trials with 27 data sets.

Compared with the healthy control group, when neuroimaging studies were

combinedwith ReHo, ICA, and DCmeasurements, the brain activity of the right

Rolandic operculum, right supramarginal gyrus, and right superior temporal

gyrus in T2DM patients decreased significantly. When neuroimaging studies

were combinedwith ALFF andCBFmeasurements, therewas no clear evidence

of di�erences in the brain function between T2DM and HCs.

Conclusion: T2DM patients have a series of spontaneous abnormal brain

activities, mainly involving brain regions related to learning, memory, and
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emotion, which provide early biomarkers for clarifying the mechanism of

cognitive impairment and neuropsychiatric disorders in diabetes.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?RecordID=247071, PROSPERO [CRD42021247071].

KEYWORDS

functional neuroimaging, type 2 diabetes mellitus, functional magnetic resonance

imaging, mild cognitive impairment, coordinated-based meta-analysis

Introduction

China has the largest diabetes population, with a prevalence

rate of 12.8% (1). Type 2 diabetes mellitus (T2DM) accounts

for more than 95% of diabetes cases in China, which can

lead to a cognitive decline and emotional disorders (1, 2).

The report shows that one-quarter of T2DM patients have

mild cognitive impairment (MCI) and progress to dementia

at a rate of 8.7% per year (3). In addition, T2DM patients

may suffer from diabetes-related neuropsychiatric diseases,

such as depression, anxiety, and panic, which may develop

into depression in future (4, 5). These disorders severely

affect the quality of life of T2DM patients (6). Therefore, it

is necessary to assess the neural injury of T2DM so as to

provide a theoretical basis for effective intervention to delay

disease progression.

Functional magnetic resonance imaging (fMRI) is a non-

invasive imaging technique for measuring the activity of

oxygen-dependent neuronal activity. Together with arterial spin

labeling (ASL), fMRI is widely used to study the neuroimaging

mechanism of various neuropsychiatric diseases (7–9). Multiple

functional and cerebral perfusion indicators such as ALFF,

ReHo, ICA, DC, and CBF were used to explore the brain

alteration in patients with T2DM, and previous studies showed

many functional indicators in the anterior cingulate gyrus,

posterior cingulate gyrus, and frontal lobe (10–14). Although

the changes in some brain regions were consistent when using

different MRI indicators, the studies also found that a large

number of brain regions were inconsistent (10–27). This may be

due to limited sample size, differences in general clinical patient

data, and different methods of measuring the brain activity.
Therefore, there is an urgent need for meta-analysis to screen

brain dysfunction targets in T2DM patients with more clinical
reference value.

Previous meta-analyses including resting-state fMRI (rs-
fMRI) and ASL-MRI studies showed robustly reduced resting-

state brain activity in the bilateral lingual gyrus, left posterior

central gyrus, right inferior temporal gyrus, right cerebellum,

right insular lobe, and right posterior cingulate gyrus decreases

in T2DMpatients, while increased activity in the right precuneus

lobe and left superior frontal gyrus (28). This suggests that

T2DM had aberrant spontaneous brain activity. Although

these findings can provide insights into neuropathological

mechanisms of T2DM, previous meta-analyses have some

shortcomings. First, the research is based on the activation

likelihood estimation (ALE) method (29). As a coordinate-

based meta-analysis method, ALE can combine the consistent

results of multiple experiments (29, 30), it but lacks sensitivity

and heterogeneity analysis (29, 31). This makes it impossible

to verify the stability and reproducibility of the meta-analysis

results (29–32). In addition, previous studies combined different

functional imaging methods for meta-analysis (28, 33), however,

the physiological and the pathological significance of these

indicators are different when using different neuroimaging

methods (11, 14, 34–39).

Thus, we conducted a new meta-analysis using a more

reliable and accurate algorithm combining the permutation

of subject images (PSI) and Seed-based d Mapping (SDM)

software in two groups by different processing methods (14, 38),

separately reflecting the relationship between neural activity and

the intensity of neural activity in a local brain region (14, 34,

39). This study provides a precise neurobiological mechanism

of T2DM causing MCI and can help identify potential early

diagnosis and intervention biomarkers.

Materials and methods

Protocol and guidance

The study was performed according to the standards of

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) (See Supplementary Table S1) and 10 simple

rules for neuroimaging meta-analysis (40, 41). The protocol for

this neuroimaging meta-analysis was registered on PROSPERO

(CRD42021247071) (https://www.crd.york.ac.uk/prospero/).

Search strategy and study selection

Search strategy

The studies were searched in databases including MEDLINE

(void), PubMed, Web of Science, Cochrane Library, Elsevier

ScienceDirect from 1 January 2007 to 1 December 2021,

using the keywords (“Diabetes Mellitus, Type 2” OR “T2DM”
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OR “Type 2 Diabetes” OR “Diabetes Mellitus, Type II” OR

“NIDDM”) AND (“functional magnetic resonance imaging” OR

“fMRI” OR “functional neuroimaging” OR “Functional Brain

Imaging” OR “ALFF” OR “ReHo” OR “arterial spin labeling” OR

“ASL” OR “Cerebral Blood Flow” OR “CBF”) AND (“Cognitive

Dysfunction” OR “Mild Cognitive Impairment” OR “MCI” OR

“Cognitive Impairment” OR “Cognitive Disorder”) (33, 40). The

repetitive and unrelated articles were first excluded, and we

further reviewed the references cited in the remaining articles

(33). The corresponding author was contacted via email if the

information was not mentioned in original articles, such as

coordinate values andmanuscripts not online (41). Our research

was restricted to adults and was not limited to the language. In

total, two authors (ZY.L. and T.M.) searched the literature and

evaluated the quality of the retrieved articles independently (41).

If there were any discrepancies, the final decision was made by

the third author (LF.Y.) (See Supplementary material Table S1).

Inclusion criteria

The studies were included if they met the following

conditions: (1) the published article, rather than the abstract,

lecture, or letter, (2) studies with comparison made between

T2DM and healthy controls, (3) observational studies using

a voxel-based analysis to calculate ReHo, ICA, DC, ALFF, or

CBF changes in the whole brain, (4) the peak coordinates were

clearly reported in stereotactic three-dimensional coordinates

(Talairach or Montreal Neurological Institute, MNI) (40), (5)

studies from which the t value, z values, or p-values can

be extracted, (6) studies using the t-test of two independent

samples, and (7) those including adults subjects (18–65 years).

Exclusion criteria

We excluded studies as follows: (1) systematic review and

meta-analysis, (2) the study of the brain structure and task state,

(3) T2DM complicated with serious complications (diabetic

nephropathy, diabetic retinopathy, diabetic microangiopathy,

etc.), (4) studies with no healthy control group, (5) studies

with ROI analysis and small-volume correction (40), (6) those

with no available coordinates, and (7) the study quality score

(QS) <17 (31).

Meta-analysis of MRI functional
alterations

Grouping basis

According to different brain activity measurements, we

divided the included studies into two groups. The first group

reflected the relationship of neural activity in the brain,

including ReHo, ICA, and DC (14, 38). ReHo was the most

representative one based on the similarity of BOLD signal

fluctuation (38), reflecting the uniformity of blood oxygen level-

dependent (BOLD) signal in the brain. ICA used the method

of blind source separation to separate spatially independent

and time series-related functional networks so as to analyze the

relationship between networks. DC described the brain network

connection strength between a voxel and other voxels in the

whole brain, indicating the importance of this voxel as a network

node. The second group reflected the intensity of neural activity

in the brain, including ALFF and CBF (34, 39). ALFF reflected

the average intensity of the low-frequency part of each voxel

BOLD signal. CBF indirectly reflected the intensity of neural

activity by measuring cerebral blood flow.

Voxel-wise meta-analysis

Coordinate-based meta-analysis (CBMA) is a widely used

method (31), and we further used a new voxel-based algorithm

of the Seed-based d Mapping (SDM) with the permutation of

subject images (PSI-SDM version 6.21, https://www.sdmproject.

com) (42). The obvious advantage of the new algorithm, which

is refer to as PSI, is the use of standard statistical procedures,

which avoid the drawbacks of alternative procedures used in

current CBMA methods. CBMA uses the statistical alternative

procedures, which is not to test whether the effects are invalid

but to test whether the reported findings tend to be consistent

in some brain regions. A recent study shows that the previous

CBMA algorithm has two disadvantages (42). First, it relies

on several spatial assumptions, but the data may rarely meet

these assumptions, resulting in too liberal results. Second, when

brain regions are too scattered, its statistical ability will decline.

These adjustments are required for a correct control of the

FWER. SDM-PSI estimates the parameters using maximum

likelihood techniques to prevent that a single or few studies drive

the meta-analysis. This more reliable and accurate algorithm

can better control the false-positive rate (42). We divided the

brain function indicators into two groups and summarized the

abnormal brain activity in type 2 diabetic patients by using PSI-

SDM.

Significant peak coordinates were extracted from the

literature. Peak coordinates not in theMNI space were converted

using coordinate mapping software. Extracting t value, z value,

and p-value could be converted into t value through https://

www.sdmproject.com/utilities/?show=Statistics (42). In total,

seven standard steps were preformed according to the guideline

of PSI-SDM software: (1) global analysis, (2) pre-processing,

(3) mean analysis, (4) threshold analysis, (5) family-wise error

(FWE) correction, (6) threshold analysis, and (7) extract and

bias test.

The peak coordinates and effect size (e.g., t value) of the

different brain activity between T2DM patients and healthy

controls were extracted from each data set (31). According to

the results of the software developer’s research, the authors

adopted more rigorous methods to control false positives
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(full width at half-maximum [FWHM] = 20mm, permutation

= 1,000, threshold-free cluster enhancement [TFCE], family-

wise error rate [FWER]< 0.05, corrected peak height Z > 1,

cluster extent > 10 voxels) (42). It was worth noting that this

FWHM kernel was not to smooth the images but to assign

effect sizes of propinquity to reported coordinates (31, 43, 44).

Finally, BrainNet Viewer (https://www.nitrc.org/projects/bnv/)

was used for data visualization (22). In MNI Standard Space

Template (Brainmesh ICBM152), volume rendering was used to

display significant differences of cortical clusters.

Main outcomes

Brain functional alterations between T2DM and healthy

controls (HCs) were measured separately. Compared with HCs,

the patients with T2DM showed an inconsistent brain activity

area related to the cognitive function in the two groups.

Comparison analysis

Although the false-positive rate was controlled by using the

neuroimaging meta-analysis method based on the permutation

of subject images, some valuable brain coordinates were not

displayed because the correction is too conservative (42). Based

on this, we also used AES-SDM (Anisotropic Effect Size SDM

v5.15 https://www.sdmproject.com) to analyze this data set (44).

The first cut threshold ([FWHM] = 20mm, p-value < 0.0005

uncorrected, peak height Z > 1, cluster extent > 50 voxels) was

set more strictly than the default of the software ([FWHM] =

20mm, p-value < 0.005 uncorrected, peak height Z > 1, cluster

extent> 10 voxels) (42, 44). Finally, we showed the results of the

two versions.

Heterogeneity, publication bias, and evidence
quality

After FWE correction based on TFCE (p < 0.05), we used

PSI-SDM to extract the coordinates of abnormal brain areas

and their effect sizes (42). First, the heterogeneity analysis was

analyzed using PSI-SDM and I2 tests in Stata/SE 16.0 (Stata Corp

LP, College Station, TX, USA). We adopted fixed-effects models

(I2 < 50%) or random-effects models (I2≥ 50%) to incorporate

effect size (45, 46), if there was no significant heterogeneity.

Second, funnel plots and Egger tests were performed to

evaluate publication bias in our study (47, 48). Third, based on

previous high-quality meta-analysis, the quality of the studies

was assessed by examining checklists (Supplementary Table S2),

which was a specific method of neuroimaging meta-analysis

evaluation (31). At the same time, we also used the Joanna Briggs

Institute (JBI) critical appraisal checklist (49) to evaluate study

quality (Supplementary Table S2). The quality of the articles was

independently assessed by two reviewers.

Jackknife sensitivity analysis

Jackknife sensitivity was analyzed by AES-SDM (42, 44).

After preprocessing, sensitivity analysis was performed by

repeating the same analysis in the main interface of AES-SDM

(44). One study was excluded at a time to test the stability and

repeatability of the meta-analysis (31).

Intra-class correlation analysis

The intra-class correlation (ICC) is a descriptive statistic

that can be used when quantitative measurements are made

on units that are organized into groups (50). It describes how

strongly units in the same group resemble each other. In

functional connectomics, the ICC is commonly used to quantify

its test–retest reliability (50). The ICC was obtained from the

relationship between between-group mean square (MSB) and

within-group mean square (MSW) by IBM SPSS 20 software.

Subgroup and meta-regression analyses

To identify whether data processing methodology

influenced the brain functional alterations, subgroup meta-

analysis was performed in functional studies using ReHo, ICA,

and DC, respectively.

To explore the potential influence of demographic and

clinical variables including education, T2DM duration, HbA1c,

and the severity of cognitive impairment (Mini-Mental

State Examination [MMSE] score and Montreal Cognitive

Assessment [MoCA] score) in T2DM brain functional activity,

a random-effects general linear meta-regression in AES-SDM

was conducted (31, 33). Statistical significance was determined

to use a stringent threshold of FWHM = 20mm, p < 0.0005,

cluster-corrected, peak height Z > 1, and cluster >10 voxels

in meta-regression analysis. Regression analysis excluded

findings outside the brain regions detected in the main

meta-analysis (33).

Results

Eligible studies and sample
characteristics

We initially identified 1,231 records and eliminated 1,139

by deleting duplicate records and reading titles and abstracts.

We scrutinized references in studies that have not been ruled

out, seven more references were found that met the criteria

for inclusion. We excluded 69 studies after reading the full

text because six studies had serious complications (51–56),

eight studies had no healthy controls (57–64), 28 studies had

ROI analyses only (65–92), nine studies were methods of

brain structural analysis (93–101), nine studies did not report

coordinates (102–110) (sent to the author for help, no results),

the data used in the two studies are the same as the articles
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FIGURE 1

Flowchart to identify the eligible studies for meta-analysis. ROI, region of interest.

included in this study (111, 112), and seven studies had a quality

score of less than 17 (113–119). The final meta-analysis included

23 eligible trials with 27 data sets (Figure 1). We divided them

into two groups based on different brain imaging processing

strategies (11, 14, 34, 38, 39). The first group consisted of 17 data

sets, including 553 patients with simple T2DM, and the second

group included 11 data sets, with 340 patients. (Detailed general

demographic, clinical, and radiographic features are shown in

Tables 1–4) On the one hand, we observed an unbalanced

sex distribution between T2DM and HCs in the first group

( x2 = 13.423, P < 0.001). Significant differences were observed

between T2DM and HCs regarding age (standardized mean

difference [SMD] = 0.30, 95% confidence interval [CI] = [0.19,

0.42], Z = 5.04, P < 0.00001), there was no difference in the

education level (SDM = 0.14, CI = [−0.05, 0.34], Z = 1.42, P

= 0.16) and MMSE score (SDM = −0.16, CI = [-0.33, 0.02], Z

= 1.75, P = 0.08) between the T2DM and HC groups. However,

there were statistically significant differences in MOCA scores

(SDM = −0.91, CI = [−1.42, −0.40], Z = 3.48, P = 0.0005).

Among them, there was a gender-specific study (123), two

education-level studies (121, 123), two MMSEs (16, 17), and six

MOCA studies (11, 15, 21, 120–122), which were not analyzed

as detailed data on the subjects’ indicators were not provided.

On the other hand, in the second group, there was no significant

difference in age (SDM = 0.12, CI = [−0.03, 0.27], Z = 1.51, P

= 0.13), education level (SDM=−0.06, CI= [−0.21, 0.10], Z=

0.72, P = 0.47), and MMSE score (SDM = −0.16, CI = [−0.40,

0.08], Z= 1.32, P= 0.19) between T2DMpatients andHC, while

there was significant difference in sex ( x2 = 6.428, P < 0.01)

andMOCA score (SDM=−1.19, CI=[−1.98,−0.39], Z= 2.93,

P = 0.003). Among them, four research studies on MOCA have

no data (12, 13, 57, 124).

Abnormal function of the brain area
obtained by PSI-SDM

As shown in Figure 2, the brain functional activity of the

right Roland tegmentum, right superior marginal gyrus, and

right superior temporal gyrus in T2DM patients compared with

HCs decreased in group 1 (pTFCE−FEW = 0.018, effect size =

−0.31, CI = [−0.40, −0.23], cluster = 149 voxels), while there

was no significant difference after correction in group 2. The

results of PSI-SDM are summarized in Table 5.
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TABLE 1 Demographic, clinical, and cognitive characteristics of study patients and control subjects included in the meta-analysis (group 1).

Study Sex (male/female) Mean Age (SD) Education years (SD) T2DM duration HbA1c (%) (SD) MMSE (SD) MoCA (SD)

(SD) in years

T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC

Cui et al. (10) 14/15 11/16 58.3 (7.3) 57.8 (5.9) 10.4 (4.0) 10.2 (2.5) 9.3 (3.8) – 7.9 (1.7) 5.6 (0.4) 28.3 (1.4) 29.0 (1.1) 23.6 (2.9) 27.3 (1.1)

Cui et al. (15) 23/19 14/28 60.4 (7.0) 58.2 (6.3) 9.6 (3.8) 10.2 (2.3) 9.4 (4.7) – 7.9 (1.6) 5.6 (0.3) 28.3 (1.1) 28.7 (1.2) – –

Xia et al. (21) 21/17 17/15 58.6 (8.2) 55.6 (7.1) 9.7 (3.4) 10.4 (2.0) 9.9 (5.7) – 7.7 (1.7) 5.1 (0.5) 28.8 (1.1) 29.1 (1.2) – –

Liu et al. (24) 12/9 10/15 61.7 (5.3) 58.0 (7.9) 9.8 (2.7) 10.1 (2.8) 7.9 (5.5) – 9.6 (2.6) – 28.5 (1.5) 27.7 (1.4) 21.8 (1.4) 26.6 (0.8)

Cui et al. (11) 19/21 13/30 60.5 (6.9) 57.6 (6.6) 10.0 (3.4) 10.2 (2.3) 8.9 (5.0) – 7.8 (1.6) 5.6 (0.3) 28.3 (1.2) 28.7 (1.2) – –

Liu et al. (18) 17/8 13/12 52.2 (4.8) 52.1 (3.5) 11.0 (3.1) 11.2 (2.3) 7.7 (5.4) – 8.5 (1.7) 5.7 (0.5) 27.9 (1.9) 28.2 (1.5) 23.0 (2.9) 24.4 (2.6)

Peng et al. (120) 10/12 12/16 58.8 (7.9) 56.2 (6.9) 10.0 (2.1) 10.4 (2.1) 10.9 (3.4) – 8.1 (2.2) 5.5 (0.3) 28.9 (0.7) 29.2 (0.6) – –

Qu et al. (121) 11/15 10/14 57.6 (9.3) 54.2 (7.8) – – 12.1 (5.8) – 8.9 (1.7) 4.7 (0.6) 27.6 (1.6) 28.3 (1.3) – –

Peng et al. (122) 22/26 16/24 58.2 (8.6) 56.3 (6.6) 10.1 (2.9) 10.3 (2.1) 12.5 (–) – 8.5 (1.9) 5.4 (0.2) 28.9 (0.7) 29.2 (0.6) – –

Liu et al. (19) 28/19 25/22 58.7 (6.9) 57.4 (5.4) 10.6 (3.1) 10.8 (2.7) 8.9 (6.6) – 8.3 (2.1) 5.6 (0.4) 28.3 (1.5) 28.6 (0.8) 23.2 (2.9) 24.5 (2.3)

Yua et al. (14) 28/5 22/11 53.5 (8.4) 51.0 (5.3) 12.8 (2.4) 12.9 (3.5) 7.1 (5.2) – 8.1 (1.7) 5.6 (0.3) 28.9 (0.9) 28.5 (1.1) 26.5 (2.1) 26.8 (2.0)

Yub et al. (14) 28/5 22/11 53.5 (8.4) 51.0 (5.3) 12.8 (2.4) 12.9 (3.5) 7.1 (5.2) – 8.1 (1.7) 5.6 (0.3) 28.9 (0.9) 28.5 (1.1) 26.5 (2.1) 26.8 (2.0)

Xia et al. (25) 24/20 24/26 58.6 (7.4) 56.3 (6.4) 11.1 (1.7) 11.9 (2.1) 7.6 (6.0) – 8.1 (2.7) 5.0 (0.4) 28.6 (1.1) 29.1 (1.1) 27.2 (1.4) 27.1 (1.6)

Li et al. (17) 22/12 19/19 49.4 (5.6) 47.4 (6.8) 9.4 (2.4) 10.2 (2.3) – – 8.7 (2.2) – – – 26.3 (0.7) 28.0 (0.9)

Liu et al. (123) 26c 26c 51.9 (10.7) 48.2 (6.7) – – – – – – 26.9 (3.9) 28.7 (1.2) 23.5 (5.6) 26.1 (1.6)

Xiong et al. (26) 10/15 12/15 59.1 (6.2) 59.1 (6.4) 11.6 (3.3) 11.2 (2.6) 5.7 (4.6) – 7.2 (1.4) 5.3 (0.4) 28.6 (1.0) 28.4 (1.0) 28.1 (0.7) 28.8 (1.1)

Feng et al. (16) 14/6 7/13 36.5 (3.7) 34.1 (4.8) 11.9 (4.6) 14.4 (3.2) 3.8 (0.8) – 9.8 (2.1) – – – 27.0 (2.8) 28.0 (2.8)

Data are presented as mean (SD), or ratios. T2DM, type 2 diabetes mellitus; HC, healthy control; SD, standard deviation; HbA1c, glycosylated hemoglobin A1c; MMSE, mini-mental state examination; MoCA, montreal cognitive assessment.
a Data set of the indicator of degree centrality (DC).
b Data set of the indicator of mean regional homogeneity (mReHo).
c Sample size.
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TABLE 2 Imaging characteristics of the studies included in the meta-analysis (group 1).

Study Scanner Scan Software Indicator Frequency Smoothing Threshold (method) GMV Quality

duration range (Hz) kernel (mm) correction scoresa

Cui et al. (10) 3.0 T >6min SPM8, DPARSF, REST ReHo 0.01–0.08 4 P < 0.01 (AlphaSim corrected) Yes 17

Cui et al. (15) 3.0 T 8min SPM8, GIFT ICA <0.1 4 P < 0.05 (AlphaSim corrected) Yes 20

Xia et al. (21) 3.0 T 8min 6 s SPM8, DPARSF, REST, GIFT ICA 0.01–0.08 4 P < 0.05 (FDR corrected) Yes 18

Liu et al. (24) 3.0 T 8min SPM8, DPARSF, REST ReHo 0.01–0.08 4 P < 0.05 (AlphaSim corrected) No 17

Cui et al. (11) 3.0 T 6min SPM8, DPARSF, AFNI DC 0.01–0.1 4 P < 0.05 (AlphaSim corrected) No 17

Liu et al. (18) 3.0 T 8min 8 s SPM8, DPARSF, REST ReHo 0.01–0.08 4 P < 0.01 (AlphaSim corrected) Yes 19

Peng et al. (120) 3.0 T 8min SPM8, DPARSF, REST ReHo 0.01–0.08 4 P < 0.05 (AlphaSim corrected) Yes 20

Qu et al. (121) 3.0 T 8min SPM8, DPARSF, REST ReHo 0.01–0.08 6 P < 0.05 (FDR corrected) Yes 17

Peng et al. (122) 3.0 T 8min SPM8, DPARSF, REST ReHo 0.01–0.08 6 P < 0.05 (FWE corrected) Yes 17

Liu et al. (19) 3.0 T 8min SPM8, DPARSF, REST DC 0.01–0.08 4 P < 0.001 (AlphaSim corrected) Yes 19

Yub et al. (14) 3.0 T >6min SPM8, DPABI, REST DC 0.01–0.1 8 P < 0.05 (GRF corrected) Yes 20

Yuc et al. (14) 3.0 T >6min SPM8, DPABI, REST mReHo 0.01–0.1 8 P < 0.05 (GRF corrected) Yes 20

Xia et al. (25) 3.0 T >7min SPM12, DPABI, REST DC 0.01–0.08 6 P < 0.01 (FDR corrected) No 17

Li et al. (17) 3.0 T >5min SPM12, REST DC 0.01–0.08 6 P < 0.05 (GRF corrected) No 17

Liu et al. (123) 3.0 T 8min SPM8, DPARSF ReHo 0.01–0.08 8 P < 0.01 (AlphaSim corrected) No 17

Xiong et al. (26) 3.0 T 8min SPM12, DPABI zReHo 0.01–0.1 unknown P < 0.01 (AlphaSim corrected) No 18

Feng et al. (16) 3.0 T >6min SPM8, DPARSF DC 0.01–0.08 6 P < 0.05 (FWE corrected) Yes 19

GMV, gray matter volume; SPM, statistical parametric mapping; DPARSF, data processing assistant for resting-state fMRI; REST, the resting-state fMRI data analysis toolkit; DPABI, data processing and analysis for brain imaging; AFNI, analysis of

functional neuroimages; ReHo regional homogeneity; mReHo, mean regional homogeneity; zReHo, ReHo after z-transformation; ICA, independent component analysis; DC, degree centrality; FDR, false discovery rate; FWE, family-wise error; GRF,

Gaussian random field.
a Maximum score of 20 for each study.
b Data set of the indicator of degree centrality (DC).
c Data set of the indicator of mean regional homogeneity (mReHo).
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TABLE 3 Demographic, clinical, and cognitive characteristics of study patients and control subjects included in the meta-analysis (group 2).

Study Sex (male/female) Mean Age (SD) Education years (SD) T2DM duration HbA1c (%) (SD) MMSE (SD) MoCA (SD)

(SD) in years

T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC

Xia et al. (23) 15/13 13/16 58.7 (8.1) 57.7 (7.2) 9.9 (3.7) 11.0 (2.0) 9.8 (5.5) – 7.9 (1.7) 5.6 (0.4) – – 23.2 (3.1) 24.1 (2.6)

Wang et al. (20) 17/9 17/9 54.7 (10.4) 54.9 (9.8) 11.2 (3.8) 10.7 (3.2) 8.7 (6.3) – 8.3 (1.4) – 27.8 (2.5) 28.3 (1.3) 23.7 (3.0) 26.0 (2.8)

Cui et al. (10) 14/15 11/16 58.3 (7.3) 57.8 (5.9) 10.4 (4.0) 10.2 (2.5) 9.3 (3.8) – 7.9 (1.7) 5.6 (0.4) 28.3 (1.4) 29.0 (1.1) 23.6 (2.9) 27.3 (1.1)

Xia et al. (124) 17/21 21/19 56.0 (6.1) 57.1 (7.6) 9.6 (3.0) 10.3 (1.9) 7.1 (3.5) – 7.2 (1.1) 5.6 (0.3) 29.0 (0.9) 29.1 (1.0) – –

Liua et al. (60) 14/8 10/13 58.5 (9.4) 58.6 (8.7) 11.2 (2.7) 10.2 (2.9) – – 8.1 (1.5) 5.6 (0.4) 27.9 (1.3) 27.8 (1.4) – –

Liub et al. (24) 12/9 10/15 61.7 (5.3) 58.0 (7.9) 9.8 (2.7) 10.1 (2.8) 7.9 (5.5) – 9.6 (2.6) – 28.5 (1.5) 27.7 (1.4) 21.8 (1.4) 26.6 (0.8)

Cui et al. (12) 21/19 13/28 60.5 (6.9) 57.9 (6.5) 10.0 (3.4) 10.3 (2.3) 8.9 (5.0) – 7.7 (1.6) 5.6 (0.3) 28.3 (1.0) 28.6 (1.2) – –

Dai et al. (13) 19/22 16/16 65.5 (8.3) 67.3 (10.1) 15.4 (3.8) 16.1 (3.0) 9.9 (7.9) – 7.3 (1.3) 5.7 (0.3) 28.6 (1.5) 28.9 (1.6) – –

Yu et al. (14) 28/5 22/11 53.5 (8.4) 51.0 (5.3) 12.8 (2.4) 12.9 (3.5) 7.1 (5.2) – 8.1 (1.7) 5.6 (0.3) 28.9 (0.9) 28.5 (1.1) 26.5 (2.1) 26.8 (2.0)

Liu et al. (27) 24/13 17/20 57.6 (7.1) 57.9 (5.7) 11.6 (3.9) 10.9 (2.3) 8.7 (5.5) – 7.6 (1.5) 5.7 (0.4) 28.0 (1.5) 28.5 (1.2) 22.5 (2.7) 24.2 (2.7)

Data are presented as mean (SD), or ratios. T2DM, type 2 diabetes mellitus; HC, healthy control; SD, standard deviation; HbA1c, glycosylated hemoglobin A1c; MMSE, mini-mental state examination; MoCA, montreal cognitive assessment.
a The study topic is sub-band analysis of amplitude of low-frequency fluctuations in type 2 diabetes mellitus patients: a resting-state functional MRI study.
b The study topic is spontaneous brain activity alterations in T2DM patients with mild cognitive impairment: a resting-state fMRI study.
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TABLE 4 Imaging characteristics of the studies included in the meta-analysis (group 2).

Study Scanner Scan Software Indicator Frequency Smoothing Threshold GMV Quality

duration range (Hz) kernel (mm) (method) correction scoresa

Xia et al. (23) 3.0 T > 6 min SPM8, DPARSF, REST ALFF 0.01–0.08 4 P < 0.05 (AlphaSim corrected) No 19

Wang et al. (20) 3.0 T 7 min SPM8, DPARSF, REST ALFF 0.01–0.08 4 P <0.01 (AlphaSim corrected) Yes 18

Cui et al. (10) 3.0 T > 6 min SPM8, DPARSF, REST ALFF 0.01–0.08 4 P < 0.01 (AlphaSim corrected) Yes 17

Xia et al. (124) 3.0 T 45 mind SPM8 ASL – 6 P < 0.01 (FWE corrected) Yes 19

Liub et al. (60) 3.0 T 8 min SPM8, DPARSF, REST fALFF 0.01–0.027 4 P < 0.05 (AlphaSim corrected) No 17

Liub et al. (60) 3.0 T 8 min SPM8, DPARSF, REST fALFF 0.027–0.073 4 P < 0.05 (AlphaSim corrected) No 17

Liuc et al. (24) 3.0 T 8 min SPM8, DPARSF, REST fALFF 0.01–0.08 4 P < 0.05 (AlphaSim corrected) No 17

Cui et al. (12) 3.0 T 8 min SPM8, AFNI ASL – 6 P < 0.05 (AlphaSim corrected) No 18

Dai et al. (13) 3.0 T unknown SPM8 ASL – unknown P < 0.5 (FWE corrected) Yes 17

Yu et al. (14) 3.0 T > 6 min SPM8, DPABI, REST ASL – 8 P < 0.05 (GRF corrected) Yes 20

Liu et al. (27) 3.0 T unknown SPM8, DPABI ALFF 0.01–0.1 4 P < 0.05 (GRF corrected) No 18

GMV, gray matter volume; SPM, statistical parametric mapping; DPARSF, data processing assistant for resting-state fMRI; REST, resting-state fMRI data analysis toolkit; DPABI, data processing and analysis for brain imaging; FDG, fluoro-deoxy-glucose;

PMOD, PMOD Technologies, Ltd., Zurich, Switzerland; AFNI, analysis of functional neuroimages; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional ALFF; PET, positron emission tomography; ASL arterial spin labeling; FWE, family-wise

error; GRF, Gaussian random field.
a Maximum score of 20 for each study.
b Study topic is sub-band analysis of amplitude of low-frequency fluctuations in type 2 diabetes mellitus patients: a resting-state functional MRI study.
c Study topic is spontaneous brain activity alterations in T2DM patients with mild cognitive impairment: a resting-state fMRI study.
d The entire scan lasted 45min and included perfusion, anatomic, and other scanning oxygen level-dependent and diffusion tensor imaging.

F
ro
n
tie

rs
in

N
e
u
ro
lo
g
y

0
9

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fneur.2022.923310
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.923310

FIGURE 2

Meta-analysis results of the all 17 data sets comparing group 1 di�erences between T2DM patients and healthy controls.

TABLE 5 Clusters of group 1 di�erences in patients with T2DM compared to healthy controls.

Brain region MNI P-value Number of SDM-Z Egger’s test

and cluster breakdown coordinate Voxels value p-value)

Decreased in Group one Right Rolandic operculum (BA 48) 56,−30, 22 0.018 164 −4.277 0.870

Right supramarginal gyrus 64,−22, 18

Right superior temporal gyrus 62,−30, 18

Uncorrected results and subgroup
analysis are obtained by AES-SDM

In group 1, the indicators of brain function combining

ReHo, ICA, and DC increased in the left superior frontal gyrus

and right precuneus, while decreased in the right postcentral

gyrus, left lingual gyrus, and right supramarginal gyrus in

T2DM patients compared with HCs. In group 2, the indicators

including ALFF and CBF increased in the right and left

anterior cingulate/paracingulate gyri, while decreased in the

right linguistic gyrus and right middle occipital gyrus in T2DM

patients compared with HCs.

We analyzed five subgroups, namely, ReHo, ICA, DC, ALFF,

and CBF. The subgroup analysis showed that it was feasible to

divide the functional imaging methods into two groups, which

reflected the relationship of nerve activity and the intensity of

nerve activity. The results of ReHo and DC were consistent to

some extent (Figure 2). There was no significant difference in

ICA between T2DM patients and healthy people. Since there

are only two studies in ICA, the results are not shown in

Figure 2. The details of the analytical results were found in

Supplementary Tables S3, S4, Supplementary Figures S2, S3.

Analyses of heterogeneity and
publication bias

PSI-SDM software usedQ andH tests to assess heterogeneity

in the right Rolandic operculum (peak MNI coordinate: x =

56, Y = −30, Z = 22, p = 0.018, Z = −4.277, 164 voxels).
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FIGURE 3

Funnel plot of e�ect size of the right supramarginal gyrus.

But the results are inconsistent. Thus, we used Stata software

to evaluate its heterogeneity. The results showed that there was

significant heterogeneity (SDM = −0.31, 95% CI = [−0.40,

−0.23], I2 = 94.1%), and the effect size obtained by the

random-effects model was consistent with PSI-SDM (SDM =

−0.31, variance = 0.005362, Z = −4.277). The forest plot is

given in Supplementary Figure S4. Our study had no publication

bias (see Supplementary Table S5, Supplementary Figure S5), as

revealed by the funnel plot showing approximate symmetry

(Figure 3). In addition, it was observed that Egger’s test (P

= 0.870) detected no publication bias in our meta-analysis

(Table 5). Finally, we used Stata software to evaluate the

heterogeneity of group 1. The heterogeneity between ReHo,

ICA, and DC subgroups is not mainly determined by different

brain function processing strategies (Figure 4).

Jackknife sensitivity analysis

We performed sensitivity analysis based on AES-SDM. After

preprocessing, the whole-brain voxel sensitivity analysis was

performed by repeating the same analysis iteratively, eliminating

one data set at a time to test the reproducibility of the results. The

results are shown in Table 6.

Intra-class correlation analysis

The ICC analysis were performed by SPSS. In group 1, the

ICC scores of ReHo, ICA, and DC were 0.341, 0.850, and 0.437,

respectively, and 0.412 when combining indicators of ReHo,

ICA, and DC. The results of ICC are summarized in Figure 5.

Meta-regression

The meta-regression analysis showed that general

demographic data had no significant effect on the main

results. The lower MoCA scores in patients with T2DM were

associated with greater decreases in the brain function indicator

in the bilateral anterior cingulate/paracingulate gyrus (peak

MNI coordinate: x= 2, y= 32, z= 24, p= 0.0001, Z=−1.881,

149 voxels).

Discussion

The quantitative meta-analysis of whole-brain different

indexes of brain functions demonstrated differences between

T2DMpatients and healthy controls via PSI-SDM. The results of

meta-analysis showed that the brain function indexes of group

1 had a decreased function in the right Rolandic operculum,

right supramarginal gyrus, and right superior temporal gyrus.

The jackknife sensitivity analysis demonstrated that these peak

coordinates were highly reproducible. However, the subgroup

analysis did not have significant peak coordinates, possibly due

to inadequate data sets and over-conservative corrections.

Neurobiology and neuroimaging studies indicated that

decreased right Rolandic operculum (ROL.R) function is

associated with emotional processing such as depression, apathy,

and anxiety (9, 33, 83, 125, 126). A recent neuroimaging
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FIGURE 4

Forest plot of peak MNI coordinate.

systematic review highlighted the need to assess cognitive and

emotional impairments in T2DM patients, which may increase

the risk of mental health (127). Previous meta-analysis by AES-

SDM software also concluded that T2DMpatients had decreased

brain function in the ROL.R region (33), which is highly

consistent with our meta-analysis. Herein, we speculate that

T2DM patients may have increased risk of emotional disorders

due to damage in the ROL.R area. On the other hand, another

meta-analysis did not find abnormal ROL.R area, which may be

due to the use of all brain imaging strategies (28). In addition to

emotional processing, ROL.R plays a role in the sensory system

of visceral sensation together with the cingulate–operculum

network (125, 128, 129). Visceral sensation disorders may be

related to psychological states, such as depression, anxiety,

and stress (125). Negative emotions trigger cortisol release

to induce local immune activity, thereby changing intestinal

permeability and lowering probiotic levels (125, 130). Moreover,

the relationship between the brain and gastrointestinal organs

could be explained via the brain–gut axis theory (129). Previous

studies had also shown that T2DM might cause cognitive and

emotional impairment through the brain–gut axis (131, 132).

Thus, future studies on T2DM-induced MCI and emotional

disorders can focus on the brain–gut axis or ROL.R-related

network connectivity in future.

Beyond the ROL.R region in the cingulate–operculum

network, our meta-analysis also observed decreased brain

activity in the right supramarginal gyrus (SMG.R). The SMG.R

is involved in second-language acquisition and is essential in

learning and remembering (133). Social cognition studies have

shown that the SMG.R also has certain attention, memory,

language, and social behavior abilities (133). Recent studies

have shown that the SMG.R may be related to visuospatial

disorders and is essential in spatial orientation and semantic

arrangement (134). Visual spatial orientation disorder is also
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TABLE 6 Sensitivity analysis of the group 1.

Study R PCG R ROL L LG L SFG R PCu

Cui et al. (10)
√ √

×
√

×

Cui et al. (15)
√ √ √ √ √

Xia et al. (21)
√ √ √ √ √

Liu et al. (24)
√ √ √ √ √

Cui et al. (11)
√ √ √ √ √

Liu et al. (18)
√ √ √ √ √

Peng et al. (120)
√ √

×
√

×

Qu et al. (121)
√ √

× × ×

Peng et al. (122)
√ √

× × ×

Liu et al. (19)
√ √ √ √ √

Yua et al. (14)
√ √ √ √ √

Yub et al. (14)
√ √ √ √ √

Xia et al. (25)
√ √ √ √ √

Li et al. (17)
√ √ √ √ √

Liu et al. (123)
√ √ √ √ √

Xiong et al. (26)
√ √ √ √ √

Feng et al. (16)
√ √ √ √ √

Total 17 out of 17 17 out of 17 13 out of 17 15 out of 17 13 out of 17

R, right; L, left; PCG, postcentral gyrus; ROL, Rolandic operculum; LG, lingual gyrus; SFG, superior frontal gyrus; PCu, precuneus. Our sensitivity analysis was based on AES-SDM.
a Data set of the indicator of degree centrality (DC).
b Data set of the indicator of mean regional homogeneity (mReHo).

one of the manifestations of MCI (135). The meta-analysis

results of Li et al. (33) showed that the gray matter volume of

T2DM and healthy control groups decreased in the SMG. R. The

structural changes are consistent with the results of our meta-

analysis. Some studies have also reported that the ReHo value

is significantly reduced in the SMG.R between MCI patients

and HCs (134). Therefore, T2DM patients may have MCI,

which increases the risk of dementia. In addition, we observed

decreased spontaneous brain activity in the right superior

temporal gyrus, which was an important brain alternation for

patients with depression (136). Consistent with our research,

somemeta-analyses showed that the gray matter volume (GMV)

and neural activity of the superior temporal gyrus decreased

significantly in T2DM patients, which may be related to

emotional disorders (33, 137, 138). In future, the effects of

depression on the brain structure and function of patients with

diabetes should be consider independently.

Subgroup analysis showed that both ReHo and ICA/DC

subgroups found decreased brain function in the postcentral

gyrus and ROL.R in T2DM patients. It should be noted that

the ROL.R was an important brain region after correction. This

shows that ReHo and ICA/DC subgroups are consistent with

the conclusions of the main analysis. Sensitivity analysis also

proved the stability and repeatability of the ROL.R region. In

addition, our meta-regression analysis showed that the severity

of cognitive impairment was related to the activity of the bilateral

anterior cingulate/paracingulate gyrus. The bilateral anterior

cingulate/paracingulate gyrus was involved in the default mode

network and was highly related to cognitive and emotional

disorders (139, 140). Previous studies identified that T2DM

is an important risk factor for MCI and can accelerate the

progression of patients to dementia (141). In future, we need

to further explore the differences in brain functions between

T2DM with MCI and without MCI. However, this study had a

high heterogeneity. Therefore, a subgroup analysis on the effect

size was conducted using a general meta-analysis method to

assess the causes of heterogeneity. The results showed that the

difference between ReHo and ICA/DC was not the primary

source of heterogeneity. Previous studies have demonstrated

that comprehensive background such as the age, course of

disease, education level, emotional disorder, and biomarkers

like HbA1c were related to cognitive impairment (142, 143). In

addition, the brain regions of cortical atrophy in patients with

T2DM were also found in early Alzheimer’s disease (144). The

size of the GMV affects the brain function and cognitive level

in T2DM (144). Therefore, we speculated that the education

level, HbA1c, T2DM duration, and whole-brain mean GMV

could have caused the heterogeneity. We used meta-regression

analysis to show that the education level, HbA1c, and T2DM

duration had no significant impact on the results. However, we

did not have adequate data to correct the GMV. Therefore, we

speculated that GMV was the main cause of heterogeneity in

our meta-analysis.

The ICC analysis showed that the combined ReHo, ICA, and

DC was reliable, and the individual differences within group

are acceptable. A previous study found that ReHo, ICA, and
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FIGURE 5

Indicator of reliable brain function. The test–retest reliability was measured with intra-class correlation (ICC) for the following brain functional

indicator: regional homogeneity (ReHo), independent component analysis (ICA), degree centrality (DC), and ReHo, ICA, and DC combined. A

metric with moderate to almost perfect test–retest reliability (ICC ≥ 0.4) is commonly expected in practice.

VMHC are most reliable across examined voxel-wise metrics

(145, 146). An ICC score≥ 0.4 was considered to have moderate

to almost perfect test–retest reliability (145). In our study, the

reliability of ReHo is low, which may be caused by different

degrees of preprocessing, scan duration, imaging resolution,

and computational space (147). Although we have analyzed the

reliability and validity of individual differencemeasurement, our

evaluation is still unsatisfactory. It is believed that neuroimaging

researchers may be collecting larger amounts of suboptimal

data, rather than smaller amounts of higher quality data, and

this does not bode well for the field, particularly when it

comes to information and predictions at the individual level

(135). Therefore, this is both an opportunity and a challenge

for our research work in future. We will devote ourselves to

that, this misstep can be avoided by critical assessments of

reliability upfront.

Furthermore, our meta-analysis results of T2DM patients

were inconsistent with those of the recent meta-analysis of rs-

fMRI studies on T2DM using activation likelihood estimation

(ALE) (28). Xia et al. found that T2DM patients have decreased

functions in the left and the right lingual gyrus, left posterior

central gyrus, right inferior temporal gyrus, right cerebellar

culmen, right insular lobe, and right posterior cingulate cortex

and enhanced functions in the right precuneus and left superior

frontal gyrus (28). This inconsistency may be attributed to the
following limitations of the ALE meta-analysis (29, 42, 44).

First, ALE meta-analysis combines several methods of analyzing
brain function based on different principles, making the results
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difficult to interpret (29, 31). Due to the limited number of

studies on all analytic approaches of brain function, in the

current study, we divided different brain imaging strategies

into two categories, which is helpful to better understand

the aberrant spontaneous brain activity in T2DM. Second,

ALE does not develop sensitivity, heterogeneity, publication

bias, and meta-regression analysis (31, 39). The PSI-SDM and

AES-SDM used herein adopted and combined various positive

features from other existing meta-analysis methods, such as ALE

or multilevel kernel density analysis, and introduced several

improvements and new features (42, 44). Another meta-analysis

of abnormal brain areas of ALFF in patients with MCI showed

that integrating different analysis approaches and modalities is

not optimal (31). However, the meta-analysis of single indicator

of neuroimaging also has the limitation of the number of

studies. Thus, our study indicates that we can divide the

different functional imaging methods into reflecting intensity

and reflecting relationship groups when studies are scarce. But

we must carefully interpret the results.

The results obtained by Li et al. using AES-SDM are

consistent with our results to some extent (29). However, they

are based on AES-SDM and have some drawbacks because

the AES-SDM analysis results were not corrected (42, 44).

They found out the bilateral superior temporal gyrus/Rolandic

operculum, left middle and inferior temporal gyrus, left

supramarginal gyrus, the cerebellum, insula, and visual cortex

dysfunction in patients with T2DM (33). Our meta-analysis

did not reveal functional abnormalities of T2DM in the left

middle and infernal temporal gyrus, left supratrigonal gyrus,

the cerebellum, insula, and visual cortex. We believe that the

recent finding based on AES-SDM that T2DM has a wide range

of default-mode network anomalies may not be completely

accurate (33, 42, 44). There is no evidence that T2DM patients

have a wide range of default mode network anomalies. We need

to study the spontaneous abnormal brain function of patients

with T2DMmore deeply.

Finally, this meta-analysis also had some limitations. First,

like other methods in a coordinate-based meta-analysis, SDM

was based on the coordinates of the published study instead of

the raw data, limiting its accuracy (40, 42). Second, the meta-

analysis mainly included Asian samples, limiting its universality.

Third, the current meta-analysis could not determine a causal

relationship between T2DM and abnormal activity in brain

regions since all studies included were cross-sectional (40).

Fourth, although we speculated that heterogeneity in the meta-

analysis might be due to the GMV, there were insufficient data to

calibrate the results with GMV as a covariate.

Conclusion

Our comprehensive meta-analysis showed that T2DM had a

range of spontaneous abnormal brain activities, mainly involved

in brain regions associated with learning, memory, and emotion,

which is helpful to understand the neuropathophysiological

mechanism of T2DM. Although the results of single index

meta-analysis may be more explanatory, the repeatability of

the results of meta-analysis will be very low when there

are <10 studies on the same indicator. Therefore, our team

applied a strategy which divided the different functional imaging

processing methods into two groups, namely, reflecting the

intensity of neural activity in the brain and the relationship

of neural activity in the brain. We found that the abnormal

regions of different indexes have a certain consistency and high

stability and repeatability. The main reason for the first group of

heterogeneity was not caused by differences in indexes of brain

function. Although ReHo, ICA, and DC reflect the relationship

of neural activity in the brain, their heterogeneity cannot be

ignored. Therefore, we suggest that the results of a meta-

analysis of a single index may be more explicable when ample

studies are included. Conversely, when studies are scarce, we

can divide the different functional imaging processing methods

into reflecting intensity and reflecting relationship groups, but

we must interpret the results carefully. We believe that this

strategy is more reliable than a meta-analysis combining all

brain function processing methods, but more in-depth research

is needed.
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