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Abstract: Glycation occurs as a non-enzymatic reaction between amino and thiol groups of
proteins, lipids, and nucleotides with reducing sugars or α-dicarbonyl metabolites. The chemical
reaction underlying is the Maillard reaction leading to the formation of a heterogeneous group of
compounds named advanced glycation end products (AGEs). Deleterious effects have been observed
to accompany glycation such as alterations of protein structure and function resulting in crosslinking
and accumulation of insoluble protein aggregates. A substantial body of evidence associates glycation
with aging. Wnt signaling plays a fundamental role in stem cell biology as well as in regeneration and
repair mechanisms. Emerging evidence implicates that changes in Wnt/β-catenin pathway activity
contribute to the aging process. Here, we investigated the effect of glycation of Wnt3a on its signaling
activity. Methods: Glycation was induced by treatment of Wnt3a-conditioned medium (CM) with
glyoxal (GO). Effects on Wnt3a signaling activity were analyzed by Topflash/Fopflash reporter gene
assay, co-immunoprecipitation, and quantitative RT-PCR. Results: Our data show that GO-treatment
results in glycation of Wnt3a. Glycated Wnt3a suppresses β-catenin transcriptional activity in reporter
gene assays, reduced binding of β-catenin to T-cell factor 4 (TCF-4) and extenuated transcription of
Wnt/β-catenin target genes. Conclusions: GO-induced glycation impairs Wnt3a signaling function.
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1. Introduction

Aging-associated disabilities are generated by an accumulation of randomly occurring molecular
damages during life time, which affect the organism at multiple levels such as metabolism, immune
response, repair, and regeneration as well as altered inter- and intracellular communication. Typical
alterations detectable in aged tissues are increased concentrations of reactive oxygen species (ROS) and
concomitant increased DNA-damage, lipid and protein oxidation [1,2]. Often this is accompanied by
accumulation of insoluble protein aggregates (lipofuscin) [3,4] at least partially as a consequence of
impaired proteasome function [5]. In addition, glycation was reported to contribute to limited
degradation and function of proteins [6]. Glycation represents an important posttranslational
modification that significantly increases during aging and results in the formation of advanced
glycation end products (AGEs).
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AGEs are generated by an initial non-enzymatic reaction of amino groups with reactive carbonyl
groups of monosaccharides known as the Maillard reaction [7], thereby forming Schiff-base adducts.
These adducts are subsequently rearranged to so-called Amadori products which undergo further
oxidation and dehydration reactions leading to a large group of heterogeneous products. Up to the
stage of the Amadori products, adducts are basically reversible. Preferentially lysine residues, but also
other amino acids including arginine, histidine, tryptophan, or cysteine, are modified by glycation [8].
The most prominent and well-known AGEs identified in cells and tissues are carboxymethyllysine
(CML), carboxyethyllysine (CEL), pentosidine, and desoxyglucosone. Physiologically, these AGEs are
formed in response to so-called “dicarbonyl stress” [9] as given under conditions of hyperglycemia or
in the presence of highly reactive α-dicarbonyls (α-DCs) such as glyoxal (GO), methylglyoxal (MGO)
or 3-deoxyglucosone [10]. These α-DCs are inevitable byproducts of anaerobic glycolysis and lipid
peroxidation and in consequence, induce the formation of highly stable AGEs [11] which crosslink
proteins and lead to protease-resistant protein aggregates [12,13]. In this context, glycation-induced
modifications of extracellular matrix proteins resulting in intermolecular crosslinks lead to increased
stiffness of tissues and vessels and affect cell migration [14]. Furthermore, there is clear evidence that
glycation and AGEs lead to mitochondrial dysfunction [15,16] and impaired immune responses [17–19].
Glycation of growth factors such as platelet-derived growth factor (PDGF) [20] and insulin [21–23],
as well as receptors such as nerve growth factor (NGF)-receptor [24], were reported to affect
signaling functions.

In addition, AGE modification itself can induce signaling mainly through the receptor for advanced
glycation end products (RAGE), a multi-ligand transmembrane receptor containing immunoglobulin
domains [11,25]. RAGE-induced signaling contributes to aging-related inflammation and metabolic
diseases by modulation of multiple pathways including phosphoinositide 3-kinase (PI3K), Erk1/2 [26,27]
and Wnt signaling [28,29]. However, the outcome of AGEs and RAGE signaling appears to be a
double-edged sword with degenerative and protective effects [9,30]. This also appears to be true in
respect to the role of Wnt signaling in aging [31].

The canonical Wnt/β-catenin signaling cascade acts as a pivotal regulator of developmental
and pathogenesis pathways including cell stemness maintenance/differentiation, carcinogenesis,
and aging-related phenotypes [32,33]. Moreover, there is clear evidence for a role of the Wnt
pathway in mitochondrial respiratory capacity [34] and metabolic homeostasis, especially of glucose
metabolism [35]. Within the canonical Wnt signaling pathway, β-catenin is the central player. Normally,
excess β-catenin is rapidly degraded by the ubiquitin-proteasome pathway [36]. Activation of the
pathway leads to the stabilization of β-catenin and its accumulation within the cytosol and the
nucleus, where it interacts with T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription
factors [37–39] and thereby regulates transcription of multiple target genes. During recent years,
a multitude of other crosstalks and co-operations affecting the pathway have been identified [40].
Interestingly, variants of the TCF-4 (TCF7L2) gene have been associated with increased risk of type 2
diabetes [41].

Based on that knowledge, we hypothesized that Wnt ligands as secreted, cysteine-rich proteins [42]
are susceptible to α-DC-mediated modifications and that glycation might modulate their signaling
activities. For this study, we decided to use Wnt3a as a proof of principle to study effects of GO-treatment
on Wnt3a conditioned medium (Wnt3a CM). We observed that the ratio of phospho-β-catenin to
total β-catenin increased. As a further consequence, Wnt3a-induced activation of the β-catenin/TCF
transcription complex was reduced as shown by reporter gene assays and by decreased expression of
endogenous Wnt target genes.
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2. Materials and Methods

2.1. Cell Culture

Human embryonic kidney (HEK)-293 and Neuro-2a cells were maintained in high glucose
Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich, Steinheim, Germany) supplemented
with 10% (v/v) fetal bovine serum (FBS) (PAN-Biotech, Aidenbach, Germany) and 100 U/ml penicillin,
100 mg/ml streptomycin (Sigma) in a humidified 5% CO2 atmosphere at 37 ◦C.

2.2. Preparation of Wnt3a-Conditioned Medium (Wnt3a CM)

Wnt3a-secreting cells (L-M(TK-)Wnt3A) and the corresponding empty vector control cell line
were cultured in high glucose DMEM as mentioned above to produce Wnt3a CM and control CM [42].
Briefly, cells were seeded in 10 cm dishes at a 1:10 split. After 4 days of culture, the first batch of CM
was harvested. Cells were further incubated with replenished medium for additional 3 days. After
this, the second batch of CM was collected. CM was centrifuged at 2.500× g for 10 min. The abundance
of the Wnt3a protein in CM was confirmed by Western blotting and luciferase reporter gene assays.
The conditioned medium was stored at 4 ◦C for further experiments. Only the second batch of
conditioned medium was applied in the experiments. Before GO-treatment, CM was diluted 1:2 with
fresh complete DMEM.

2.3. GO-Treatment of Wnt3a CM and Recombinant Human Wnt3a

Glyoxal (GO) and methylglyoxal (MGO) were purchased from Sigma-Aldrich (Steinheim,
Germany). For glycation, conditioned media were pre-incubated with the indicated concentrations of
GO or MGO at 37 ◦C for 3 h and subsequently added to either HEK-293 or Neuro-2a cells for another
18 h. In a second approach, medium was first incubated with 1 mM or 2 mM GO at 37 ◦C for 5 h.
Then GO was removed by dialysis using membranes with a molecular weight cutoff of 4 kDa (Carl
Roth GmbH, Karlsruhe, Germany). Dialysis was conducted overnight in 2 liters of dialysis buffer
(phosphate buffered saline (PBS)) at 4 ◦C. For glycation of purified recombinant human Wnt3a protein
(#5036-WN/CF; R&D Systems, distributed by Bio-Techne GmbH, Wiesbaden-Nordenstadt, Germany),
0.5 µg protein was incubated with 2 mM GO for 5 h at 37 ◦C. Monoclonal anti-carboxymethyllysine
(anti-CML26) antibody was obtained from Acris/OriGene Technologies GmbH (Herford, Germany).

2.4. Luciferase Reporter Gene Assays

Assays were performed as previously reported [43]. In detail, cells were seeded into a 24
well plate with a density of 1 × 105 cells/well. The next day, cells were co-transfected with 500 ng
Topflash/Fopflash (pGL3-OT/OF) luciferase constructs (provided by Dr. Bert Vogelstein, Johns Hopkins
University, Baltimore, USA) [44] and 50 ng Renilla luciferase (Promega GmbH, Mannheim, Germany)
control plasmid using polyethyleneimine (PEI). Eighteen hours after transfection, cells were treated
with glycated Wnt3a CM or glycated control CM as indicated for 24 h. Subsequently, cells were lysed
in 150 µl/well passive phenylbenzothiazole (PPBT) buffer (100 mM K3PO4 pH 7.8, 0.2 % (v/v) Triton
X-100) and 20 µl of each sample lysate was separately subjected to Firefly- and Renilla-luciferase
measurement using a Mithras LB 940 Multimode Microplate Reader (Berthold Technologies GmbH,
Bad Wildbad, Germany).
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2.5. Immunoprecipitation and Western Blotting

Protein A-sepharose CL-4B (GE Healthcare, Freiburg, Germany) beads were pre-coupled with
anti-FLAG M2 antibody (Sigma-Aldrich, Schnelldorf, Germany) overnight at 4 ◦C. Cells were lysed in
immunoprecipitation IP buffer (50 mM Tris/HCl pH 8.0, 150 mM NaCl, 5 mM ethylenediaminetetraacetic
acid (EDTA), 1% (v/v) Triton X-100) with freshly added protease (Roche cOmplete, distributed by
Sigma-Aldrich, Germany) and phosphatase (Roche PhosSTOP distributed by Sigma-Aldrich, Germany)
inhibitors and lysates were then subjected to immunoprecipitation with anti-FLAG M2 pre-conjugated
beads for additional 2 h. After 3× washing, precipitated proteins were eluted with 2× sodium dodecyl
sulfate (SDS) sample buffer and separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and
analyzed by Western blotting with the indicated antibodies.

To investigate the effects of dialysis on GO-treated conditioned media HEK-293 and Neuro-2a cell
lysates were generated after 12 h incubation with dialyzed GO-treated Wnt3a CM and control CM.
Cells were solubilized in radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl pH 7.5, 150 mM
NaCl, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 1% (v/v) NP-40) containing protease inhibitor
and phosphatase inhibitor cocktails (see above). Western blots were performed using the indicated
antibodies anti-β-catenin (C14) (BD BioSciences, Heidelberg, Germany), anti-phospho-β-catenin
(Ser33/37) (Cell Signaling Technologies, Frankfurt/Main, Germany), anti- glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (Merck-Millipore, Darmstadt, Germany) according to the manufacturers’
recommendations. Anti-Wnt3a antibody was obtained from R&D Systems (distributed by Bio-Techne
GmbH, Wiesbaden-Nordenstadt, Germany).

2.6. RNA Isolation and Quantitative Reverse Transcription PCR (RT-PCR)

Total RNA extraction and cDNA synthesis were conducted according to the manufacturer’s
instructions using the NucleoSpin RNA II kit (Macherey and Nagel, Düren, Germany) and
the High-Capacity cDNA Reverse Transcription Kit (Life Technologies, Darmstadt, Germany).
Real-time PCR was performed using Applied Biosystems StepOnePlus system with BRYT Green
dye (2-Step RT-qPCR GoTaq®qPCR and RT-qPCR Systems, Promega GmbH, Mannheim, Germany)
as described previously [45]. Each PCR was set up in triplicates and performed from at least three
independent RNA preparations. Threshold cycle (Ct) values of the target genes were normalized
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Differential expression was calculated
according to the 2−∆∆Ct method. The following primer pairs were used for the detection of canonical
Wnt target genes: sp5 fwd: 5’-GGGGAGACTCAGCAGACG-3’, rev: 5’-TGGGTCCCTATGTCCGAA
G-3’; axin2 fwd: 5’-CAAGCCTGGCTCCAGAAG-3’, rev: 5’-GCATCCTCCGGTATGGAAT-3’; cyclin D1
fwd: 5’-GCTGTGCATCTACACCGACA-3’, rev: 5’-TTGAGCTTGTTCACCAGGAG-3’; GAPDH fwd:
5’-AGCCACATCGCTCAGACAC-3’, rev: 5’-GCCCAATACGACCAAATCC-3’.

2.7. Statistical Analysis

Statistical analyses were performed using SigmaPlot software (Systat Software GmbH, Erkrath,
Germany) with results presented as the mean ± standard deviation (SD). P-values of <0.05 were
considered statistically significant.

3. Results

3.1. Glyoxal Treatment Leads to Glycation of Medium Components

Glyoxal is formed in large amounts by lipid peroxidation [46] or at lower levels by slow
pH-dependent degradation of glucose [47] and actively reacts with amino-groups of proteins to
form advanced glycation end products (AGEs) (Figure 1). Wnt3a is a member of the Wnt family of
glycoproteins that are secreted into the cell culture supernatant. This so-called Wnt3a conditioned
medium (Wnt3a CM) can be used to stimulate the canonical Wnt signaling pathway in target cells.
In a first set of experiments, we tested the consequences of GO-treatment on proteins in Wnt3a CM
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and control CM in respect to protein glycation. Media were treated with increasing concentrations of
GO (0, 1, 2 mM) for 5 h at 37 ◦C to induce AGE formation. Subsequently, medium components were
separated by SDS-PAGE and analyzed by Western blotting with anti-carboxymethyllysine (CML26)
antibody to detect at least a fraction of potential AGEs that can form in response to incubation with
GO. As shown in Figure 2A, GO-treatment resulted in a dose-dependent increase of glycated proteins
of different molecular weights in the conditioned media. After Western blot detection, membranes
were stained with Coomassie blue to confirm equal loading (Figure 2B). The major detectable band
most likely represents bovine serum albumin. To examine Wnt3a after GO-treatment, Wnt3a was
immunoprecipitated from serum-free GO-treated Wnt3a CM and analyzed by Western blotting with
anti-Wnt3a antibody. GO-treatment resulted in a ladder of bands with a shift to higher molecular
masses (Figure 2C). The amount of precipitated Wnt3a appears to be lower than the protein precipitated
from supernatants not preincubated with GO. This is probably due to less efficient binding of modified
Wnt3a to the anti-Wnt3a antibody or impaired solubility. When we analyzed immunoprecipitated
Wnt3a from GO-treated CM with anti-CML26 antibody, we could not detect a clear glycation signal.
However, it was possible to show that Wnt3a can be directly modified by this non-enzymatic reaction
when we treated partially purified Wnt3a (bovine serum albumin free (BSA)-free) with GO and directly
analyzed the protein with the anti-CML26 antibody on a Western blot. A strong signal was detectable
for GO-treated Wnt3a. In contrast, when the same amount of untreated Wnt3a protein was loaded as a
control, no signal was detectable (Figure 2D).
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Figure 2. Glycation of conditioned media (CM) with GO. (A) Control CM and Wnt3a CM were treated
with different concentrations (0, 1, 2 mM) of GO for 5 h and analyzed by SDS-PAGE and Western blotting
with anti-CML26 antibody. (B) After Western blot detection the same membrane was stained with
Coomassie brilliant blue to show equal loading. The strong band corresponds to bovine serum albumin
of the cell culture medium. (C) Western blot detection of Wnt3a from L-M(TK-)Wnt3A cell lysates
(lane 1) or immunoprecipitated from serum-free Wnt3a CM (lane 2) or GO-treated Wnt3a CM (lane 3).
(D) Treatment of 0.5 µg of purified Wnt3a protein with 2 mM GO induced Wnt3a carboxymethylation
as detected with the anti-CML26 antibody on a Western blot. The untreated control was not modified.

3.2. GO-Treatment Inhibits the Activity of Wnt3a-Conditioned Medium

To test if the activity of Wnt3a is altered by GO-treatment, Topflash/Fopflash (TOP/FOP) reporter
gene assays in HEK-293 and Neuro-2a cells were performed. The Topflash reporter plasmid contains
three TCF/LEF response elements whereas in the Fopflash plasmid these sites are mutated. Activation of
the Wnt/β-catenin pathway induces binding ofβ-catenin to TCF/LEF and thereby activates transcription
of the Firefly luciferase reporter gene. First, HEK-293 or Neuro-2a cells were transiently co-transfected
with Topflash or Fopflash and Renilla luciferase (for normalization of transfection efficiency) plasmids.
Wnt3a CM and control CM were pre-incubated with different concentrations of GO (0, 0.1, 0.2, 0.5 mM)
for 3 h. The GO-treated media were subsequently diluted 1:2 with fresh medium and added to the
reporter plasmid-transfected cells. GO-treatment of Wnt3a CM induced a dose-dependent reduction of
the Wnt3a-stimulated transcriptional activity, both in HEK-293 (Figure 3A) and Neuro-2a (Figure 3B)
cells, while the control CM did not show major changes in response to GO-treatment. Different
batches of Wnt3a CM revealed similar results. Similar experiments were performed with increasing
concentrations of MGO and again revealed a dose-dependent reduction of the reporter gene activity
(Appendix A).
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Figure 3. The stimulating activity of Wnt3a-conditioned media (Wnt3a CM) was suppressed after
GO-treatment in reporter gene assays. HEK-293 (A) or Neuro-2a (B) cells were co-transfected with
Topflash (TOP) or Fopflash (FOP) plasmids together with the Renilla plasmid, which was used as an
internal control for transfection efficiency. Prior to control CM and Wnt3a CM stimulation, media
were pre-incubated with indicated concentrations of GO for 3 h at 37 ◦C, then added to the transfected
cells for additional 18 h. Luciferase reporter activity was measured. The graphs show mean values
±SD of n = 3 independent experiments, each measured in duplicate. Circles represent individual
experiments. Differences to non-glycated Wnt3a CM were analyzed by one-way ANOVA analysis.
* p < 0.05, ** p < 0.01.

Next, we wanted to exclude that the GO, which is still present in the Wnt3a CM, may modify
the Frizzled/ low-density lipoprotein-related protein (LRP) receptor complex at the cell surface and
thereby block receptor-mediated signal transduction. Therefore, GO-pretreated cell culture media
were subjected to dialysis to remove excess GO. As shown in Figure 4A, after removal of GO the
dose-dependent repressive effect of GO-pretreated Wnt3a CM was comparably to non-dialyzed CM
(see Figure 4A). Finally, glycated CM after dialysis was combined with non-glycated Wnt3a CM. In this
combination the activating property of Wnt3a CM was not impaired (Figure 4B). Again, comparable
results were obtained when different batches of Wnt3a CM were used. These observations suggested
that glycation of the Wnt3a protein accounts for the inhibitory effect whereas neither GO per se nor
other AGEs generated by GO-treatment of control CM contribute to the inhibitory effect.
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Figure 4. Effect of dialysis on GO-treated CM. Conditioned media were incubated with GO for 5 h at
37 ◦C and subsequently dialyzed overnight against PBS at 4 ◦C. (A) After GO removal, dose-dependent
reduction of glycated Wnt3a CM activity was still detectable in Topflash/Fopflash reporter gene assays.
(B) Dialyzed GO-treated control CM did not inhibit luciferase activity induced by non-glycated Wnt3a
CM. Values of non-glycated Wnt3a CM were normalized to 1. The graphs show mean values ±SD of
n = 4 independent experiments, each measured in duplicate. Circles represent individual experiments.
Differences to non-glycated Wnt3a CM were analyzed by paired t-test. *** p < 0.001.

3.3. Glycation of Wnt3a CM Affects Levels of Total β-Catenin and Phospho-β-Catenin

In the absence of a Wnt ligand, excess β-catenin is phosphorylated by casein kinase 1 (CK1) and
glycogen synthase kinase-3β (GSK3β) within the β-catenin destruction complex and subsequently
degraded by the ubiquitin-proteasome pathway [36,48]. In this context, we investigated the protein
levels of total β-catenin and phosphorylated β-catenin in HEK-293 and Neuro-2a cells after incubation
with GO-treated media (Figure 5). In the presence of glycated Wnt3a CM, total β-catenin protein levels
were reduced in a dose-dependent manner, while the amount of phospho-β-catenin (Ser33/Ser37)
relative to total β-catenin increased.

3.4. GO-Treated Wnt3a CM Affects Binding of β-Catenin to TCF-4

In line with the inhibition of transcriptional activity and the reduced amount of total β-catenin
detected in response to GO-treatment of Wnt3a CM, we assumed that β-catenin-binding to TCF-4 was
attenuated. To test this, Neuro-2a cells were transiently transfected with N-terminal 3xFLAG-tagged
TCF-4 and harvested 24 h later. TCF-4 was immunoprecipitated with Protein A-sepharose-CL-4B bound
anti-FLAG M2 antibody and analyzed for co-precipitated endogenous β-catenin by Western blotting.
Application of GO (0.5 mM)-treated Wnt3a CM resulted in the reduced co-immunoprecipitation of
β-catenin (Figure 6).
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3.5. Reduced Expression of Wnt Target Genes by GO-Treated Wnt3a CM

Finally, we performed quantitative RT-PCR to evaluate effects of glycated Wnt3a CM on the mRNA
expression of known Wnt/β-catenin target genes including sp5 [49], axin2 [50], and cyclin D1 [51] in
HEK-293 cells. Consistent with the assays described above, Wnt3a CM up-regulates expression of the
analyzed Wnt target genes. Glycation of Wnt3a CM with GO alleviated the expression of these target
genes in a dose-dependent manner (Figure 7).
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4. Discussion

Protein glycation is a spontaneous, non-enzymatic reaction of reducing sugars or α-DCs with
preferentially lysine, cysteine, and arginine residues in proteins, finally resulting in a set of different
modifications called AGEs. In consequence, protein structure and function are altered and often lead
to the accumulation of damaged macromolecules [52]. This study aims to determine whether Wnt3a
as a representative canonical Wnt family member can be modified by glycation and how this affects
its signaling activity. Wnt signaling regulates multiple processes crucial for embryogenesis, tissue
homeostasis and repair. Modulation of Wnt signaling may contribute to aging-associated impairment
of repair and regeneration and exhaustion of stem cells [31]. In this context, it has been shown that
intestinal stem cell regenerative capacity is reduced upon aging because of reduced canonical Wnt
signaling [53].

In this study, in vitro glycation of Wnt3a in cell culture supernatants isolated from Wnt3a-secreting
L-M(TK-) cells [42] was induced by addition of GO. Since this supernatant contained serum components
of the cell culture medium, supernatants of L-M(TK-) cells not overexpressing Wnt3a were used as
control CM to exclude that AGEs formed in response to GO-treatment are responsible for the
detectable effects. Untreated Wnt3a CM induced luciferase activity in reporter gene assay as reported
previously [45,54]. GO-treatment however, diminished the capacity of the Wnt3a CM to activate
transcription. A similar effect was observed for MGO. Glycation of medium components obviously
was not involved in the impairment as glycated control CM did not repress Wnt3a CM-induced
transcription. In addition, it can be excluded that AGEs generated in the glycated control cell culture
supernatant activated RAGE and, in this way, induced the observed repressive effect. Moreover,
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when GO-treated Wnt3a CM was dialyzed to remove the excess GO before addition to the reporter cells,
again a repressive effect was detectable. Glycation of components on the cell surface or within the cells
thus appears to not be involved in the observed reduction of the Wnt signaling activity. Unfortunately,
we did not succeed in proving that Wnt3a from conditioned media is glycated, even when concentrated
by immunoprecipitation. This may be due to the low concentration and solubility of Wnt proteins.
However, recombinant Wnt3a itself is glycated in response to GO-treatment, as shown by Western blot
analysis with an anti-carboxymethyllysine antibody. Future studies have to show if sufficient amounts
of endogenous Wnt proteins can be isolated to detect glycation, for instance by mass spectrometry.
In this context, it has to be considered that Wnt itself may represent an AGE, which can bind directly
to AGE-receptors (RAGEs). Therefore, it cannot be excluded that RAGE signaling contributes to the
inhibitory effect.

Taken together, our data indicate that glycation of Wnt3a impairs its signaling activity. Consistently,
we observed that addition of glycated Wnt3a CM resulted in increased phospho-β-catenin and reduced
total β-catenin levels, and consistently a reduced amount of β-catenin binding to TCF-4. This led to
a reduced expression of endogenous Wnt target genes as shown for sp5 (specificity protein 5) [49],
axin2 [50] and cyclin D1 [51] by quantitative RT-PCR. Cyclin D1 and the transcription factor sp5 are
involved in regulation of cell proliferation. Sp5 was reported to act as a context-dependent activator or
inhibitor of specific sets of Wnt target genes [55,56]. Axin2 as a component of the β-catenin degradation
complex acts as a feedback inhibitor of the canonical Wnt signaling pathway [57].

All our findings correlate with a reduced signaling activity as a consequence of Wnt3a glycation
(see model in Figure 8). However, at the moment we cannot explain how glycation of Wnt3a leads to
reduced signaling. Different modes have to be considered. Wnts as cysteine-rich proteins are potential
targets for oxidative damage and glycation. Oxidation and glycation of Wnt3a may inhibit its binding
to the Frizzled/LRP6 receptor complex due to structural changes in the Wnt3a protein. In addition,
Wnts are modified by glycosylation and lipid modifications [42]. Specifically, the lipid modifications
turn Wnts to hydrophobic molecules. Currently it is not fully understood how Wnts are transported
from the producing cell to the target cells [58]. Glycation may affect processes associated with Wnt
transport. Moreover, glycation may impair its already low solubility and induce its precipitation.
Preliminary assays to address the aspect of solubility in response to glycation however, do not allow to
finally confirm this assumption. Currently, it is also unknown how glycation affects the half-life of
Wnt molecules.
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Future studies have to confirm our in vitro results in vivo to justify that Wnt ligands indeed
can effectively be glycated in different processes during aging, such as impaired repair and stem
cell regeneration, or may contribute to the pathogenesis of diseases such as diabetes, osteoporosis,
or neurological disorders [59]. Nevertheless, this novel finding on Wnt3a glycation and its effect on
Wnt signaling sheds light on a new molecular mechanism that alters intercellular communication,
a hallmark of aging.
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Abbreviations

α-DCs α-dicarbonyls
AGE advanced glycation end product
βTRCP β-transducin repeat containing protein
BSA bovine serum albumin
CEL carboxyethyllysine
CK1 casein kinase 1
CM conditioned medium
CML carboxymethyllysine
EDTA ethylenediaminetetraacetic acid
FBS fetal bovine serum
GAPDH glycerinaldehyde 3-phosphate dehydrogenase
GO glyoxal
GSK3β glycogen synthase kinase-3β
IB immunoblot
IP immunoprecipitation
LEF-1 lymphoid enhancer-binding factor-1
LRP low-density lipoprotein-related protein
MGO methylglyoxal
NGF nerve growth factor
PBS phosphate buffered saline
PCR polymerase chain reaction
PDGF platelet-derived growth factor
PI3K phosphoinositide 3-kinase
RAGE receptor of advanced glycation end products
ROS reactive oxygen species
RT-PCR reverse transcription-PCR
TCF-4 T-cell factor 4
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