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Summary
Rest– activity patterns are important aspects of healthy sleep and may be disturbed 
in conditions like circadian rhythm disorders, insomnia, insufficient sleep syndrome, 
and neurological disorders. Long- term monitoring of rest– activity patterns is typi-
cally performed with diaries or actigraphy. Here, we propose an unobtrusive method 
to obtain rest– activity patterns using smartphone keyboard activity. The present 
study investigated whether this proposed method reliably estimates rest and activity 
timing compared to daily self- reports within healthy participants. First- year students 
(n = 51) used a custom smartphone keyboard to passively and objectively measure 
smartphone use behaviours and completed the Consensus Sleep Diary for 1 week. 
The time of the last keyboard activity before a nightly absence of keystrokes, and the 
time of the first keyboard activity following this period were used as markers. Results 
revealed high correlations between these markers and user- reported onset and off-
set of resting period (r	ranged	from	0.74	to	0.80).	Linear	mixed	models	could	estimate	
onset and offset of resting periods with reasonable accuracy (R2 ranged from 0.60 
to 0.66). This indicates that smartphone keyboard activity can be used to estimate 
rest– activity patterns. In addition, effects of chronotype and type of day were inves-
tigated. Implementing this method in longitudinal studies would allow for long- term 
monitoring of (disturbances to) rest– activity patterns, without user burden or addi-
tional costly devices. It could be particularly interesting to replicate these findings in 
studies amongst clinical populations with sleep- related problems, or in populations 
for whom disturbances in rest– activity patterns are secondary complaints, such as 
neurological disorders.
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1  | INTRODUC TION

Throughout nature, circadian rhythms interact with organisms’ be-
haviour,	and	humans	are	no	exception	(Wager-	Smith	&	Kay,	2000).	
Disturbances in these rhythms can have severe implications for 
wellbeing, health, and performance (Haraszti et al., 2014; Savvidis 
&	 Koutsilieris,	 2012).	 A	 prominent	 circadian	 rhythm	 is	 the	 sleep–	
wake pattern. For homeostasis and health, the sleep– wake patterns 
should be entrained to the 24- hr light– dark cycle. Despite similar 
timing of dawn and dusk, persons living in the same time zone show 
substantial inter- individual differences in their preferred sleep– wake 
pattern (Roenneberg, 2015).

Intended	rest	and	activity	times	may	differ	due	to	exterior	causes,	
e.g. work shifts and social obligations (Wittmann et al., 2006). 
Individual	characteristics	such	as	age,	sex,	and	preferences	also	in-
fluence timing of rest and activity episodes during the 24- hr day, e.g. 
older people tend to go to bed earlier than young adults (Thomas 
et	 al.,	 2014).	Given	 these	external	 and	 internal	 deviances	 in	 rest–	
activity patterns, a person’s specific phase of entrainment (chrono-
type) is commonly defined as either early, late or intermediate, with 
early types going to bed and getting out of bed substantially earlier 
than	 late	types	 (Wittmann	et	al.,	2006).	Assessment	of	deviances,	
causes and consequences of specific rest– activity patterns is rele-
vant for research purposes and clinical practice.

Insights in inter-  and intra- individual rest– activity cycles over a 
prolonged time can facilitate strategies for boosting mental perfor-
mance (Dijk et al., 1992; Valdez et al., 2008) and optimising diurnal 
activities	(Volk	et	al.,	2017).	Particularly	young	adults	may	experience	
challenges regarding healthy entrainments and stable rest– activity 
patterns. Other clinical populations may benefit from long- term rest– 
activity monitoring such as those with circadian rhythm disturbances, 
(self- imposed) sleep deprivation, or even central nervous system dis-
eases	that	include	sleep	or	rest–	activity	disturbances	(e.g.	Alzheimer’s	
disease,	Hahn	et	al.,	2014;	for	a	review,	see	Veatch	et	al.,	2017).

Assessment	 of	 rest–	activity	 patterns	 can	 be	 done	 using	 ques-
tionnaires asking participants to report their resting behaviour over 
a relatively broad lookback period, or by using “sleep diaries” asking 
about the previous sleep episode each day. These diaries are con-
sidered the “gold standard” for relatively precise subjective rest– 
activity rhythm monitoring, and standardised versions have been 
validated (e.g. the Consensus Sleep Diary; Carney et al., 2012; Maich 
et al., 2018). Digital sleep diaries have been developed to simplify 
completing and processing the data. However, for longitudinal stud-
ies it still requires significant effort from participants to complete 
these	diaries	daily.	Additionally,	people	might	forget	or	erroneously	
estimate the time they went to bed. Typing errors and omitted diary 
entries	make	daily	diaries	prone	to	missing	data.	Actigraphy	is	often	
included to compensate for these pitfalls and to attempt to monitor 
and quantify daily rest– activity patterns more objectively through 
monitoring movement activity captured via wrist- worn devices. This 
method requires participants to wear sensors that can introduce 
discomfort during sleep (Duignan et al., 2019) and distributing the 
devices among (numerous) participants might be challenging.

Sleep diaries and actigraphy have been widely used in studies 
amongst healthy populations, and in clinical settings to investigate rest– 
activity	 patterns	 such	 as	 sleep–	wake	 cycles	 (Sadeh	 &	 Acebo,	 2002).	
However,	given	the	extensive	use	of	smartphones,	especially	in	young	
adults	(Aoki	&	Downes,	2003),	one	could	exploit	smartphone	derived	
data sources to estimate rest– activity patterns, which would be less bur-
densome, given that people could use their own smartphones. This could 
be especially beneficial for longitudinal or demanding study designs.

Smartphones	have	previously	been	examined	as	tools	to	measure	
rest– activity patterns, although most studies rely on in- phone accel-
erometers to measure movements. This method demands users to at-
tach the smartphone to their body or have it besides them in bed (Fino 
et al., 2020; Gautam et al., 2015) and can require the apps to run in the 
background	continuously.	Alternatively,	one	could	monitor	smartphone	
interaction	 (e.g.	 using	 screen	on–	off	patterns;	Abdullah	et	 al.,	 2014).	
However, smartphone screens might also light up due to notifications, 
leaving it unclear whether any actual smartphone interaction occurred.

In contrast, smartphone keyboard activity can prove human in-
teraction and can therefore be more suited for unobtrusively mon-
itoring daily rhythms than other smartphone- based tools. In this 
study, we investigated whether a new, easy- to- use, and effortless 
rest– activity monitoring method utilising a custom smartphone key-
board	(Neurokeys)	proves	useful	as	a	proxy	for	rest–	activity	patterns	
in a student sample.

2  | METHODS

2.1 | Participants

Students from Eindhoven University of Technology were invited to 
join the project, ultimately generating data to use in class. In total, 51 
students	(age	range	17–	24	years,	M = 19.06, SD = 1.83) installed the 
Neurokeys	App	and	completed	sleep	diaries	(38	females,	12	males,	one	
participant undeclared). The average MSFsc (mid- sleep time on work/
lecture- free days corrected for accumulated sleep debt on work/lec-
ture days) was 5.02 (SD =	1.12;	range:	2.70–	7.63)	as	assessed	with	the	
Munich Chronotype Questionnaire (Roenneberg et al., 2003). On av-
erage, participants had 1.53 hr of social jetlag (SD = 1.04; range: 0.00– 
4.00	hr).	The	Pittsburgh	Sleep	Quality	Index	(PSQI;	Buysse	et	al.,	1989)	
indicated that the participants showed, on average, at least some sleep 
disturbances (M = 5.38, SD = 2.24; range: 2.00– 12.00).

2.2 | Instruments

2.2.1 | Smartphone	keyboard

The	Neurokeys	App	was	designed	by	the	Dutch	company	Neurocast	
B.V. to collect keystroke data from smartphones. It replaces the na-
tive phone keyboard with a smart keyboard, available for iOS and 
Android,	which	measures	 typing	 behaviour	 securely	 and	 unobtru-
sively. Collected keyboard activity is temporarily stored locally and 
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sent securely to cloud storage in batches. To guarantee privacy, in-
formation about the specific typed letters or words is not collected. 
In the present study, the timestamps of keystroke activities were 
used	to	estimate	rest–	activity	patterns	and	explore	the	relation	with	
user- reported rest– activity timing.

2.2.2 | Sleep	diary

The Consensus Sleep Diary (Carney et al., 2012) was used to 
measure user- reported sleep timing, duration, and sleep quality. 
Participants were asked to report sleep- related information about 
the previous night: what time they went to bed (bedtime), tried to 
sleep (try to sleep time), woke up (sleep offset), and got out of bed 
(time out of bed).	Additionally,	 they	estimated	how	many	minutes	
they needed to fall asleep (sleep latency). The sleep diary also ques-
tioned sleep quality, number and length of awakenings during the 
night, number and last moment of alcoholic and caffeinated drinks 
on the previous day, and whether people woke up by their alarms 
or not. Lastly, people could add comments to each day if desired.

2.2.3 | Munich	Chronotype	Questionnaire

The Munich Chronotype Questionnaire (Roenneberg et al., 2003) 
was developed to assess timing of sleep in a quantitative manner. It 
asks people to indicate their regular sleep- related times (e.g. wake-
 up time and bedtime) for both workdays and work- free days. Based 
on these responses, the mid- sleep time on free days was calculated, 
as well as the sleep debt on workdays. The resulting mid- sleep time 
on free days corrected for sleep debt on workdays (MSFsc) is widely 
used as a measure of chronotype (Wittmann et al., 2006).

2.2.4 | Pittsburgh	Sleep	Quality	Index

The PSQI (Buysse et al., 1989) aims to measure self- reported sleep 
quality with a lookback period of 1 month. It consists of 19 ques-
tions from which seven component scores are computed. The sum 
of these components can be used as an indicator of overall subjec-
tive sleep quality, and the questionnaire has been psychometrically 
validated	(Carpenter	&	Andrykowski,	1998).

2.3 | Procedure

Students were informed and invited to participate during a lecture. 
Participation was voluntary, and written consent was collected. 
The study was approved by the Ethics Committee of the Eindhoven 
University of Technology. Within the study, participants installed 
the	Neurokeys	App	on	their	smartphone,	completed	the	sleep	dia-
ries	daily,	received	eight	notifications	to	complete	experience	sam-
pling questionnaires at random moments throughout each day, and 

responded to app- generated questions from 16 to 22 September 
2019 (and an optional second week). In the present study, we report 
on the sleep diary and keystroke data. Students received a reward 
based	on	their	response	rates,	with	a	maximum	of	12.50	euro	(€).

2.4 | Data analysis

Data	 processing	 and	 modelling	 was	 performed	 using	 Python	 3.7.	
Obvious mistakes in the sleep diaries were corrected (e.g. changing 
12- hr notation to 24- hr notation if this was congruent with the other 
responses), and other improbable values were coded as missing.

Total bed period (TBP) in hours was computed by subtracting the 
bedtime to the time out of bed for each day. Sleep onset was calcu-
lated by adding sleep latency to the try to sleep time. User- reported 
total sleep period (TSP) in hours was computed by subtracting sleep 
onset from sleep offset, and thus refers to the episode from sleep 
onset to the final wake up time. Midpoint TSP was determined as the 
midpoint between sleep onset and sleep offset.

Using the keystroke timestamps, the longest time interval with-
out	keyboard	activity	between	19:00	and	15:00	hours	(on	the	next	
day) was considered the keystroke- absence period	 (KAP).	The	 time-
stamps of the last keyboard activity before, and the first keyboard 
activity after this interval were labelled last keyboard time and first 
keyboard time, respectively. Lastly, midpoint KAP was determined 
using the last and first keyboard times.

Correlation analyses were run between user- reported esti-
mates (bedtime, try to sleep time, sleep onset, sleep offset, time 
out of bed, TBP, TSP, midpoint TSP) and keyboard- based estimates 
of	resting	time	(first	keystroke,	last	keystroke,	KAP,	midpoint	KAP),	
for	each	day	separately.	In	addition,	Bland–	Altman	plots	(Altman	&	
Bland,	1983)	 adjusted	 for	 repeated	measures	 (Myles	&	Cui,	 2007)	
were created to visualise agreement between the user- reported and 
keyboard-	based	 estimates.	 Linear	 mixed-	effects	 models	 (LMMs)	
were	 fitted	 using	 Pymer4	 (version	 0.7.0;	 Jolly,	 2018),	 providing	 a	
Python interface to the lme4 package in R (Bates et al., 2015; R Core 
Team,	2017),	whereas	partial	R2 was calculated with the R package 
r2glmm	 (Jaeger,	2017).	 In	 these	models,	Participant	 ID	was	added	
as a random intercept to account for repeated measures over days 
within participants. Correlations between the predictors were in-
vestigated to prevent multicollinearity. Model residuals were inves-
tigated to see whether the models fitted the data properly.

To determine whether the time differences between user- 
reported and keyboard- based estimates differed significantly from 
zero, unconditional LMMs (null models, without predictors besides 
the intercepts) were performed with the differences between 
the two estimates used as outcome parameters. To predict user- 
reported bedtime, sleep onset, sleep offset, time out of bed, TBP 
and TSP with keystroke data, a series of LMMs were fitted with 
the user- reported estimates as outcomes. Each of these models 
included gender as a predictor based on earlier findings regarding 
gender differences in the timing of sleep (Roenneberg et al., 2004). 
For the LMMs predicting user- reported bedtime and sleep onset, 
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predictors included: the time of the last keyboard interaction and 
the number of hours the keyboard had been used on the day prior 
(to account for the regularity of keyboard use). The LMMs predict-
ing user- reported sleep offset and time out of bed also included the 
time of the first keyboard interaction and the number of hours the 
keyboard had been used on the following day. Finally, for the LMMs 
predicting	 user-	reported	 TBP	 and	 TSP,	 predictors	 included:	 KAP,	
number of hours with keystrokes on the previous day and number 
of hours with keystrokes on the following day.

Moreover, we investigated whether there were structural differ-
ences in the keyboard- based and user- reported estimates of rest– 
activity patterns as a function of type of day and chronotype by 
means of LMMs with either type of day (workdays versus weekend) 
or chronotype (early, intermediate versus late) as predictor.

3  | RESULTS

The results section is organised as follows: after descriptions of the avail-
able amount of data and the average self- reported timings within the 
sleep diaries, several types of analyses are described. The paragraphs 
regarding	“Onset	of	Sleep	Period”,	“Onset	of	Active	Period”	and	“Total	
Resting Period” are split into two parts. The first part quantifies differ-
ences between user- reported estimates and keyboard- based markers, 
while taking into account the clustered nature of the data. Within the 
second part, models are created that predict the user- reported esti-
mates from keyboard- based markers and other relevant predictors. 
Lastly, we investigated whether differences in timing due to type of day 
and chronotype are reflected in the keyboard- based markers.

3.1 | Available data

In	total,	participants	completed	291	sleep	diaries,	ranging	from	47	
entries on the first day to 36 entries on the last day of the study 

(82% completion rate). Rest timing estimates were possible for 
91% of sleep diary entries. For the remaining 33 entries, either 
the keyboard had not been used between 19:00 and 15:00 hours 
on the following day, or information was available for one end of 
the interval only. Therefore, the timing of the last or first keyboard 
interaction could not be determined, and, probably, the keyboard 
had not been used on 1 of the 2 days. Participants typically used 
their keyboard throughout the day, indicated by the number of 
hours during which keyboard activity was detected on a day 
(M = 13.13 hr, SD = 2.94). Mostly, users used the keyboard across 
at least 11 hr (i.e. the smartphone was used at least once within 
each hour).

3.2 | Sleep diaries

On average, students reported to have gone to bed at around 
23:55 hours (M = 23:56, SD = 01:42, range 20:00– 05:33 hours), 
tried to fall asleep at around 00:30 hours (M = 00:32, SD = 01:41, 
range 20:05– 06:50 hours), fallen asleep at 00:50 hours (M = 00:50, 
SD =	 01:43,	 range	 20:10–	7:50	 hours),	 woken	 up	 at	 around	
08:30 hours (M = 08:31, SD = 01:44, range 03:40– 13:35 hours) 
and gone out of bed at around 09:00 hours (M = 09:04, 
SD =	 01:47,	 range	 06:00–	14:15	 hours).	 Average	 user-	reported	
TBP was 9.11 (SD =	1.77)	hr	and	average	user-	reported	TSP	was	
7.70	(SD =	1.71)	hr.	On	average,	participants	reported	awakening	
once during the night (M = 1.03, SD = 1.43). On 56% of weekdays, 
participants woke using an alarm, compared to 36% of weekend 
days. For differences in timing of the resting period due to type of 
day (weekend versus weekdays) and chronotype, see correspond-
ing results sections. For a visualisation of the congruence between 
user- reported and keyboard- based data see Figure 1. Note that 
keyboard- based markers were calculated independently form the 
diary data, and that none of the keyboard data were removed 
based on the user- reported data.

F I G U R E  1   Visualisation of the user- reported and keyboard- based sleep estimates. The orange rectangles indicate total sleep period 
(TSP) and green rectangles time in bed according to the user. The blue dots denote keyboard activity, and the thick black line shows the 
keyboard-absence	period	(KAP).	The	text	indicates	how	often	people	woke	up	during	the	night,	according	to	self-	reports.	The	top	two	panels	
show users who used the keyboard shortly before and after their sleeping time. The third user reported falling asleep around 23:00 hours, 
although used the smartphone afterwards. The last panel shows a user who did not use the smartphone’s keyboard directly after waking up

(a)

(b)

(c)

(d)
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3.3 | Onset of rest period

3.3.1 | Keyboard-	based	and	user-	reported	onset	of	
rest period

The average last keyboard activity was at 00:01 hours, on aver-
age around 5 min later than user- reported bedtimes (M = 0.08, 
SD = 1.18, in hr), 30 min earlier than user- reported try to sleep 
times (M =	−0.50,	SD = 1.11, in hr) and 50 min earlier than user- 
reported sleep onset (M =	−0.81,	SD = 1.15, in hr; Figure 2 depicts 
distributions of differences). Unconditional LMMs were used to 
investigate whether these differences significantly deviated from 
zero	 on	 a	 group	 level.	 The	 fixed	 intercept	 in	 the	model	 for	 bed-
time (estimate = 0.06, SE = 0.10) was not significantly different 
from zero, t (48.45) = 0.60, p = .552, indicating that, on average, 
no	significant	difference	existed	between	the	user-	reported	bed-
time and the last keyboard time (Figure S1 depicts individual vari-
ation in these differences). Regarding try to sleep time and sleep 
onset, statistically significant differences were found (both p < 
.001; Table S1). For correlations between user- reported estimates 
of the resting period onset and last keyboard time for each day 
see Figure 3 (on average, rbedtime =	0.77,	rtry to sleep time = 0.80, rsleep 

onset =	0.78).	Bland–	Altman	plots	indicating	the	level	of	agreement	
between user- reported estimates and keyboard- based markers are 
depicted in Figure S2.

3.3.2 | Prediction	of	user-	reported	onset	of	
rest period

User- reported bedtime was predicted using a LMM with last key-
board time, number of hours with keystrokes on the previous day, 
and gender as predictors. Last keyboard time and the number of 
hours with keystrokes on the previous day contributed significantly 
to	the	prediction	 (Table	1).	 In	 total,	70.2%	of	 the	variance	 in	user-	
reported	bedtime	could	be	explained	(n =	273,	48	users).	When	only	
the	 fixed	effects	part	of	 the	model	was	used	 in	prediction,	64.7%	
of	the	variance	could	be	explained.	Using	these	same	predictors	to	
estimate	sleep	onset,	75.0%	of	 the	variance	could	be	explained	 in	
total,	with	65.9%	due	to	the	fixed	effects	(coefficients	in	Table	S2).	
For both bedtime and sleep onset, predictive power of keyboard- 
based estimates increased when data were selected with at least 
11 hr during which keyboard activity was detected on the previous 
day (Table S3).

F I G U R E  2   Distributions of difference scores between user- reported and keyboard- based estimates. Differences were computed by 
subtracting	the	user-	reported	estimates	from	the	last	and	first	keyboard	time	or	the	keystroke-absence	period	(KAP)
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3.4 | Onset of active period

3.4.1 | Keyboard-	based	and	user-	reported	onset	of	
active period

The average first keyboard activity after the night was at 
09:01 hours, which was, on average, around 30 min later than user- 
reported sleep offset (M = 0.50, SD = 1.19, in hr) and 2 min earlier 
than user- reported time out of bed (M =	−0.03,	SD = 1.18, in hr; 
Figure 2 depicts distributions of differences). LMMs investigating 

significance of these differences on a group level revealed that the 
intercept in the model for sleep offset did reach statistical signifi-
cance (Table S1), whereas the intercept of the model for time out 
of bed (estimate =	−0.04,	SE = 0.10) was not significantly differ-
ent from zero, t (46.10) =	−0.37,	p =	 .715.	This	 indicates	that	no	
significant	difference	existed	between	user-	reported	time	out	of	
bed and first keyboard time (Figure S1 shows individual variation 
in these differences). For correlations between user- reported esti-
mates for onset of the active period and the first keyboard activity 
for each day see Figure 3 (on average, rsleep offset =	0.74,	 rtime out of 

bed =	0.75).

F I G U R E  3   Correlations between last 
keyboard time and bedtime, try to sleep 
time, sleep onset (panel a), first keyboard 
time and sleep offset, time out of bed 
(panel b), and keystroke absence period 
(KAP)	and	total	bed	period	(TBP),	total	
sleep period (TSP) and midpoint TSP 
(panel c), all p < .05. The names of the 
days refer to the days on which the sleep 
diary was completed. The correlations 
are repeated for each day because of 
the dependencies in the data, and the 
results over the days should be seen as 
examples	to	show	the	stability	of	the	
relationships

(a)

(b)

(c)

Predictor Coefficient
Confidence 
interval T df p

Partial
R2

Intercept 0.64 [0.12, 1.16] 2.39 253.71 .018

Last keyboard 
time

0.73 [0.66, 0.80] 20.00 214.43 <.001 .62

Hours with 
keystrokes 
previous day

−0.06 [−0.10,	−0.02] −2.93 268.88 .004 .03

Gender 0.18 [−0.18,	0.54] 0.97 51.54 .338 .01

n =	273,	48	users.	The	unit	of	measurement	is	hr.

TA B L E  1   Coefficients in the linear 
mixed-	effects	model	(LMM)	predicting	
user- reported bedtime

Predictor Coefficient
Confidence 
interval t df p

Partial
R2

Intercept 0.72 [−0.56,	1.96] 1.15 259.22 .252

First keyboard 
time

0.81 [0.73,	0.91] 17.79 246.71 <.001 .56

Hours with 
keystrokes

0.07 [0.02, 0.13] 2.91 268.82 .004 .03

Gender 0.10 [−0.35,	0.55] 0.42 48.13 .674 .00

n =	274,	50	users.	The	unit	of	measurement	is	hr.

TA B L E  2   Coefficients in the linear 
mixed-	effects	model	(LMM)	predicting	
user- reported time out of bed
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3.4.2 | Prediction	of	user-	reported	onset	of	
active period

User- reported time out of bed was predicted using a LMM with first 
keyboard time, number of hours with keystrokes on the following 
day, and gender as predictors. First keyboard time and the number 
of hours on the following day contributed significantly to the pre-
diction	(Table	2).	Overall,	73.4%	of	the	variance	could	be	explained	
(n =	274,	50	users).	When	only	the	fixed	effects	part	of	the	model	
was	used	 in	prediction,	62.2%	of	 the	variance	could	be	explained.	
The	same	predictors	were	used	to	estimate	sleep	offset,	explaining	
72.2%	of	the	variance	with	random	effects	and	60.1%	with	only	the	
fixed	 effects	 part	 (Table	 S4	 describes	 coefficients).	 For	 both	 time	
out of bed and sleep offset, predictive power of keyboard- based es-
timates increased when data were selected with at least 11 hr during 
which keyboard activity was detected on the following day (Table 
S5).

3.5 | Total resting period

3.5.1 | Keyboard-	based	and	user-	reported	total	
resting period

Episodes	 without	 keyboard	 activity	 (KAP;	M = 9.00, SD =	 1.97)	
were, on average, smaller than user- reported TBP (M = 9.11, 
SD =	1.77)	and	 larger	than	TSP	(M =	7.70,	SD =	1.71).	Difference	
scores were calculated by subtracting user- reported estimates 
from	 KAP	 indicating	 an	 average	 difference	 with	 TBP	 of	 around	
6 min (M =	−0.10,	SD = 1.86, in hr) and an average difference with 
TSP	of	around	75	min	(M = 1.29, SD =	1.75,	in	hr;	Figure	2	depicts	
distributions of differences). LMMs were used to investigate sig-
nificance of these differences on a group level. The intercept of 
the model for TSP differed significantly from zero (Table S1), but 
the intercept for TBP did not (estimate =	−0.09,	SE = 0.18, t (46.20) 
=	−0.52,	p =	.607),	indicating	that,	on	average,	no	statistically	sig-
nificant	difference	existed	between	the	user-	reported	TBP	and	the	
KAP	(Figure	S1	shows	individual	variation	in	these	differences).	For	
correlations between user- reported estimates for the duration of 
the	total	resting	period	and	KAP	for	each	day	see	Figure	3	(on	aver-
age, rTBP =	0.47,	rTSP = 0.54).

3.5.2 | Prediction	of	user-	reported	total	
resting period

A	LMM	was	applied	to	predict	user-	reported	TBP.	Predictors	were	
KAP,	 the	number	of	hours	with	keyboard	activity	on	 the	previous	
day, the number of hours with keyboard activity on the current day, 
and	gender.	KAP	and	the	number	of	hours	during	which	keyboard	ac-
tivity was detected on the previous day were significant predictors 
(Table	3).	Overall,	the	model	explained	54.2%	of	the	variance	in	self-	
reported TBP across 268 observations from 48 users. When only 
the	fixed	effects	part	of	the	model	was	used	in	prediction,	36.0%	of	
the	variance	could	be	explained.	Using	the	same	predictors	to	esti-
mate	TSP,	a	total	of	54.2%	of	the	variance	could	be	explained,	and	
36.2%	with	fixed	effects	only	(Table	S6	describes	coefficients).	For	
both TBP and TSP, predictive power of keyboard- based estimates 
increased when data were selected with at least 11 hr of keyboard 
activity	on	the	previous	day	(Table	S7).

3.5.3 | Midpoint	of	total	resting	period

The	average	midpoint	KAP	was	at	04:31	hours,	which	was,	on	average,	
9.83 min earlier (M =	−0.16,	SD =	0.75,	in	hr)	than	the	midpoint	TSP.	A	
LMM investigating the significance of this difference on a group level 
showed that the intercept reached significance (Table S1), indicating 
a statistically significant difference between the midpoints of user- 
reported	TSP	and	KAP.	To	facilitate	later	comparisons	between	the	pre-
sent	study	and	that	of	Abdullah	et	al.	(2014),	95%	confidence	intervals	
around the mean difference were also computed, resulting in a mean dif-
ference of 9.83 ± 5.40 min compared to the TSP midpoint. For correla-
tions between midpoint TSP derived from user- reported estimates and 
midpoint	KAP	for	each	day	see	Figure	3	(on	average,	rmidpoint TSP = 0.86).

3.6 | Rest– activity patterns across days and 
chronotypes

3.6.1 | Differences	between	types	of	day

Rest– activity patterns were compared between weekend and 
workdays. On average, bedtime, try to sleep time, sleep onset, last 

Predictor Coefficient
Confidence 
interval t df p

Partial
R2

Intercept 1.96 [0.13, 3.80] 2.08 256.55 .038

KAP 0.57 [0.47,	0.68] 10.57 252.71 <.001 .27

Hours with keystroke 0.05 [−0.03,	0.12] 1.23 246.99 .219 .01

Hours with 
keystrokes previous 
day

0.11 [0.06,	0.17] 3.98 249.43 <.001 .05

Gender -  0.20 [−0.81,	0.42] −0.63 48.90 .535 .00

n =	268,	48	users.	The	unit	of	measurement	is	hr.	KAP,	keystroke-	absence	period.

TA B L E  3   Coefficients in the linear 
mixed-	effects	model	(LMM)	predicting	
user- reported total bed period (TBP)
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keyboard time, sleep offset, time out of bed, and first keyboard time 
were later during the weekend (Table 4 and Figure 4). LMMs were 
fitted to investigate whether type of day was a significant predictor 
for each of the time estimates, which was true for all user- reported 
and keyboard- based estimates (Table 5). See the Supplementary 
section on moderation analyses for the change in predictive power 
of the keyboard- based markers due to type of day.

3.6.2 | Differences	between	chronotypes

To compare different chronotypes, MSFsc scores were divided into 
three equally- sized groups. People with MSFsc <4.54 (M = 3.86, 
SD = 0.62, n = 16) were considered early, MSFsc 4.54– 5.54 were in-
termediate (M = 4.99, SD = 0.31, n = 15), and the remainder (M = 6.29, 
SD = 0.53, n = 15) late types. These group boundaries are similar to 
the ones suggested by Roenneberg et al. (2003). Visual inspection 
and descriptive statistics indicate that differences in chronotypes 
(early, intermediate, and late) were reflected in user- reported and 
keyboard-	based	estimates	(Table	6	and	Figure	5).	Examples	of	how	
keyboard data can serve as an actigraphy tool are shown in Figure 6, 
depicting a person with a relatively early, and a person with a rela-
tively late chronotype.

LMMs were fitted to investigate whether chronotype was a sig-
nificant predictor for each time estimate. The intermediate chrono-
type was used as the baseline to compare early and late types. Late, 
but not early chronotype was significantly different compared to 
the intermediate chronotype for user- reported and keyboard- based 
estimates	(Table	7).	See	the	Supplementary	section	on	moderation	
analyses for the change in predictive power of the keyboard- based 
markers due to chronotype.

4  | DISCUSSION

The present study investigated whether smartphone keyboard 
activity could be used to estimate rest– activity patterns. Both 

correlational analyses and LMMs showed that the detection of sim-
ple, unobtrusive markers such as the first and last keyboard interac-
tion can be powerful predictors of the onset of resting and active 
periods among students. Thus, smartphone keyboard activity can be 
employed	as	a	proxy	for	rest–	activity	cycles	within	this	population.

Regarding comparison between keyboard- based estimates and 
user- reported estimates, keyboard- based estimates for both the 
onset and offset of the total resting period were closer to user- 
reported bed- related estimates than user- reported sleep- related 
estimates. Specifically, the last keyboard time was closer to bedtime 
than to sleep onset, and the first keyboard time closer to time out of 
bed than to sleep offset. This indicates that keyboard activity pat-
terns correspond with the smartphone users’ intended start and end 
of resting periods, which could be monitored longitudinally using 
keystroke	logging	without	extra	effort	for	users.	Regarding	the	du-
ration of the resting period, the length of the interval without key-
board activity lay between the TBP and TSP, indicating the value of 
keyboard- based estimation as a rest– activity indicator.

The present results indicate that regularity of smartphone key-
board activity on the previous or following day improves the predic-
tion of user- reported estimates from the keyboard estimates. When 
data with a high number of hours during which keyboard activity 
was detected were selected in additional analyses, predictive power 
increased.	Moreover,	additional	exploratory	analyses	revealed	that	
keyboard- based estimates had higher predictive power for mark-
ers of the timing of the active period during weekdays compared to 
weekends and for relatively late compared to relatively early and in-
termediate chronotypes (see Supplementary materials). Differences 
in rest– activity timing due to type of day and (partly) chronotypes 
were reflected in the keyboard- based markers.

A	 limitation	of	using	keyboard	 interactions	as	a	proxy	 for	ac-
tivity is that the passive monitoring app may not capture situa-
tions where people interact with their smartphone without using 
the	keyboard,	 for	example	 turning	off	an	alarm.	Smartphone	un-
lock or touch events would prove interactions with their device, 
although gathering this information is not technologically feasi-
ble	 for	 iOS	devices.	An	alternative	would	be	 to	monitor	whether	

TA B L E  4  Mean	and	standard	deviations	for	sleep	timing	estimates	and	keyboard	use	before	and	after	keystroke-	absence	period	(KAP)	on	
workdays	and	in	the	weekend.	Times	are	calculated	as	the	difference	in	hours	from	midnight	(e.g.	−0.25	refers	to	23:45	hours)

Estimate

Workday Weekend

M SD M SD

User- reported

Time to bed −0.23 1.59 0.45 1.89

Try to sleep time 0.34 1.56 1.10 1.92

Sleep onset 0.66 1.59 1.39 1.94

Sleep offset 8.23 1.59 9.40 1.85

Time out of bed 8.76 1.64 9.96 1.86

Keyboard- based

Last keyboard time −0.11 1.79 0.41 2.09

First keyboard time 8.71 1.50 9.97 2.03
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the smartphone screen is lit. However, this may be generated by 
a notification and therefore cannot prove active smartphone in-
teraction,	 or	 corresponding	 wakefulness.	 Abdullah	 et	 al.	 (2014)	
used screen on– off events rather than keystrokes and achieved a 
23.8 ± 11.0 min deviation from user- reported mid- sleep time. The 
present study improved on this estimate, showing an average dif-
ference of 9.83 ± 5.40 min, indicating a 41.3% decrease in differ-
ence. This could facilitate improved estimation of circadian rhythm 
discrepancies from mid- sleep times within studies (Roenneberg 
et al., 2003). To our knowledge only one previous study has used 
a similar keyboard- based method, although this focussed on mood 
disturbances (Zulueta et al., 2018).

Compared with other smartphone- based attempts of rest– 
activity monitoring, the Neurokeys keyboard does not require con-
tinuous sensor monitoring, which might drain batteries (used by e.g. 
Abdullah	et	al.,	2014),	but	instead	replaces	a	native	component	(the	
keyboard)	on	the	smartphone.	Additionally,	 the	present	study	was	
conducted on the participants’ own smartphones (contrary to e.g. 
Zulueta et al., 2018), making implementation for users easier.

Demographically students are an interesting sub- group in which 
to study rest– activity behaviour and smartphone use given their 
technological connectedness. Young people use their smartphone 
keyboards more often (Forgays et al., 2014) and might also be more 
likely to use their smartphones in the evening compared to other 

F I G U R E  4  Boxplots	of	estimates	for	bedtime,	try	to	sleep	time,	sleep	onset,	sleep	offset	and	time	out	of	bed	(self-	reported)	and	first	and	
last	keyboard	time	(keyboard-	based)	for	both	workdays	and	weekend	days.	All	data	points	are	added	in	grey	on	top	of	the	boxplots
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ages.	A	caveat	 is	 that	while	 frequent	smartphone	use	makes	them	
more suited to monitor, this could potentially reduce comparability 
of the student- based data to other populations. However, students’ 
atypical rest– activity patterns make them a population of interest 
for keyboard activity markers in their own right. Generally students 
have large social jetlag (i.e. different rest patterns on days with and 
without social obligations; Wittmann et al., 2006), in that respect 
the student population forms a good test: there is more variation in 
e.g. the offset of the resting period, so the keyboard markers do not 
simply indicate the average offset of the resting period. It should be 
noted, however, that the majority of participants in the present study 
were students within the same study programme who were studied 
in the same week, so cohort effects could limit generalisability.

In addition to replication among students as well as other popu-
lations, data collection should be prolonged to increase reliability of 
found	effects.	Adding	collection	of	smartphone	interactions	to	lon-
gitudinal studies would allow for long- term rest– activity monitoring 
without requiring people to wear actigraphy devices or complete nu-
merous	sleep	diaries.	Additionally,	one	could	combine	sleep	diaries	
with the keyboard data at the start of a longitudinal study to make 
user- specific models and then continue data collection without the 
sleep diaries to estimate rest– activity patterns for a longer period 
(Abdullah	et	al.,	2014	performed	a	similar	approach).	Building	mod-
els per participant like that would potentially be more accurate than 
population- level models.

Estimate
Confidence 
interval t df p

Bedtime

Intercept 0.26 [−0.58,	0.05] −1.63 58.48 .108

Type of day 0.70 [0.32, 1.09] 3.58 242.00 <.001

Try to sleep time

Intercept 0.30 [−0.03,	0.63] 1.79 57.09 .079

Type of day 0.81 [0.44, 1.18] 4.30 239.21 <.001

Sleep onset

Intercept 0.62 [0.28, 0.95] 3.65 58.09 <.001

Type of day 0.76 [0.38, 1.13] 3.99 239.96 <.001

Last keyboard time

Intercept −0.17 [−0.57,	0.22] −0.87 56.12 .387

Type of day 0.52 [0.13, 0.91] 2.61 240.81 <.001

Time out of bed

Intercept 8.72 [8.38; 9.06] 50.91 60.46 <.001

Type of day 1.91 [0.83, 1.55] 6.442 244.27 <.001

Sleep offset

Intercept 8.18 [7.84,	8.51] 48.23 60.05 <.001

Type of day 1.16 [0.81, 1.50] 6.51 243.93 <.001

First keyboard time

Intercept 8.66 [8.32, 9.00] 50.62 58.25 <.001

Type of day 1.24 [0.29,	0.70] 7.13 242.55 <.001

The unit of measurement is hr.

TA B L E  5   Coefficients in the linear 
mixed-	effects	models	(LMMs)	predicting	
user- reported and keyboard- based 
estimates from type of day (weekend 
versus workdays)

TA B L E  6   Mean and standard deviations for sleep timing 
estimates and keyboard use before and after keystroke- absence 
period	(KAP)	for	different	chronotypes.	Times	are	calculated	as	the	
difference	in	hours	from	midnight	(e.g.	−0.25	refers	to	23:45	hours)

Estimate

Early Intermediate Late

M SD M SD M SD

User- reported

Time to 
bed

−0.75 1.70 −0.15 1.64 0.77 1.56

Try to 
sleep 
time

−0.15 1.76 0.43 1.63 1.42 1.40

Sleep 
onset

0.12 1.76 0.80 1.66 1.73 1.44

Sleep 
offset

7.96 1.17 8.48 1.71 9.38 1.90

Time out 
of bed

8.44 1.26 8.94 1.74 9.98 1.95

Keyboard- based

Last 
keyboard 
time

−0.80 1.78 −0.14 1.78 1.21 1.62

First 
keyboard 
time

8.55 1.50 8.75 1.54 9.86 1.86
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In the present study, keyboard markers were compared to self- 
reports completed after waking. Keyboard activity inherently proves 
active interaction, but can only estimate which periods of inactiv-
ity indicate resting. Comparing keyboard- based estimates to those 
made by another objective method, such as actigraphy, would be 
an	interesting	next	step;	however,	comparison	is	difficult	given	ac-
tigraphy	 measures	 a	 conceptually	 different	 construct.	 Actigraphy	
assesses physical, indeliberate movements, whereas smartphone 
keyboards record intended behaviour.

Keyboard- based markers could enable research into disrupted 
rest– activity patterns and encourage the implementation of longitu-
dinal study designs taking advantage of data gathered objectively and 

unobtrusively in a real- world setting. This might be helpful within clini-
cal sleep populations (e.g. to monitor treatment effects), or other popu-
lations benefiting from longitudinal rest– activity based insights such as 
neurological populations. For these patients, resting patterns are often 
altered and can be important secondary outcomes. Especially for sec-
ondary outcomes, unobtrusive monitoring should be preferred to limit 
user-	burden.	For	example,	the	tool	could	be	included	in	studies	investi-
gating changes in resting patterns over the course of multiple sclerosis.

To conclude, the present study is the first into the use of smart-
phone keyboard activity to estimate rest– activity patterns. Results 
showed that keyboard- based markers have the potential be used as a 
proxy	for	the	onset	and	the	offset	of	resting	periods	within	a	student	

F I G U R E  5  Boxplots	of	estimates	for	bedtime,	try	to	sleep	time,	sleep	onset,	sleep	offset	and	time	out	of	bed	(self-	reported)	and	first	and	
last	keyboard	time	(keyboard-	based)	for	early,	intermediate	and	late	chronotypes.	All	data	points	are	added	in	grey	on	top	of	the	boxplots
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sample, and generalisation to other samples should be investigated. 
Given their effortless monitoring method (users merely install a differ-
ent smartphone keyboard); these markers could be gathered in longitu-
dinal	studies	or	clinical	practice	without	extra	burden	for	participants.	
Keystroke timing, and other smartphone interaction- based data could 
also be used as a monitoring tool alongside treatment of diseases that 
involve sleep difficulties, the accuracy of which could improve with in-
creasing monitoring durations and addition of user- based modelling.
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Estimate
Confidence 
interval t df p

Bedtime (n = 263, 45 users)

Intercept −0.19 [−0.64,	0.27] −0.79 41.39 .436

Chronotype (early) −0.59 [−1.23,	0.06] −1.75 41.67 .087

Chronotype (late) 0.94 [0.29, 1.60] 2.80 42.18 .008

Try to sleep time (n = 262, 45 users)

Intercept 0.39 [−0.09,	0.86] 1.58 41.83 .121

Chronotype (early) −0.56 [−1.23,	0.11] −1.61 42.14 .114

Chronotype (late) 1.02 [0.35, 1.69] 2.92 42.94 .005

Sleep onset (n = 262, 45 users)

Intercept 0.75 [0.27,	1.23] 3.00 42.50 .004

Chronotype (early) −0.64 [−1.32,	0.05] −1.80 42.84 .079

Chronotype (late) 0.95 [0.26, 1.65] 2.67 43.65 .011

Last keyboard time (n = 263, 46 users)

Intercept −0.23 [−0.80,	0.35] −0.76 40.86 .450

Chronotype (early) −0.63 [−1.44,	0.18] −1.50 41.89 .141

Chronotype (late) 1.41 [0.59, 2.23] 3.34 41.49 .002

Time out of bed (n = 264, 46 users)

Intercept 8.85 [8.32, 9.38] 32.39 41.85 <.001

Chronotype (early) −0.39 [−1.14,	0.36] −1.02 43.46 .315

Chronotype (late) 1.06 [0.30, 1.81] 2.70 42.77 .010

Sleep offset (n = 264, 46 users)

Intercept 8.40 [7.96,	8.93] 30.67 41.89 <.001

Chronotype (early) −0.42 [−1.16,	0.33] −1.07 43.66 .289

Chronotype (late) 0.90 [0.15, 1.66] 2.31 42.94 .026

First keyboard time (n = 263, 46 users)

Intercept 8.70 [8.13,	9.27] 29.59 40.71 <.001

Chronotype (early) −0.13 [−0.93,	0.68] −0.30 41.75 .764

Chronotype (late) 0.99 [0.17,	1.79] 2.35 41.36 .023
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