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Diet and gut microbiome enterotype are associated
at the population level in African buffalo

Claire E. Couch'™ Keaton Stagaman® 2, Robert S. Spaan® 3, Henri J. Combrink!, Thomas J. Sharpton?4©,
Brianna R. Beechler® >® & Anna E. Jolles® >©

Studies in humans and laboratory animals link stable gut microbiome “enterotypes” with
long-term diet and host health. Understanding how this paradigm manifests in wild herbi-
vores could provide a mechanistic explanation of the relationships between microbiome
dynamics, changes in dietary resources, and outcomes for host health. We identify two
putative enterotypes in the African buffalo gut microbiome. The enterotype prevalent under
resource-abundant dietary regimes, regardless of environmental conditions, has high rich-
ness, low between- and within-host beta diversity, and enrichment of genus Ruminococcaceae-
UCG-005. The second enterotype, prevalent under restricted dietary conditions, has reduced
richness, elevated beta diversity, and enrichment of genus Solibacillus. Population-level
gamma diversity is maintained during resource restriction by increased beta diversity
between individuals, suggesting a mechanism for population-level microbiome resilience. We
identify three pathogens associated with microbiome variation depending on host diet,
indicating that nutritional background may impact microbiome-pathogen dynamics. Overall,
this study reveals diet-driven enterotype plasticity, illustrates ecological processes that
maintain microbiome diversity, and identifies potential associations between diet, enterotype,
and disease.
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n the past two decades, rapid advances in high-throughput

sequencing technologies and improvements in computational

systems have facilitated a radical transformation of our
understanding of the rich microbial ecosystems that exist in
symbiosis with mammalian hosts!=>. Extensive studies in
humans and laboratory animals have demonstrated widespread
links between the gut microbiome, nutrition, and infectious
disease®~?, and the methodologies advanced in these studies now
afford us the opportunity to traverse the frontier of wildlife
microbiomes™10. Studying the microbiomes of wild species has
the potential to clarify the ecological and evolutionary drivers of
host-microbiome dynamics by contextualizing these relation-
ships in natural ecosystems. To our knowledge, all mammals host
complex communities of microbial life in and on their bodies,
and many of these bacterial relationships provide essential host
functions. The importance of microbial symbioses may be
amplified in ruminants, as they tend to harbor highly abundant
and diverse gut microbiota!>1? and rely heavily on microbes to
extract energy from indigestible plant matter!3. Although the
gastrointestinal microbiomes of domestic ruminants have been
studied extensively in the effort to maximize agricultural
productivity!415, the ecological and evolutionary significance of
the relationships between wild ruminants and their commensal
microbiota are less understood. Understanding the structure and
dynamics of microbial communities in wild ruminant popula-
tions has the potential to highlight ecological patterns in
host-microbiome relationships, and to strengthen theoretical
understanding of how these relationships respond under chan-
ging environmental conditions.

Some studies in humans and other primates suggest that gut
communities can be classified into one of several stable “enter-
otypes”, defined by the relative abundance of key bacterial taxa,
which are shaped by long-term diet and resilient to short-term
perturbation!®-18. However, the frequency and time scale at
which dietary change can cause individuals to transition between
enterotypes is unclear, and some dispute the validity of the
enterotype paradigm altogether!®20. In frugivorous great apes,
shifts between enterotypes coincide with seasonal resource
availability?!, raising questions regarding the relative importance
of seasonal environmental change compared with seasonal dietary
shifts. The enterotype paradigm has not been thoroughly
explored outside of omnivorous and frugivorous primates (i.e.
humans and great apes), therefore the degree of seasonal strati-
fication and plasticity in the gut microbiomes of other mamma-
lian taxonomic and dietary groups, including wild herbivores,
remains unclear. Recent work suggests that geographic and sea-
sonal variation in the gut microbiomes of several wild herbivore
species could be driven at least in part by dietary shifts22-25, but it
is difficult to separate seasonal environmental changes from the
associated seasonal changes in diet. Understanding the drivers of
enterotype dynamics in wild herbivores, and ultimately the
nutritional and physiological impacts of enterotypes, could be of
great ecological significance. Herbivores provide a functional link
between primary producers and predators and can profoundly
shape the landscapes they inhabit?6. Additionally, many herbi-
vores are highly dependent on microorganisms to digest and
synthesize nutrients?’, therefore linking potential microbiome
enterotypes with nutrition and physiology in these species could
provide important insights regarding the resilience of herbivores
and their ecosystems to environmental changes.

In humans, it is unclear whether host enterotypes respond
differentially to disease!®28. However, human gut microbiome
structure has been associated with enteric infections??, and with
pathogen invasion across multiple body sites including the
respiratory tract3031, thus clarifying enterotype-disease relation-
ships could contribute greatly to predictive and therapeutic health

measures. The prevalence of well-studied infectious diseases3?
and complex communities of gut symbionts33 that characterize
many wild ruminant populations imply that these populations
could offer excellent opportunities to study differential associa-
tions between host enterotypes and infectious diseases. Moreover,
understanding the relationships between pathogenic and com-
mensal microbes could have relevant applications to conservation
and epidemiology3?, in addition to contributing to our basic
understanding of disease ecology.

In this work, we explore microbiome stability and structure
within and between individuals over time in a population of
African buffalo (Syncerus caffer), a long-lived social ruminant.
We analyze longitudinal fecal microbiome data collected from
72 buffaloes between February 2014-February 2017 during which
they were exposed to natural and artificial fluctuations in resource
availability, parasites, and pathogens. Our investigation is framed
around three central hypotheses:

(i) Dietary regime is the dominant driver of microbiome
structure in wild African buffalo. Resource-abundant
dietary regimes allow for greater microbial richness, similar
to the relationship between net primary productivity and
animal species richness34.

(if) Microbiomes are resilient to diet regime shifts. Resilience
may manifest at the individual level (ie. individualized
resilience to resource changes) or at the population level
(i.e. predictable population-level shifts in dominant enter-
otype). Individualized resilience could be driven by
physiological host factors that select for or against certain
bacterial taxa depending on dietary conditions, whereas
population-level resilience could be driven by diet-driven
microbial extinction within hosts followed by recoloniza-
tion facilitated by microbial dispersal between hosts.
The relationships between commensal microbes and
pathogens depend on dietary regime. Diet-driven changes
to the microbiome associate with variation in the
magnitude and direction of microbiome—pathogen associa-
tions, similar to environmentally mediated changes to
interspecific interactions observed in macroscopic ecosys-
tems. Changes to microbiome-pathogen relationships
could be mediated by resource-driven variation in the
immune system, similar to environmentally driven changes
observed in predator-prey dynamics®. Additionally,
changes in host diet could alter competition for resources
between commensal and pathogenic microbes or enable
facilitative interactions®.

(iii)

Results

Alpha diversity and composition. A total of 44,103 unique
amplicon sequence variants (ASVs) were identified to the genus level
from 426 samples. We removed 36,412 ASVs that were not classified
to the genus level, as we were primarily interested in analyzing
known bacterial taxa. Of these unclassified ASVs, 10,512 (29%)
occurred only once in the entire dataset, and 33,092 (91%) occurred
<10 times in the entire dataset. Clustering results were robust to the
removal of these ASVs, likely because they were rare (median relative
abundance 2.34e—7, maximum 1.6%). After filtering, rarefied sam-
ples contained a median of 731 ASVs (minimum 88, maximum
1905, standard deviation 385.1). The median number of bacterial
genera identified in each sample was 90 (minimum 30, maximum
154, standard deviation 20.7), and the top 10 most abundant bacterial
genera across all samples were Solibacillus, Ruminococcaceae UCG-
005, Lysinibacillus, Ruminococcaceae UCG-010, Bacillus, Romboutsia,
Rikenellaceae RC9 gut group, Christensenellaceae R-7 group, Bacter-
oides, and Ruminococcaceae UCG-013.
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Fig. 1 Diet regime drives structural variation in the African buffalo gut microbiome. a Annotated taxonomic hierarchies show relative enrichment of taxa
from the kingdom through family levels across pairwise comparisons between diets. The hierarchies with colored nodes represent pairwise comparisons
between the dietary regimes listed on the x-axis and y-axis. Lineages that are highlighted in brown or green indicate log 2-fold increase in median
abundance of that lineage in the x-axis group or the y-axis group, respectively. The bottom left hierarchy provides a key with labels for all taxa that
significantly differed in at least one of the pairwise comparisons (false discovery rate-adjusted Wilcoxon rank sum g < 0.05), with size of labels
corresponding to number of genera contained in that node. b Relative abundance of the most common genera across individuals in each diet regime. Under
the restricted regime, 72% of samples were dominated by genus Solibacillus. In contrast, Ruminococcaceae UCG-005 was the most abundant genus in 88%
of the samples from the hay regime, and 90% of the samples from the green vegetation regime.

Dietary regime is the primary driver of microbiome structure
in African buffalo. PAM clustering and Calinski-Harabasz index
comparisons demonstrated an optimal number of 2 clusters that
were 85% correlated with dietary regime. Within-individual
repeatability of cluster membership was estimated to be 0 (p =
0.50), but generalized linear-mixed model (GLMM) results
demonstrated a significant relationship between cluster mem-
bership and diet regime at the population level (p < 2e—16). PAM
clustering results were robust to the removal of unclassified
genera, with 98% of samples falling into the same cluster
regardless of whether all ASVs or only known genera were used.
Variance partitioning showed that diet alone explained 48% of
the variation in microbiome composition, as opposed to 3%
explained by individual ID alone and 4% explained by capture
period. We observed a clear shift in dominant taxa between the
restricted regime compared with the hay and green vegetation
regimes (Fig. 1a). The most common bacterial genus under the
hay and green vegetation regimes was Ruminococcaceae-UCG-
005, which was the most abundant genus in 90% of samples from
the green vegetation group and 88% of the hay group. In contrast,
under the restricted regime, the majority (72%) of samples were
dominated by genus Solibacillus (Fig. 1b). Due to the similarity
observed at the genus level between the green vegetation and hay-
fed regimes, downstream linear discriminate analysis of effect size
(LEfSe) was used to identify higher level taxonomic differences
that distinguished these two groups from the restricted regime.
LEfSe and visualization with metacoder showed that higher level
taxonomic trends (i.e. phylum-family levels) aligned with the
genus-level distinction (Fig. 1a, Supplementary Fig. S1). We also
confirmed that when LEfSe was run at the class-phylum levels, it
was robust to filtering ASVs not classified to the genus level. Eight
out of the nine phyla that were identified as differentially abun-
dant between restricted vs. hay/green vegetation regimes in the
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filtered dataset were also differentially abundant in the unfiltered
dataset.

Opposite shifts in alpha and beta diversity across diet regimes.
While gamma diversity (population-level richness) did not change
significantly across dietary regimes (Kruskal-Wallace p = 0.076), we
observed significant opposing shifts in alpha diversity (individual-
level richness) and beta diversity (inter-individual and intra-
individual compositional differences) between the restricted
regime versus the hay and green vegetation regimes (Fig. 2).
GLMMs showed that alpha diversity was reduced in the restricted
vegetation regime compared with the green vegetation (p=
0.00136) and hay regimes (p = 7.12e—7) but did not differ between
the hay and green vegetation regimes (p=0.354). In contrast,
permutation tests for homogeneity of multivariate dispersions
showed that beta diversity (Bray-Curtis distance to mean) was
elevated during the restricted vegetation regime compared with the
green vegetation regime (permuted p-value =0.002) or hay (per-
muted p-value = 0.001) but did not differ significantly between the
hay and green vegetation regimes (permuted p-value = 0.056).

Diet-driven enterotypes. We defined two host enterotypes based
on the alpha and beta diversity dynamics observed at the popu-
lation level over shifts in feeding regime: a restricted nutrition
enterotype, defined by dominance of Solibacillus, low alpha
diversity and high beta diversity, and a high nutrition enterotype,
defined by Ruminococcaceae UCG-005 dominance, high alpha
diversity, and low beta diversity, prevalent across the hay and
green vegetation regimes. According to redundancy analysis
(RDA) results, microbiome composition associates with both
individual animal identity (p=0.001) and diet (p = 0.001), but
variance partitioning demonstrated that diet explained a much
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Fig. 2 Microbiome alpha and beta diversity showed opposing patterns of variation across dietary regimes. a Diversity metrics in panel a are colored by
feed regime (green indicating green vegetation, yellow indicating hay, and red indicating restricted feed). For each box plot, the lower and upper hinges
correspond to the first and third quartiles. The upper and lower whiskers extend from the hinges to the largest and smallest values no more than 1.5 IQR
from the hinge. Outliers beyond these points are plotted individually. Gamma diversity did not significantly change across the three dietary regimes
(Kruskal-Wallace p = 0.076, n =15 time points), whereas alpha diversity was significantly reduced in the restricted regime compared with hay (p = 7.12e
—7) and green vegetation (p = 0.00136) regimes (generalized linear mixed model, n = 426 samples). Beta diversity for each time point was greater in the
restricted regime than either the hay (permuted p-value = 0.001) or green vegetation (permuted p-value = 0.002) regimes (permutation test for
homogeneity of multivariate dispersion, n =426 samples). A single individual with near-complete longitudinal sampling (Buffalo #45) was selected to
demonstrate temporal shifts at the individual level, with time points connected chronologically by dashed lines. Individual shifts in microbiome composition
aligned with population-level shifts in dietary availability. b Temporal patterns in alpha and beta diversity appeared to oppose each other, while gamma
diversity remained stable over time. Source data are provided as a Source Data file.

Table 1 Covariates that significantly associated with microbiome composition based on the envfit variable selection analysis and

the final CCA model.

Covariate Group Significant in envfit

Significant in envfit analysis of

Significant in envfit analysis of  Retained and significant

analysis of all samples restricted nutrition samples hay/green vegetation samples in final CCA
Disease BVDV MB, BVDV, strongyle burden BHV MB, BHV, BVDV
Nutrition Hct, MG None MG None

larger proportion of variation in the data than individual identity
(48% versus 3%). Moreover, canonical correspondence analysis
(CCA) results showed that individual effects disappeared when
other host factors (age, sex, infection status) were accounted for,
therefore we attribute the significant effect of individual identity
to physiological variation rather than as evidence of persistent
individual microbiome signatures.

Associations with disease. We identified three respiratory
infections that associated with microbiome variation after
accounting for capture period, diet, age, sex, and nutritional
variables (Table 1). Preliminary analysis with envfit suggested that
microbiome beta diversity associates with M. bovis incidence,
bovine viral diarrhea virus (BVDV), and strongyle burden during
the restricted dietary regime, and with bovine herpes virus (BHV)
during the green vegetation regime. The subset of host traits and
diseases that were selected via envfit analysis were included in an

initial CCA (Eq. (2)), which was then subject to bidirectional
selection resulting in Eq. (1).

CCA (genus table ~ MB + BVDV + BHV + Condition (Age) + Condition(Sex)
+ Condition (Capture Number) + Condition(Diet)

M

Of the constraining variables, only MB, BHV, and BVDV were
retained in the final model, and all of these variables were
significant based on a permutation test (Table 1). Results from the
preliminary envfit analysis suggested that microbiome composi-
tion associated differentially with BHV, BVDV, and M. bovis
depending on diet, and this was supported by visualizing
principal coordinate analysis of disease associations within each
dietary regime (Fig. 3).

In addition to multivariate community-level shifts associated
with disease, we also identified specific bacterial genera associated
with disease incidence or presence within the dietary regimes in
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Fig. 3 Three respiratory infections associated with gut microbiome composition in African buffalo based on canonical correspondence analysis:

Mycoplasma bovis (MB), bovine viral diarrhea virus (BVDV), and bovine

herpesvirus (BHV). Differences in the magnitude and/or direction of

association between disease and the microbiome were observed between the restricted regime and the hay/green vegetation regime based on
visualization and envfit analysis of principal coordinate analysis. This plot shows differences in microbiome community composition associated with
infection status based on principal coordinate analysis of Bray-Curtis distances for the restricted and hay/green vegetation regimes. Analysis by envfit
was based on 134 samples in the restricted regime (5 MB positive, 35 BVDV positive, 85 BHV positive) and 177 samples in the hay/green vegetation
regime (10 MB positive, 48 BVDV positive, 159 BHV positive) for which complete disease datasets were available. p-values for envfit analysis of infections
within each group are shown on each panel. Colored points indicate seroconversion (M. bovis, positive = red) or presence (BVDV, positive = blue; BHV,
positive = yellow), and gray points indicate lack of seroconversion (M. bovis) or absence (BVDV and BHV). Small points indicate individual samples, and
larger circles indicate the means for infected and uninfected groups. Source data are provided as a Source Data file.

which envfit analysis suggested correlation with community
variation. GLMM results identified one genus associated with M.
bovis, seven with BHV, and six with BVDV (Table 2).

Discussion

This study reveals plasticity in the African buffalo gut micro-
biome that is closely tied to changes in dietary resources. We
demonstrate striking fluctuations in microbiome community
structure between resource-restricted and resource-rich diet
regimes (i.e. dry season conditions with no supplementary feed-
ing versus high availability of green vegetation or supplementary
hay), and very little difference between resource-rich diets (green
vegetation versus supplementary hay). Uniquely, this study
demonstrates that abundant dietary intake associates with pre-
dictable outcomes for microbiome community structure at the
host population level regardless of the dietary source (i.e. natural
vegetation or supplementary feed) and regardless of conditions
(i.e. dry season or wet season). Shifts between dietary regimes had
by far the most profound influence on microbiome structure
compared to host traits, individual ID, and infectious disease.
These findings contribute to the understanding of diet-driven
enterotype formation of the gut microbiome. During resource
abundant dietary regimes, individual hosts harbor similar,
species-rich microbiomes. Individuals lose microbial taxa during
periods of resource restriction, resulting in reduced alpha diver-
sity, but microbial gamma diversity is maintained at the host
population level via increased beta diversity among hosts.
Enterotype shifts are predictable at the population level based on
diet regime. However, within each diet regime, microbiome var-
iation is largely stochastic with respect to individual. Taken

together, our findings on diet-driven shifts in alpha and beta
diversity suggest that within-host extinction of microbial taxa is
driven by resource restriction, but that recolonization via
microbial sharing between hosts facilitates microbiome resilience
once abundant dietary conditions return.

Loss of microbial richness during dietary restriction does not
appear completely stochastic with respect to microbial taxa.
Rather, our findings suggest that certain taxa are adapted to
resource-restricted regimes and are more likely to survive in the
African buffalo gut. During periods of enriched resource avail-
ability (hay or green vegetation), gut communities were char-
acterized by high taxonomic richness (Fig. 2a), low beta-diversity
(Fig. 2b), and enrichment of genus Ruminococcaceae UCG-005
(Fig. 1). This genus is widespread in the gut microbiomes of wild
ruminants?>3/-3%, and has been linked to environmental/dietary
heterogeneity in several of these studies’®3°. During restricted
resource periods, gut communities showed relatively low taxo-
nomic richness and increase in relative abundance of Solibacillus.
In goats and cattle, genus Solibacillus has also been associated
with reduction in forage intake, possibly as an adaptive response
to increased dietary variability*®#!, We did not explicitly measure
behavioral changes in this study, but free-ranging buffalo exhibit
seasonal changes in behavior and herd cohesion®2. It is possible
that if such behavioral patterns are present in our study herd, they
could mediate changes in microbial transmission dynamics,
potentially explaining some of the diet-associated patterns in
richness and composition found in this study®3.

In addition to reduced richness and predictable increases in
certain taxa, our findings show increased composition variability
between individuals during periods of restricted nutrition, sug-
gesting reduced stability under restricted dietary conditions.
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Alongside predictable increases in taxa adapted to resource
restriction (e.g. Solibacillus), restriction may drive community
destabilization resulting in random loss of taxa and greater
microbiome dissimilarity between individual hosts. A possible
mechanism could be that reduction in the taxa that typically
dominate under resource-rich conditions (e.g. Ruminococcaceae
UCG-005) destabilizes gut communities, leading to stochastic
variation. Another potential mechanism of divergence could be
differential resource selection among hosts during periods of
dietary restriction, leading to greater variability of selective
pressures on microbiome communities among individuals.
Whether the mechanism driving increased compositional varia-
bility during resource restriction is stochastic or selective, the
increased variability between individuals may provide refugia for
diverse microbes, enabling rapid recolonization and return to the
rich, homogenous microbiomes typical during resource abundant
periods regimes via transmission between hosts.

The associations we observed between diet, microbiome, and
disease in this study highlight the importance of considering asso-
ciations between microbiome diversity and disease within the context
of broader spatio-temporal resource distribution. Our findings sug-
gest that the magnitude and direction of associations between
microbiome variation and disease depends on the dietary context.
Our analysis showed that M. bovis, BHV, and BVDV associate with
microbiome composition, but that the magnitudes and directions of
those associations differ between resource-abundant (hay or green
vegetation) versus resource-restricted dietary regimes (Fig. 3). Pre-
liminary analysis with envfit detected microbiome associations with
M. bovis and BVDV during resource restricted but not resource-rich
time periods, whereas BHV associated with microbiome composition
during resource-rich periods. These infections are known to have
immunosuppressive effects in cattle, but may also result from
immunosuppression*4~49, therefore it is possible that the apparent
relationships with the gut microbiome are mediated via changes to
the host immune system. We also identified bacterial taxa putatively
associated with incidence or presence of infections. This finding
suggests that non-pathogenic taxa may indicate susceptibility to or
infection by multiple pathogens and could therefore be considered as
ecological indicator species for the gut and a potential surveillance
tool. However, we recommend interpreting the associations between
individual taxa and disease with caution due to the manifold envir-
onmental and host variables not accounted for in this study. Future
studies should focus on clarifying causal directionality of the
pathogen-microbiome relationships identified in this study, and
elucidating interactions between pathogen communities and com-
mensal microbiomes in the context of host nutrition.

The study of wildlife microbiome communities has the potential to
contribute to conservation efforts in addition to expanding our
understanding of host-microbe ecology. We demonstrate resource-
driven enterotype plasticity in the gut microbiomes of a social her-
bivore population, underscoring the dynamic interplay between
environmental change and microbiome communities. This study
demonstrates how microbial diversity can be maintained in a host
population over the long term, despite resource-driven reductions in
individual-level alpha diversity. We found that the increase in beta
diversity among individuals during dietary restriction maintains
population-level gamma diversity. This suggests that a large, well-
connected host population could be important for recolonizing and
restoring individual-level alpha diversity following dietary restriction.
These results imply that host population size and connectivity may be
important for maintaining microbiome diversity within a population,
especially as climate change and habitat loss drive more dramatic
fluctuations in resource availability. Our findings could inform future
efforts to utilize microbiome information as a form of noninvasive
monitoring to guide conservation efforts for wildlife populations
threatened by environmental change. Additionally, understanding
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0.046)

Paucisalibacillus (est=—2.312, g

Negatively associated genera
0.045)

Domibacillus (est=—2.62, q

None
0.013)

0.032)

Catenisphaera (est =14.6, q
Patulibacter (est =21.30, q

Clostridioides (est=35.9, g
0.037)

Saccharofermentans (est = 0.74,
0.013)

Positively associated genera
Viridibacillus (est. = 2.74, q
0.0062)

0.045) g
None

Number of
genera evaluated

373
468
391

Number of negative

and positive
samples

7 positive 155
193 positive 26
negative

41 positive 160
negative

negative

Diet regime
Restricted

Restricted
Hay/Green
Vegetation

Bovine viral
diarrhea virus

Table 2 Bacterial genera associated with respiratory infections within each dietary regime based on GLMMs.

Mycoplasma bovis
Bovine herpesvirus

Disease
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commensal-pathogen dynamics in natural host populations under a
range of environmental conditions is key to bridging the gap between
laboratory studies and observational surveys of wildlife microbiomes.
As demonstrated in our results, altered gut enterotypes and differ-
ential relationships between pathogens and commensal microbiome
communities can manifest under fluctuating resource regimes.
Considering current trajectories of human-caused environmental
change, understanding how resource availability shapes wildlife gut
microbiome communities, and clarifying the downstream con-
sequences for host health and disease, will be crucial aspects of efforts
to manage wildlife populations. Moreover, broadening our under-
standing of long-term microbiome community dynamics in natural
host populations can help contextualize our understanding of
microbiome dynamics in humans and domestic animals.

Methods
Field methods. Our study was located in Kruger National Park (KNP), a 19,000
km? reserve located in northeastern South Africa with ~30,000 free-ranging Afri-
can buffalo. For this study, we longitudinally sampled a herd of buffalo contained
in a 900-ha enclosure near Satara rest camp (Fig. 4). This enclosure was designed to
exclude large predators (e.g. lions, leopards), rhinoceros, and elephants, but con-
tained other herbivores and small mammalian predators typical of the ecosystem,
in addition to the buffalo. The approximate size of the herd at any given time was
between 50 and 65 buffalo depending on births and deaths. Every 2-4 months over
the course of 3 years (February 2014-February 2017), each individual was captured
for physical examination and biological sampling, resulting in a total of 15 captures
during which 72 buffalo were sampled, 62 of which were sampled more than once.
This period overlapped with three different dietary regimes: periods of high green
vegetation driven by seasonal rainfall, restricted forage availability driven by sea-
sonally low rainfall and vegetation, and supplementary feeding during periods of
extended drought (Table 4). Due to an unusual period of drought that extended
beyond the dry season of 2014 through October of 2016, grass inside the enclosure
was limited. Dry season versus wet season conditions were identified based on
normalized difference vegetation index (NDVI) values. We used 16-day composite,
250-m resolution NDVI data from MODIS for the North American Carbon
Program (MODIS for NACP, https://accweb.gsfc.nasa.gov/). NDVI data was
extracted to the 900-ha enclosure (Fig. 1) and mean NDVI for each capture period
was calculated statistic using R packages raster?”, sp#3, rgdal*®, maptools®’, and
rgeos°l. To prevent mortalities, buffalo were provided with supplemental feed.
From February 2015 through February 2016, the herd was provided with 800 kg
bale of lucerne, five 370 kg bales of grass hay and 20 kg of concentrated game
pellets (Alzu feeds) per day to retain body condition typical under wet season
conditions. Following this period, feed was reduced to mimic dry season conditions
by removing the concentrate and gradually reducing the alfalfa to 2/3 bale until the
rains began in December 2016. For simplicity, the abundant supplemental feed
period is referred to throughout this work as “hay” and dry season periods with
reduced or no supplemental feed are referred to as “restricted”. During captures,
each animal was sedated with a high potency opioid (Thianil or etorphine
hydrocholoride) and azaperone at dosages appropriate to weight and sex”2.
Blood was collected by jugular venipuncture for hematocrit measurements®3,
biochemical analysis, and disease assays®*°%. Age in years was calculated from
incisor emergence and tooth wear®, and sex was determined visually. Body
condition score (BCS) was assessed by palpation of four regions (ribs, hips, spine,
and base of tail), each of which were scored on a scale of 1-5 and then averaged
across the four regions. This method has been shown to correlate with kidney fat
index and total hematocrit®’. Rectal samples of feces were collected directly from
sedated animals using sterile gloves, and samples were immediately placed on ice
for 5-8 h during travel to the laboratory, where they were aliquoted for
gastrointestinal parasite counts®’, fecal chlorophyll analysis®$, and microbiome
analysis, then frozen at —80 °C. Blood was collected via jugular venipuncture
directly into vacutainer tubes with (plasma, whole blood) or without (serum)
heparin, and stored on ice for transport. Blood was centrifuged at 5000xg for 10
min, and plasma, and serum were pipetted off the cellular layer and frozen at —80 °
C until they were used to run serum biochemistry panels®* and test for a suite of
respiratory pathogens® (Table 3). Mycobacterium bovis, the causative agent of
bovine tuberculosis, was evaluated using the BOVIGAM test according to
manufacturer’s instructions (ThermoFisher Scientific product no. 63326).
Seroconversion of adenovirus (AD3), parainfluenza virus (PI3), BHV, and
Mycoplasma bovis were tested using the Bio-X IPAMM sandwich ELISA kit.
Bovine diarrhea virus (BVDV) and bovine respiratory syncytial virus (BRSV) were
tested using the Bio-X BVDV and Bio-X BRSV ELISA kits. Samples were
considered positive for pathogen antibodies if antibody titers exceeded threshold
absorbance values calculated using the quality control procedures outlined in each
kit. Incidence was calculated as a binomial variable for acute infections (AD3, PI3,
M. bovis) and was assigned a 1 if an animal seroconverted from the previous
capture period and 0 if the animal had not seroconverted*®. All animal work for
this study was approved by the institutional animal care and use committee at

Oregon State University, ACUP project number 4478, and by KNP, ACUP project
number JOLAE1157-12.

Microbiome sample processing and sequencing. Fecal samples were collected
within 30 min of sedation from captured animals, placed on ice within 15-30 min
of collection, and frozen at —80 °C within 8 h of collection. Genomic DNA was
extracted using the DNEasy PowerSoil kit following manufacturer’s instructions,
with the addition of a 10 min incubation step at 65 °C immediately prior to bead-
beating for 20 min. We amplified a 450 bp region of the V3/V4 region of the
bacterial 16S gene. Extracted DNA was subject to a first round 16S PCR amplifi-
cation using the following primers: 16S Forward Primer 5-TCGTCGGCAGCGTC
AGATGTGTATAAGAGA CAGCCTACGGGNGGCWGCAG-3' and 16S Reverse
Primer 5-GTCTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGACTACH
VGGGTATCTAATCC-3'. PCR reactions were amplified with GoTaq Hot Start
Polymerase (Promega, Madison, WI) following manufacturer’s suggested use. PCR
cycling conditions were as follows: an initial melt of 94 °C for 3 min followed by 35
cycles of amplification with a 94 °C for 30's, 55 °C annealing step for 1 min, and a
68 °C extension step for 1.5 min. A final, 5-min extension step was included fol-
lowing the last cycle. Amplicons were cleaned, indexed, and normalized by the
Oregon State University Center for Genome Research and Biocomputing prior to
sequencing on two runs of the Illumina Miseq V2 platform using Miseq control
software v2.6.2.1, resulting in 250 bp paired-end reads. We employed the DADA2
workflow implemented in the dada2 R package (version 1.12.1)* to identify ASVs,
trim adapter sequences, and remove chimeras. Raw sequence data were processed
through the dada2 pipeline using the following trimming parameters: trimLeft = ¢
(17, 21), truncLen = ¢(250,250), maxN = 0, maxEE = 2, truncQ = 2. Default
parameters were used for estimating error parameters using learnErrors, and
chimeras were removed using removeBimeraDenova (method = “consensus”).
Prior to statistical analysis, data from the two runs were combined, each sample
was randomly subsampled to a depth of 20,000 reads, and samples with sequencing
depth below this cutoff were excluded from downstream analysis®®. ASVs not
identified to the genus level were also removed from downstream analysis. Relative
abundance of these unclassified ASVs were rare, with a median relative abundance
of 2.34e—07, and none exceeding 2% of reads.

Statistical analysis. All statistical analyses and visualizations were conducted in R
(version 3.6.1)%! unless otherwise specified. After subsampling to an even depth,
ASVs were merged by genus, resulting in 543 unique genera. The function esti-
mate_richness in the phyloseq package (version 1.30.0)°2 was used to calculate
genus-level richness. GLMMs assuming Poisson distribution were used to perform
pairwise comparisons of genus richness among the three nutritional regimes while
controlling for capture number using the Ime4 package (version 1.1.21)63,
Bray-Curtis distance calculations of genus abundance tables, principal coordinate
analysis, and initial data visualization were performed in phyloseq. Sequencing
runs were compared using PERMANOVA stratified by capture number. Because
sequencing run had no effect on composition (R squared = 0.08, p = 0.52) after
accounting for capture number, it was not included as a variable in downstream
analysis. To identify a priori clusters in the microbiome data!®, we used the par-
tition around medoids (PAM) algorithm® on Bray-Curtis distances using the pam
function in the cluster package®> and then identified the optimum number of
clusters by calculating the Calinski-Harabasz index for 2-20 clusters®®. PAM
clustering was repeated including all rarefied ASV's including those not classified to
the genus level to ensure that clustering was robust to the ASV filtering. Repeat-
ability of enterotype membership across captures within individuals was analyzed
using the GLMM-based function rptBinary with a logit link in the rptR package®”.
The relationship between enterotype and diet was estimated using a GLMM model
with cluster membership as the response variable, abundant vs. restricted diet as a
fixed response variable, and individual ID as a random effect. Differences in the
most abundant bacterial genera for each of the three dietary regimes were visua-
lized using the plot_bar function in phyloseq. We assessed the significance of
dietary regime and individual ID by running distance-based RDA using the dbrda
function in vegan (version 2.5.6)%, while controlling for capture number using the
Condition() argument. Proportion of variance explained by diet, individual ID, and
capture period were calculated and visualized using the vegan function varpart. The
vegan function betadisper was used to compute multivariate dispersion (average
distance to median) for each group, and these results were then compared using the
permutest function. LEfSe was used to identify diet-associated differences at higher
taxonomic levels (i.e. phylum, class)®. Based on observed patterns of composition
and alpha diversity, we used “high nutrition” (hay and green vegetation) versus
restricted as the main grouping variables, and finer-scale diet regime (hay, green
vegetation, and restricted) as the subgrouping variables in the LEfSe algorithm.
Individual effects were ignored in the LEfSe algorithm. Differences in taxonomic
abundances between the three feed regimes were visualized using the heat_-
tree_matrix function in the metacoder package’®. LEfSe was also conducted using
all rarefied ASVs including those not classified to the genus level to verify that
phylum-level results were robust to the ASV filtering.

Our initial dataset included a large number of host covariates (Table 3, Figs. S2,
S$3, $4), so we followed the variable selection method used by Flannery and
Stagaman’! to identify potential covariates of interest. The goal of this approach is
to reduce a large covariate dataset to a manageable number of covariates and thus
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Fig. 4 The African buffalo population in this study was located near Satara camp in Kruger National Park, South Africa. Buffalo resided in a 900 ha
(3.5 square mile) double-fenced enclosure designed to exclude large predators. The population was originally isolated in 2007 as part of a disease-free
breeding program within the park. The insets show the location of Kruger National Park within South Africa (top left) and an African buffalo from the park
(photo by Robert Spaan). Buffalo were either darted from a helicopter or corralled in the northeast corner of the enclosure prior to sedation and sampling.
The background map was created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under
license. Copyright © Esri. All rights reserved. For more information about Esri® software, please visit www.esri.com.

Table 3 Host covariates included in the variable selection process and retained for downstream CCA analysis.

Variable Included in envfit analyses Included in CCA Included in CCA with diet

category interaction term

Disease Bovine tuberculosis (TB) status, Parainfluenza-3 incidence, Adenovirus- MB incidence, strongyle burden, BHV
3 incidence, Mycoplasma bovis (MB) incidence, bovine respiratory status, BVDV status

syncytial virus (BRSV) incidence, bovine herpesvirus (BHV) status,
bovine viral diarrhea virus (BVDV) status, strongyle burden (log
transformed), coccidia burden (log transformed), trichuris burden (log
transformed)
Nutrition Body condition score (BCS), fecal chlorophyll, hematocrit (Hct), calcium, Hct MG
phosphorous, magnesium (MG), total protein

We performed envfit analysis on PCA objects generated from Bray-Curtis distance matrices within the restricted dietary regime, the hay/green vegetation regimes, and pooled samples. For each variable
group, host covariates were considered “significant” within a given dataset if envfit analysis yielded p < 0.05. Permutations within the envfit algorithm were stratified by capture number to account for
temporal effects. Chronic respiratory disease status (tuberculosis, bovine herpesvirus, bovine diarrhea virus) was coded as O if negative and 1 if positive. Acute respiratory infection incidence
(parainfluenza-3, adenovirus-3, Mycoplasma bovis, bovine respiratory syncytial virus) were coded as O if they did not seroconvert and 1 if they did seroconvert between captures. Gastrointestinal parasite
burdens were measured in eggs per gram of feces for each individual.
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Table 4 Distribution of sample sizes and sampling dates from across the three diet regimes.
Capture number Month/Year Supplementary feed Mean NDVI Diet regime Number of fecal
samples
1 February 2014 None 0.64 Green vegetation 25
2 June 2014 None 0.40 Restricted 30
3 August 2014 None 0.29 Restricted 30
4 October 2014 None 0.28 Restricted 28
5 December 2014  Started introducing feed 0.25 Restricted 31
6 February 2015 Fed 0.47 Hay 22
7 June 2015 Fed 0.32 Hay 37
8 August 2015 Fed 0.27 Hay 31
9 December 2015  Fed 0.25 Hay 37
10 February 2016  Fed 0.25 Hay 32
n June 2016 Reduced feed 0.25 Restricted 20
12 August 2016 Reduced feed 0.24 Restricted 36
13 October 2016 Reduced feed 0.23 Restricted 30
14 December 2016  None 0.21 Green vegetation (224.6 mm rainfall, not 22
reflected in NDVI)
15 February 2017 None 0.70 Green vegetation 15
Each individual was sampled only once at each capture period. All samples were used for alpha and beta diversity analysis and envfit analysis. Only samples that were accompanied by complete covariate
datasets were included in the CCA. Normalized difference vegetation index (NDVI) was summarized as mean NDVI values for the MODIS pixels overlapping the boma during the time period most
closely preceding the capture. Dietary regime was classified as “restricted” if NDVI was <0.5 and little or no supplementary feed was provided, with the exception of December 2016, which had
exceptionally high rainfall and abundant new vegetation growth that was not reflected in NDVI measurements. Dietary regime was classified as “hay” if abundant supplementary feed was provided (see
the “Methods" section) and as green vegetation otherwise.

avoid overfitting of explanatory models or identification of spurious correlations
given the large number of covariates relative to the number of available samples!.
Because our dataset included many incomplete observations, reducing the number
of covariates (and thus the number of potentially incomplete data fields) also
allowed us to retain a larger sample size for analysis. The number of covariates was
reduced by first using unconstrained ordination (principal coordinate analysis) and
vector fitting to identify covariates that correlated with principal components. Based
on composition and alpha diversity results, we expected the principal coordinate
axes to differ between the high nutrition and low nutrition regimes, therefore we
performed principal coordinate analyses separately for the high nutrition and low
nutrition groups as well as the pooled dataset, followed by vector fitting on each of
the three ordinations (high nutrition, low nutrition, and pooled). For each of the
three ordinations, envfit analyses were run separately for host disease and nutrition
covariates on samples for which complete cases were available using the strata
argument to control for capture number (Table 3, Fig. 4). Based on the envfit results
(Table 1), a model was constructed for constrained correspondence analysis (CCA)
using the vegan cca function (Eq. (2)). If envfit analysis demonstrated correlation
between a covariate and either of the first two PCA axes in the pooled data or either
diet regime, that covariate was included in the global CCA model. Dietary regime
(high versus low nutrition) was included as an interaction term for covariates that
were significant in the envfit analysis of the pooled data but did not meet the
significance threshold in one of the dietary regimes, or that were significant in one
of the dietary regimes but not in the pooled dataset (Tables 1 and 3). Individual ID
was also included as a fixed effect in the initial model. Due to missing disease
incidence and hematocrit data, we included only data from captures 3-13 for the
CCA, resulting in 258 samples collected from 53 unique individuals. Bidirectional
step selection was conducted using the vegan ordistep function to identify a final
CCA model that controlled for age, sex, capture number, and diet as conditional
variables. Significance of the final model parameters were assessed by performing a
permutation test using anova.cca(by = “terms”)

CCA(genus table ~ Individual ID + Hct + MG*Diet + BVDV*Diet + MB*Diet + BHV*Diet
-+ Strongyles*Diet + Condition(Age) + Condition(Sex) + Condition(Capture Number)
+ Condition(Diet)
@)
After analyzing the relationships between disease and diet covariates and overall
microbiome composition using ordination-based approaches, we identified the
specific bacterial genera associated with these relationships using Tweedie
compound Poisson generalized linear-mixed models (GLMM:s) implemented in the
cpglmm function of the cplm package’?73. For each genus, we compared GLMMs
of the general structure of Eq. (3) with a reduced model (4) using the anova
function to determine the significance of association between each genus and
covariate of interest. GLMMs were run only within the dietary regime for which the
envfit analysis identified significant correlation with the covariate of interest.
Because GLMMs were run separately for each covariate of interest, sample
sizes were slightly larger than for the envfit analysis (Table 2). Model results
were ignored taxa with insufficient prevalence or variation for model
convergence. We ran three sets of GLMMs assessing genus correlations with
(1) M. bovis seroconversion in the restricted regime, (2) BVDV presence in

the restricted regime, and (3) BHV presence in the enriched (hay/green
vegetation) regimes.

Genus; ~ Disease + (1|Age) + (1|Sex) + (1|Capture|Number) (3)

Genus; ~ 1 + (1|Age) + (1]|Sex) + (1|Capture Number) (4)

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Microbiome sequence data are available in the NCBI SRA database (BioProject ID
PRJNA694651, https://www.ncbi.nlm.nih.gov/bioproject/PRINA694651/). MODIS for
NACP data is available at https://accweb.gsfc.nasa.gov/. Source data are provided with
this paper. All other datasets generated during and/or analyzed during the current study
are available from the corresponding author on reasonable request. Source data are
provided with this paper.

Code availability
The analysis code that supports the findings of this study is available upon request from
the corresponding author.
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