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A B S T R A C T   

Numerous toxin-producing harmful algal (HAB) species occur in Florida’s coastal waters. Exposure to these toxins has been shown to have sublethal effects in sea 
turtles. The objective of this study was to establish concentrations of 10 HAB toxins in plasma samples from green turtles (Chelonia mydas) foraging in Florida’s Big 
Bend. Domoic acid, lyngbyatoxin-A, microcystins, nodularin, and okadaic acid were detected, demonstrating exposure to these HAB toxins, which are also a public 
health concern.   

Harmful algal and/or cyanobacterial species have a global distribu
tion, are found in all aquatic environments (e.g., marine, brackish, 
freshwater) (Abbott et al., 2009), and can pose significant threats to 
wildlife species (Landsberg, 2002). When conditions are favorable, these 
species proliferate and present at high concentrations (Abbott et al., 
2009) in phenomena known as harmful algal blooms, or HABs, which 
appear to be increasing in frequency, duration, and range due to agri
culture runoff, overfishing, and climate change (Glibert et al., 2005; 
Hallegraeff, 2010; Anderson et al., 2012). Toxins released from the 
single-celled organisms that cause these blooms can negatively impact 
wildlife health and survival (Landsberg, 2002; Fire and Van Dolah, 
2012). Exposure to these toxins can result in strandings (dead or alive) of 
endangered species such as sea turtles, in addition to sublethal impair
ments including alterations in blood biochemistry, immunity, and 
neurologic function, thereby impacting their health (Arthur et al., 2006; 
Walsh et al., 2010, 2019; Perrault et al., 2014, 2016; 2017; Cocilova and 
Milton, 2016; Foley et al., 2019). This is of particular concern in Flori
da’s coastal waters, where >70 freshwater, estuarine, and marine 
harmful algal species have been documented, and five species of 
threatened or endangered sea turtles (leatherbacks, Dermochelys cor
iacea; loggerheads, Caretta caretta; green turtles, Chelonia mydas; Kemp’s 
ridleys, Lepidochelys kempii; hawksbills, Eretmochelys imbricata) inhabit 
coastal waters year-round (Foley et al., 2019). As many of Florida’s 
turtle species inhabit both marine and estuarine environments (Ehrhart, 
1983), there is the potential for exposure to numerous algal toxins. 

Documented HAB species in waters of Florida’s east and west coasts 
include Karenia brevis (associated toxin(s): brevetoxins), Pseudo-nitzschia 
spp. (domoic acid), Lyngbya spp. (lyngbyatoxins), Microcystis spp. 
(microcystins), Prorocentrum spp. (okadaic acid), and Pyrodinium spp. 
(saxitoxins) (Steidinger, 1993; Holloway-Adkins, 2001; Landsberg, 
2002; Jacobson et al., 2006, Geselbracht, 2007; Paul et al., 2008; Phlips 
et al., 2015; WHOI, 2016; Foley et al., 2019, Table 1). Sea turtles and 
other marine fauna become exposed to HAB toxins primarily through 
ingestion of contaminated prey (Flewelling et al., 2005; Manire et al., 
2017). Immature green turtles are omnivorous and thus can secondarily 
ingest these toxins through the consumption of (1) primary consumers 
that have accumulated toxins, and/or (2) benthic algae and seagrasses 
and their associated epibiota (Bjorndal, 1997; Landsberg et al., 1999; 
Holloway-Adkins, 2001; Williams et al., 2014). Toxin exposure has been 
documented long after a bloom has dissipated, indicating persistence in 
both the environment and within organismal tissues (Flewelling et al., 
2005; Capper et al., 2013; Fauquier et al., 2013; Perrault et al., 2014, 
2016). With the exception of brevetoxins, studies investigating the 
prevalence and impacts of HAB toxins on sea turtles are few; without 
directed monitoring of toxin concentrations, our understanding of 
exposure dynamics will remain limited. To address this knowledge gap, 
the objective of this study was to establish concentrations of HAB toxins 
in plasma samples collected from green turtles captured in Florida’s Big 
Bend during a non-bloom period. 

The sampling site for this study was located in and adjacent to the 
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shallow seagrass (e.g., Halodule wrightii, Siringodium filidorme, Thalassia 
testudinum, etc.) habitat of the St. Martins Marsh Aquatic Preserve. This 
relatively pristine area serves as an important foraging habitat for five 
sea turtle species in addition to containing the second largest expanse of 
seagrass habitat in the eastern Gulf of Mexico (Hale et al., 2004). In the 
Big Bend region, land coverage is primarily natural, much of the 
coastline and inland areas are under conservation protection, and 
human population densities are among the lowest in the state (Main and 
Allen, 2007; Seavey et al., 2011). Despite these factors, loss of oyster 
beds and seagrasses and a high estimated prevalence rate of fibropa
pillomatosis (FP; a tumor disease linked to chelonid herpesvirus 5 
infection and degraded habitats; Herbst and Klein, 1995; Herbst et al., 
1995; Lackovich et al., 1999; Van Houtan et al., 2010) in green turtles 
still occur in this area (Hale et al., 2004; Seavey et al., 2011). Even 
though this region has a perceived “pristine” ecosystem status, HABs are 
still considered a “very high-rated threat” to Big Bend coastal waters 
(Geselbracht, 2007). 

Juvenile green turtles were captured using dip nets and sampled in 
Big Bend (28.8324�N, � 82.7596�W) from 18 to 23 June 2015. Upon 
capture, blood (up to 10 mL, depending on the turtles’ size) was sampled 
from the external jugular vein using a lithium heparin Vacutainer® 
(Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA) 
blood collection system fitted with a 22-gauge, 1-inch needle. The 

venipuncture site was swabbed with alternating applications of betadine 
and 70% isopropyl alcohol before and after blood collection. The blood 
samples were immediately chilled on ice until return to land, whereupon 
whole blood was centrifuged at 1318 g (3400 rpm) for 8 min for plasma 
separation and harvest. Plasma was stored frozen at � 80 �C until 
analysis. 

Turtles were weighed and minimum straight carapace length 
(SCLmin) was measured. Additionally, we visually assessed and recorded 
the presence, number, and size of FP tumors to assign a tumor severity 
score of 0–3 (Work and Balazs, 1999). After sampling, turtles were 
tagged with flipper (metal Inconel; National Band and Tag Co., Newport, 
Kentucky, USA) and passive integrated transponder (PIT; Biomark®, 
Inc., Boise, Idaho, USA) tags for identification. Turtles were released into 
the water at their capture site. 

Plasma samples were shipped overnight on dry ice to the Center for 
Environmental Sciences and Engineering at the University of Con
necticut, a lab certified by the Connecticut Department of Public Health 
for the analysis of organic compounds in biological tissues. Plasma 
samples (approximately 1 g) were homogenized and split into 2 aliquots 
of an equal mass to separately prepare for lipophilic and hydrophilic 
toxin analyses. The lipophilic fraction was suspended in 1 mL methanol 
(0.1% formic acid), sonicated in the dark for 30 min, and vortexed for an 
additional 30 min. The resulting extract was centrifuged at 5443 g for 

Table 1 
Summary of harmful algal toxins, their causative organisms with a Florida distribution, habitats, mechanisms of action, hydrophilic or lipophilic characteristics, and 
associated poisoning names. Data below are summarized from Landsberg (2002) and Abbott et al. (2009).  

Toxin or toxin class Causative organism(s) Habitat(s) Primary mechanism(s) of action (associated 
illness) 

Hydrophilic or 
lipophilic 

Associated sea turtle 
studies 

Anatoxins Anabaena circinalis 
Anabaena flos-aquae 
Anabaena planctonica 
Aphanizomenon flos- 
aquae 
Cylindrospermum sp. 
Microcystis spp. 
Oscillatoria spp. 
Phormidium spp. 
Planktothrix spp. 

Freshwater estuarine Neurotoxic Hydrophilic 25 

Brevetoxins Karenia brevis Estuarine, marine Neurotoxic (NSP: neurotoxic shellfish 
poisoning); respiratory irritant 

Lipophilic 4, 9, 11, 12, 15, 18, 19, 
21, 23–25 

Cylindrospermopsin Anabaena bergii 
Aphanizomenon flos- 
aquae 
Aphanizomenon 
ovalisporum 
Cylindrospermopsis 
raciborskii 

Freshwater, estuarine Hepatotoxic Hydrophilic 25 

Domoic acid Pseudo-nitzschia spp. Estuarine, marine Neurotoxic (ASP: amnesic shellfish poisoning) Hydrophilic 4, 10, 13, 16, 17, 25 
Lyngbyatoxins Lyngbya spp. Freshwater, estuarine, 

marine 
Dermatoxic Lipophilic 1, 3, 5, 6, 11, 25 

Microcystins Anabaena spp. 
Microcystis spp. 
Nostoc spp. 
Oscillatoria spp. 
Planktothrix spp. 

Freshwater, estuarine, 
marine 

Hepatotoxic; tumor promoter Lipophilic 11, 25 

Nodularins Nodularia spumigena Estuarine Hepatotoxic Lipophilic 25 
Okadaic acid Dinophysis spp. 

Prorocentrum spp. 
Freshwater, estuarine Gastrotoxic (DSP: diarrhetic shellfish 

poisoning) 
Lipophilic 2, 4, 8, 11, 25 

Saxitoxins/ 
Neosaxitoxins 

Alexandrium minutum 
An. circinalis 
Ap. flos-aquae 
Cylindrospermopsis 
raciborskii 
Gymnodinium spp. 
Lyngbya spp. 
Planktothrix spp. 
Pyrodinium bahamense 

Freshwater, estuarine Neurotoxic (PSP: paralytic shellfish 
poisoning) 

Hydrophilic 4, 7, 11, 14, 16–18, 20, 
22, 25 

References: 1, Yasumoto, 1998; 2, Anderson et al. (2001); 3, Arthur et al. (2006); 4, Jacobson et al., (2006); 5, Arthur et al. (2008a); 6, Arthur et al. (2008b); 7, 
Licea-Duran et al. (2006); 8, Takahashi et al. (2008); 9, Walsh et al. (2010); 10, Harris et al. (2011); 11, Capper et al. (2013); 12, Fauquier et al. (2013); 13, Harris et al. 
(2013); 14, Amaya et al. (2014); 15, Perrault et al. (2014); 16, Manire et al. (2015); 17, Manire et al. (2016); 18, Reckendorf et al. (2016); 19, Perrault et al. (2016); 20, 
Trejo et al., 2016; 21, Perrault et al. (2017); 22, Amaya et al. (2018); 23, Walker et al. (2018); 24, Foley et al. (2019); 25, this study.para 
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10 min and 190 μL supernatant transferred to a chromatography vial 
and internal standard was added. The hydrophilic fraction was extracted 
in 1 mL of methanol:water (50:50), vortexed for 30 min, followed by 
centrifugation (5443 g � 10 min), and 190 μL of the supernatant 
transferred to a liquid chromatography vial. The hydrophilic and the 
lipophilic extracts were characterized for HAB toxins separately using a 
Waters, Inc. (Milford, Massachusetts, USA) Acquity ultra-performance 
liquid chromatograph/tandem mass spectrometer (UPLC-MS/MS) 
(Yang et al., 2017; Rodríguez et al., 2018). The UPLC was equipped with 
an HSS T3 column (2.1 mm � 100 mm, particle size 1.8 μm; Waters, 
Inc.), with water (0.1% formic acid) and acetonitrile (0.1% formic acid) 
used as mobile phases for separation of the HAB toxins (Provatas et al., 
2014). 

Standard quality assurance procedures were employed including the 
analysis of surrogate, laboratory controls, method blanks, duplicates, 
matrix spikes, and matrix spike duplicate samples. All quality control 
results were within the acceptance criteria. Duplicate and matrix spike 
duplicate recoveries were within 20% relative percent difference from 
each other. Laboratory control and matrix spike recoveries were within 
�25% of the anticipated value. Instrument response was evaluated 
initially and after every 10 samples using calibration verification stan
dards and a blank. All calibration verifications were within the accep
tance criterion of 85–115% recovery, and all method blank values were 
below the reporting limit. 

Green turtles sampled for this study were all determined to be ju
veniles (Bjorndal et al., 2000) based on their minimum straight carapace 
length (mean � SE: 36.0 � 1.0 cm; range: 27.2–43.4 cm) and mass 
(mean � SE: 6.6 � 0.5 kg; range: 2.8–11.3 kg). All turtles appeared to be 
in good body condition based on visual assessment/subjective body 
condition estimation using plastron shape/concavity and observation of 
neck and limb base thickness. Additionally, 18/21 (85.7%) turtles had 
barnacles on the skin, carapace, and/or plastron; 17/21 (81.0%) had 
external evidence of FP; 4/21 (19.1%) had flipper damage; 4/21 
(19.1%) had leeches on the skin, mouth, and/or cloaca; 3/21 (14.3%) 
had leech cocoons on the skin and/or plastron; and 2/21 (9.5%) had 
carapace damage. 

To the authors’ knowledge, this is the first report of toxin concen
trations in sea turtles residing in Florida’s Big Bend, and represents the 

most comprehensive toxin analysis of sea turtles to date with regards to 
the number of toxins/toxin classes analyzed (Table 1). Overall, 13/21 
(61.9%) green turtles tested positive for at least one toxin, with 4/21 
(19.1%) testing positive for two toxins (Table 2). 8/21 (38.1%) turtles 
had plasma with all toxins below the detection limits. The most 
frequently detected toxin was domoic acid (6/21 turtles, 28.6%), fol
lowed by lyngbyatoxin-A, microcystin-LR, microcystin-RR, nodularin, 
and okadaic acid (2/21 turtles, 9.5% each), and microcystin-LA detected 
in 1/21 turtles (4.8%). Anatoxin-A, brevetoxin-B, brevetoxin-3, cylin
drospermopsin, microcystin-YR, neosaxitoxin, and saxitoxin were not 
detected in any samples (Table 2). Due to low sample size, in-depth 
statistical tests could not be conducted; however, using SPSS (v. 25, 
SPSS, Inc. Chicago, Illinois, USA), a Fisher’s exact test revealed that 
turtles with external evidence of FP were not more likely (P ¼ 0.617) to 
test positive for at least one plasma toxin (11/17 turtles, 64.7%) than 
turtles that did not have external FP (2/4 turtles, 50%). 

There are >5000 described marine phytoplankton species, with ~80 
known to produce toxins (Hallegraeff, 2014); at least 50 marine and 20 
freshwater algal/cyanobacterial species are found in Florida (Abbott 
et al., 2009). Ingestion of seagrasses, macroalgae, and benthic di
noflagellates and cyanobacteria that accumulate and/or produce these 
toxins is the most plausible route of exposure in the green turtles from 
this study (Landsberg et al., 1999; Holloway-Adkins, 2001; Flewelling 
et al., 2005; Capper et al., 2013). Cyanobacterial and red tide blooms 
have occurred in Florida’s Big Bend in previous years (Geselbracht, 
2007; Hu et al., 2015; Perrault et al., 2017; FFWCC, 2019); however, no 
active HABs were reported from this region during June 2015 when 
sampling occurred, aside from Pseudo-nitzschia detected in a few samples 
at low concentrations (FFWCC-FWRI HAB Monitoring Database). It is 
worth noting that the majority of phytoplankton abundance data is 
collected in response to HABs and sampling efforts vary with funding 
availability. Additionally, there is a relatively small amount of available 
HAB data for Florida’s Big Bend in comparison to other areas of the state 
where HABs are more common (FFWCC-FWRI HAB Monitoring Data
base). Despite this apparent lack of preceding HAB(s), more than half of 
the green turtles from this study tested positive for at least one algal or 
cyanobacterial toxin. Brevetoxins can remain in the plasma of logger
head sea turtles for �80 days post-exposure (Fauquier et al., 2013); 

Table 2 
Concentrations (in ng/g wet weight) of harmful algal/cyanobacterial toxins detected in plasma of juvenile green turtles from Florida’s Big Bend. Samples with a 
positive result are bolded. Anatoxin-A (<1.7), brevetoxin-B (<75), brevetoxin-3 (<75), cylindrospermopsin (<3), microcystin-YR (<15), neosaxitoxin (<18.8), and 
saxitoxin (<30) were below the limits of detection (included parenthetically next to the toxin name) for all samples.  

Turtle ID Domoic acid Lyngbyatoxin-A Microcystin-LA Microcystin-LR Microcystin-RR Nodularin Okadaic acid 

LLA459 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLA471 <5 <0.2 <7.5 <15 <1.5 <10 9.1 
LLA488 12.5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLA480 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLA490 22.4 <0.2 <7.5 <15 <1.5 19.9 <1.5 
LLA495 <5 <0.2 <7.5 <15 <1.5 <10 26.5 
LLA496 <5 0.40 <7.5 <15 <1.5 <10 <1.5 
LLA499 16.9 <0.2 <7.5 <15 <1.5 31.7 <1.5 
LLH804 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH806 <5 <0.2 <7.5 63.2 22.5 <10 <1.5 
LLH810 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH817 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH821 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH823 24.0 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH825 <5 <0.2 <7.5 <15 20.2 <10 <1.5 
LLH826 <5 <0.2 <7.5 51.6 <1.5 <10 <1.5 
LLH828 41.7 0.64 <7.5 <15 <1.5 <10 <1.5 
LLH830 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH837 <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH841 50.6 <0.2 <7.5 <15 <1.5 <10 <1.5 
LLH843 <5 <0.2 22.8 <15 <1.5 <10 <1.5 
Median <5 <0.2 <7.5 <15 <1.5 <10 <1.5 
Range <5–50.6 <0.2–0.64 <7.5–22.8 <15–63.2 <1.5–22.5 <10–21.7 <1.5–26.5 
# positives 6/21 (28.6%) 2/21 (9.5%) 1/21 (4.8%) 2/21 (9.5%) 2/21 (9.5%) 2/21 (9.5%) 2/21 (9.5%) 
# positives with FP 6 (100%) 2 (100%) 1 (100%) 2 (100%) 1 (50%) 2 (100%) 1 (50%)  
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however, in laboratory and domestic animals experimentally dosed with 
algal toxins, plasma clearance rates appear to be much faster (i.e., less 
than 2 h to one week) for brevetoxin-3, domoic acid, microcystin-LR, 
and saxitoxin (Robinson et al., 1991; Andrinolo et al., 1999; Benson 
et al., 1999; Fuquay et al., 2012). Additionally, brevetoxin-3 was absent 
in plasma of red-eared sliders (Trachemys scripta) and diamondback 
terrapins (Malaclemys terrapin) one week after seven doses administered 
orally over 14 days (Cocilova et al., 2017). Because no known blooms 
occurred before or during the sampling period aside from the presence of 
some Pseudo-nitzschi spp. and because of known rapid clearance rates in 
laboratory-exposed organisms, we can deduce that toxin detection 
described here indicates that numerous harmful algal and cyanobacte
rial species (e.g., Dinophysis spp., Lyngbya spp., Microcystis spp., Nodu
laria sp., Prorocentrum spp., Pseudo-nitzschia spp.) are typically present in 
the Gulf waters of Florida’s Big Bend (Abbott et al., 2009) and that 
exposure to these toxins can likely occur in the absence of a large-scale 
bloom (Perrault et al., 2014, 2016). It is also possible that some local 
blooms go undetected (Rines et al., 2002; McManus et al., 2008). Bre
vetoxins from K. brevis were previously detected in green and Kemp’s 
ridley turtles from Florida’s Big Bend (Perrault et al., 2017), but those 
turtles were sampled immediately after a red tide bloom and occurrence 
of these blooms in Big Bend is relatively rare (Hu et al., 2015; FWC, 
2019; Foley et al., 2019). The relatively high detection limits for bre
vetoxins (75 ng/g) and saxitoxin (30 ng/g) in this study likely impeded 
detection of biologically relevant toxin concentrations. This is particu
larly true for detection during non-bloom periods, since previously re
ported brevetoxin and saxitoxin concentrations in plasma and other 
tissues of naturally exposed sea turtles in Florida are typically below 
these levels (Walsh et al., 2010; Capper et al., 2013; Fauquier et al., 
2013). 

Harmful algal toxins have been previously documented in the diet 
and tissues of sea turtles (see Table 1 for a complete list of those studies 
and analyzed toxins) from Madagascar (Yasumoto, 1998), Australia 
(Arthur et al., 2006, 2008a; 2008b; Takahashi et al., 2008), El Salvador, 
Guatemala, Mexico (Amaya et al., 2014, 2018; Licea-Duran et al., 2006; 
Trejo et al., 2016), Florida USA (Anderson et al., 2001; Jacobson et al., 
2006; Walsh et al., 2010; Capper et al., 2013; Fauquier et al., 2013; 
Perrault et al., 2014, 2016; 2017: Manire et al., 2015), Hawaii USA 
(Anderson et al., 2001), California USA (Harris et al., 2011, 2013), 
Massachusetts USA (Reckendorf et al., 2016), and Texas USA (Walker 
et al., 2018). Concentrations of saxitoxins and brevetoxins have been 
reported in sea turtle plasma (Manire et al., 2016, 2017, Perrault et al., 
2014, 2016, 2017; Trejo et al., 2016; Walsh et al., 2010); however, the 
concentrations of these toxins reported here fell below detection limits 
for all samples analyzed, preventing comparisons. 

The positive results seen here are concerning, especially in the 
absence of a temporally related, detected HAB, as several toxins (e.g., 
anatoxins, lyngbyatoxins, microcystins, nodularins, okadaic acid) have 
been implicated as tumor promoters in laboratory cell lines and 
mammalian models and/or are of public health concern (Landsberg, 
2002; Humpage, 2008). Toxin exposure has been hypothesized to be a 
co-factor in FP tumor development in green turtles, since harmful algal 
and cyanobacterial species tend to occur in regions where FP prevalence 
rates are high (Landsberg et al., 1999; Anderson et al., 2001; Arthur 
et al., 2008a; Perrault et al., 2017). Here, we did not find evidence that 
turtles with FP tumors were more likely to test positive for toxin expo
sure. Identifying causal relationships between toxin exposure and FP 
development is problematic due to various unknown factors such as 
virus exposure timing and duration, and the possibility that biological 
factors or synergistic exposure to multiple toxins may potentiate or mask 
any observable effects (Herbst and Klein, 1995). 

Numerous harmful algal species regularly occur in Florida’s coastal 
waters; therefore, co-occurrence of these HAB organisms and subse
quent exposure to their associated toxins is possible, and in some areas is 
likely, for sea turtles that reside there (Kubanek et al., 2005; Paerl et al., 
2008; Fire et al., 2011; Twiner et al., 2011; Capper et al., 2013). Out of 

the published studies to date that have documented toxin exposure in 
sea turtles (Table 1), only five (20.8%) examined more than one tox
in/class of toxins (e.g., brevetoxins) with regards to cause of death or 
stranding (Jacobson et al., 2006; Capper et al., 2013; Manire et al., 2015, 
2016; Reckendorf et al., 2016). We can expect HAB toxin exposure and 
subsequent sea turtle strandings in Florida to increase in future years as 
HAB-related impacts to public health, tourism, fisheries, organismal 
health, and ecosystem functioning have increased in the last several 
decades and are expected to continue rising (Anderson et al., 2012). 
Therefore, it is imperative to gain a better understanding of toxin con
centrations in sea turtles from Florida’s Big Bend, a region vulnerable to 
the effects of anthropogenic disturbances including nutrient enrichment, 
increased agricultural use, and surface drainage (Frazer et al., 2001; 
Seavey et al., 2011; USFWS, 2013). Ongoing and future research by the 
authors of this study will explore relationships between toxin exposure 
and specific health biomarkers in sea turtles, which may point to 
toxin-related disruption of key physiological systems and elucidate any 
effects that exist between toxin exposure and disease risk or severity 
(Capper et al., 2013). Effective conservation measures must take species 
health into consideration, because a population cannot be sustainable if 
it consists primarily of unhealthy individuals (Karesh and Cook, 1995). 
Because sea turtles are sentinels of ecosystem health (Aguirre and Lutz, 
2004), more research is needed to determine the prevalence of HAB 
species, HAB-associated toxins, and their impacts on sea turtle health. 
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