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The corpus callosum is the main commissure connecting left and right cerebral hemi-
spheres, and varies widely in size. Differences in the midsagittal area of the corpus callosum
(MSACC) have been associated with a number of cognitive and behavioral phenotypes,
including obsessive-compulsive disorders, psychopathy, suicidal tendencies, bipolar disor-
der, schizophrenia, autism, and attention deficit hyperactivity disorder. Although there is
evidence to suggest that MSACC is heritable in normal human populations, there is sur-
prisingly little evidence concerning the genetic modulation of this variation. Mice provide
a potentially ideal tool to dissect the genetic modulation of MSACC. Here, we use a large
genetic reference panel – the BXD recombinant inbred line – to dissect the natural vari-
ation of the MSACC. We estimated the MSACC in over 300 individuals from nearly 80
strains. We found a 4-fold difference in MSACC between individual mice, and a 2.5-fold
difference among strains. MSACC is a highly heritable trait (h2 = 0.60), and we mapped a
suggestive QTL to the distal portion of Chr 14. Using sequence data and neocortical expres-
sion databases, we were able to identify eight positional and plausible biological candidate
genes within this interval. Finally, we found that MSACC correlated with behavioral traits
associated with anxiety and attention.
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INTRODUCTION
The size of the corpus callosum – the main commissure connecting
the cerebral hemispheres – is highly variable in human popula-
tions. There is at least a 2-fold range of variation in midsagittal
area of the corpus callosum (MSACC) among healthy children
and adolescents (Scamvougeras et al., 2003; Ganjavi et al., 2011).
The MSACC is a rough linear function of the number of cal-
losal projections, and in general an increase in area is associated
with an increase in the number of fibers (Aboitiz et al., 1992).
Variation of the number of callosal fibers in healthy brains is
dependent, therefore, on a number of factors that occur during
callosal development including axon outgrowth, synaptogenesis,
and axon pruning. Thus, any genes or gene networks that modulate
any of these factors are likely to affect the MSACC.

The process of development of the corpus callosum is rel-
atively well understood. In humans, it has been proposed that
all interhemispheric commissures initially cross the midline dur-
ing embryogenesis at the commissural plate (Rakic and Yakovlev,
1968). In rodents, the commissural plate also serves as a source
for morphogens that facilitate a realization of the neocortex as
well as corpus callosum formation, primarily through the mor-
phogen Fgf8 (Storm et al., 2006; O’Leary et al., 2007; Moldrich
et al., 2010). In the mouse, “pioneer axons” cross the rostral mid-
line at E15.5 and lay the foundation for later forming neocortical
axons (Rash and Richards, 2001). The glial sling, which forms a
bridge between the hemispheres, provides the foundation for these
pioneer axons (Smith et al., 2006). The glial wedge, located just lat-
eral to the midlines (Shu and Richards, 2001), provides additional

guidance for callosal axons, primarily through secretion of Wnt,
Netrin1, Slit2 as well as various ephrins and semaphorins (see
Fame et al., 2011, for review). Once callosal axons have crossed the
midline, they need to establish connections to the opposite hemi-
sphere. Initially, these projections are exuberant, innervating both
homotopic and heterotopic cortex (Innocenti and Berbel, 1991;
Innocenti, 1995). Eventually, heterotopic projects are pruned by
activity-dependent mechanisms (Mizuno et al., 2007), and the
adult-like pattern of mostly homotopic connectivity is established
at the end of the third week of life in rodents (Innocenti and Price,
2005). At present, there is not much known about the specific
genetic mechanisms underlying this phase of callosal develop-
ment, but there is an increasingly large amount of information
as to the molecular signals that specify different neocortical pro-
jection neuron cell types (e.g., Molyneaux et al., 2007; Fame et al.,
2011). Variation in any of the signaling molecules could affect the
number and density of callosal fibers passing through the corpus
callosum.

Individual differences in the volume of the corpus callosum
(or MSACC) have been associated with a number of cognitive
and behavioral phenotypes. The MSACC is larger in individu-
als with obsessive-compulsive disorders (Park et al., 2011) and
in those with psychopathy (Raine et al., 2003). Conversely, a
smaller MSACC has been linked to suicidal tendencies (Cyprien
et al., 2011), bipolar disorder (Arnone et al., 2008a), schizophrenia
(Arnone et al., 2008b), autism (Frazier and Hardan, 2009), and
attention deficit hyperactivity disorder (Cao et al., 2010). Interest-
ingly, reductions in sociability – a behavioral component of autistic
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spectrum disorder – are correlated in mice with a small MSACC
(Fairless et al., 2008), suggesting that the relationship between cor-
pus callosum size and behavioral phenotypes can be modeled in
non-human species.

Although there is evidence to suggest that MSACC is herita-
ble in normal human populations (Scamvougeras et al., 2003),
there is surprisingly little evidence concerning the genetic modu-
lation of this key neuroanatomical and functionally critical part
of the brain. Mice provide a potentially ideal tool to dissect the
genetic modulation of MSACC. There are a number of strains
with either complete (BTBR T + tf/J) or partial (BALB/cWah1,
and 129P1/ReJ) callosal agenesis, and researchers have identified
quantitative trait loci (QTLs) that modulate this difference (Livy
and Wahlsten, 1991; Wahlsten et al., 2003). Investigators have
mapped QTLs that affect corpus callosum size by examining an
intercross between BTBR T + tf/J and BALB/cByJ mouse strains
to the X-chromosome (Kusek et al., 2007). Le Roy et al. (1998)
measured the MSACC in F2s generated from a cross of NZB/BlNJ
and C57BL/6J mice and found QTLs on chromosomes 1 and 4,
which explained 25% of the observed variance.

In many of these cases, the QTLs identified loci underlying
a pathological condition – agenesis (either complete or partial)
of the corpus callosum – that may or may not explain normal
variation in callosal size. Here, we use a large genetic reference
panel (BXD recombinant inbred strains) to dissect genetic causes
of natural variation of the MSACC. The BXD family of lines is an
appropriate model system for a number of reasons. First, neither
of the parent strains (C57BL/6J and DBA/2J) have either com-
plete or partial agenesis of the corpus callosum, and only one
spontaneously mutated BXD strain (BXD29-Tlr4lps-2J/ J) has par-
tial callosal agenesis (Rosen et al., 2012). Second, there are ∼80
BXD strains available, increasing both mapping power and preci-
sion. Third, there are hundreds of studies (representing thousands
of traits) that have been conducted using the BXD panel, thereby
permitting analysis of covariation of MSACC with a host of behav-
ioral, anatomical, and physiological phenotypes. Critical for the
neurogenetic analysis, we have studied genetic variation in gene
expression in the neocortex of the BXD family at maturity (Gaglani
et al., 2009) and as described in this paper, at two key stages of
neocortical development.

MATERIALS AND METHODS
All histologic data for this study were obtained from The Mouse
Brain Library (MBL) – a physical and Internet resource that con-
tains high–resolution images of histologically processed slides
from over 3,200 adult mouse brains1 with roughly balanced num-
bers of male and female specimens (Rosen et al., 2003). The ages of
the mice used in this experiment ranged from 31 to 432 days with
an average of 114.3 ± 3.6 and a median of 100. Mice were obtained
from either the Jackson Laboratory (Bar Harbor, ME, USA) or
the University of Tennessee Health Science Center (UTHSC) as
detailed previously (Rosen and Williams, 2001). All procedures
were approved by animal care and use committees and conform
to NIH guidelines for humane treatment of animals. Mice were
deeply anesthetized with Avertin (0.8 ml i.p.) and transcardially

1www.mbl.org

perfused with saline, followed by fixative (either a glutaralde-
hyde/paraformaldehyde solution or 4% paraformaldehyde), and
their brains removed and weighed. After variable post-fixation
times, the brains were embedded in 12% celloidin and sliced in
either a coronal or horizontal plane at a width of approximately
30 μm. Actual section thickness was determined by direct exami-
nation of 10 sections for each brain using an ×100 oil immersion
objective and a z-axis micrometer.

ESTIMATION OF MIDSAGITTAL AREA OF THE CORPUS CALLOSUM
The MSACC was estimated in 303 cases (148 male and 155 female)
from 76 BXD strains (we excluded the aforementioned BXD29-
Tlr4lps-2J/ J strain), as well as from their parental strains (C57BL/6J
and DBA/2J, abbreviated B6 and D2), by one of us (AJN) using
a computer controlled microscope (Nikon E800, Nikon, Inc.,
Melville, NY, USA) and Stereo Investigator (MBF Biosciences,
Williston, VT, USA). We measured the dorsal-ventral distance of
the corpus callosum on the midline of coronal sections that were
spaced approximately 150 μm apart (9–11 sections per brain).
We computed the area by using Cavalieri’s rule (Gundersen and
Jensen, 1987) to estimate the area underneath a curve described
by dorsal-ventral distance on the Y-axis and rostro-caudal dis-
tance on the X-axis. In cases where there were missing or damaged
sections, a piece-wise parabolic estimation was used (Rosen and
Harry, 1990). Final MSACC estimates were individually corrected
for histological shrinkage by determining the previously computed
ratio between the brain volume at fixation (brain weight) and that
after processing. MSACC was blindly re-measured on 10 slides to
assess intra–observer reliability. The experimenter was blind with
respect to strain, sex, and age.

MEASUREMENT ERROR
Intra-observer reliability was high for estimation of MSACC. The
percentage difference between the original and repeated estima-
tions ranged from 0 to 5% and the average difference was merely
0.42%. A correlation coefficient between the two measurements
was highly significant (r = 0.99), indicating that technical error at
this level of the analysis contributes little to case variation or strain
variation. A paired t -test confirmed that the difference between the
first and second estimations was not significant (t < 1, NS).

DATA ANALYSIS, HERITABILITY, AND GENETIC MAPPING
Data were analyzed using standard ANOVA and multiple regres-
sion techniques (JMP, SAS Institute, Cary, NC, USA). We estimated
heritability (h2) by dividing the between strain variance by the
total variance of the trait. QTL analysis was performed using the
WebQTL module of GeneNetwork (GN2). This on-line resource
includes all known morphometric data for the BXD strains, adult,
and developmental neocortical transcriptome data sets, high den-
sity marker maps based on approximately 3795 informative mark-
ers distributed on all chromosomes except Chr Y (Shifman et al.,
2006), and a database containing ∼8.3 million single nucleotide
polymorphisms (SNPs) taken from dbSNP (Frazer et al., 2007),
Sanger/UCLA, and from a high quality subset of about 2.8
million SNPs generated by sequencing DBA/2J (∼25 × shotgun)

2www.genenetwork.org
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performed at UTHSC by R.W.Williams and colleagues. WebQTL
incorporates three common mapping methods: (1) simple inter-
val mapping, (2) composite interval mapping, and (3) a scan for
two-locus epistatic interactions (Wang et al., 2003). To evaluate
candidate genes we used the QTLMiner module of GN (Alberts
and Schughart, 2010), which evaluates all genes in an interval
against neocortical gene expression databases within gene network
(see below).

NEOCORTICAL GENE EXPRESSION
We exploited three freely accessible expression data sets available at
GN that we generated. These data sets estimate steady-state mRNA
levels in neocortex of up to 75 strains of mice at postnatal day (P) 3,
P14, or P60, including the majority of the BXD strains that we have
studied, all of which can be accessed in the main search page of GN
by selecting Species = mouse, Group = BXD, Type = Neocortex
mRNA. Data for the P60 database was generated using the Illu-
mina Sentrix Mouse-6.1 microarray and the P3 and P14 databases
used the Mouse-6.2 microarray. These arrays estimate expression
for a great majority of mouse genes with confirmed protein prod-
ucts and consists of sets of ∼46,000 unique 50-nucleotide-long
probe sequences. Like other array data in GeneNetwork (Chesler
et al., 2005), the original Illumina bead array data (rank invariant
transform) were logged and re-centered to a mean of 8 units and a
standard deviation of 2 units – essentially a z transform of the data.

All genome coordinates in this paper are given using the mouse
genome assembly of July 2007 (UCSC Genome Browser release
mm9, NCBI Build 37).

COVARIATION ANALYSIS
To study covariates of MSACC, we compared our data with the
neocortical transcriptome data sets, as well BXD Published Pheno-
types Database, a large database of over 3,000 previously published
and unpublished BXD traits in GN. We adjusted the alpha levels
for these correlations as described previously (Rosen et al., 2009).
Briefly, alpha levels were adjusted after permuting MSACC 20
times, computing the top 500 correlations with the BXD Published
Phenotypes Database for each permutation, and determining the
computed alpha level of the top 5% of all correlations. From this
analysis, it was determined that computed correlations by GN
with P < 0.005 were significant at an adjusted alpha level of 0.05.
Covariation networks were constructed using on-line tools in GN.

ON-LINE RESOURCES
GeneNetwork: <www.genetwork.org>

The Mouse Brain Library: <www.mbl.org>

QTLMiner: <http://www.genenetwork.org/webqtl/main.py?
FormID=qtlminer>

BXD Published Phenotypes Database: <http://www.
genenetwork.org/dbdoc/BXDPublish.html>

BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov11) RankInv
(P3): <http://www.genenetwork.org/webqtl/main.py?FormID=
sharinginfo&GN_AccessionId=374>

BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov11) RankInv
(P14):<http://www.genenetwork.org/webqtl/main.py?FormID=
sharinginfo&GN_AccessionId=375>

HQF BXD Neocortex ILM6v1.1 (Dec10v2) RankInv (P60):
<http://www.genenetwork.org/dbdoc/HQFNeoc_1210v2_
RankInv.html>

RESULTS
MSACC IS HIGHLY VARIABLE AND HERITABLE
We measured the MSACC in 303 cases representing 76 BXD lines
and both parental strains, C57BL/6J and DBA/2J. Results were
individually corrected for histological shrinkage and can be pub-
licly accessed in the BXD Published Phenotype Database (Trait
ID 14788). As can be seen in Figure 1, there is a high degree
of variability of this measure. The mean MSACC for all mice
was 1.1 ± 0.015 mm2, with a 4-fold range of 0.52–2.1 mm2, and
a relatively normal distribution (Figure 1 inset). In comparison,
the BXD strain means varied just over 2.5-fold – from 0.7 mm2

(BXD38) to 1.75 mm2 (BXD55) with a mean of 1.1 ± 0.023 mm2.
In order to determine the heritability of MSACC, we performed

an ANOVA with the factor strain as the independent measure and
MSACC as the dependent measure. We found a significant main
effect of strain (R2 = 0.59, F 75,220 = 4.2, P < 0.001). Heritability
was found to be high (h2 = 0.60). Taken together, these results
suggest that the MSACC is a highly heritable trait and as such, a
strong candidate for QTL analysis.

MAPPING MSACC
Initial QTL mapping of MSACC revealed a suggestive QTL on
Chr 10 between 105 and 115 Mb (LRS = 13.8, Figure 2A). In
order to map variation of MSACC rather than confounding vari-
ables, we performed a multiple regression with age, sex, strain
epoch (the original Taylor BXD subset vs. the newer UTHSC
BXD subset), and brain weight as independent variables. Overall,
the multiple regression was significant (R2 = 0.38, F 4,290 = 46.1,
P < 0.001). There were significant effects of strain epoch, with
the UTHSC subset (BXD43-BXD103) having larger MSACC
than the original Taylor strains (mean ± SEM: 1.18 ± 0.019 vs.
0.98 ± 0.021 mm2, respectively; F 1,290 = 34.6, P < 0.001). MSACC
increased significantly with age (F 1,290 = 16.6, P < 0.001) and
brain weight (F 1,290 = 73.4, P < 0.001; Figure 2B). There was
no significant effect of sex (mean ± SEM: male = 1.09 ± 0.022 vs.
1.10 ± 0.021 mm2; F 1, 290 < 1, NS). We computed the residuals for
each individual and added them to the mean value of MSACC to
derive a measure of MSACC that was adjusted for these variables
(BXD Published Phenotypes Database, Trait ID 13385).

We then mapped the corrected MSACC estimates and detected
a suggestive locus on Chr 14 between 77.5–97.5 Mb (LRS = 13.2;
Figure 2C), which represents the area of suggestive LRS scores.
Haplotype analysis revealed that the strains inheriting the B allele
at this interval had smaller MSACC, whereas those inheriting
the D allele had larger MSACC values (Figures 2D,E). Pair-scan
analysis did not reveal any significant two-locus additive effects or
epistatic interactions with this trait. Composite interval mapping
controlling for the Chr 14 locus did not reveal any suggestive or
significant QTLs.

CANDIDATE GENE ANALYSIS
We used GeneNetwork’s QTLMiner to rank potential candidates
among the 48 genes in this interval based on the presence of
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FIGURE 1 | Histogram of mean (±SEM) MSACC in 76 BXD strains (gray

bars) and in the two parentals: DBA/2J (white bar) and C57BL/6J (black

bar). Inset is frequency distribution of MSACC in all 303 subjects, illustrating
a mostly normal distribution. MSACC is corrected for histological shrinkage.

non-synonymous SNPs, of expression levels in mRNA databases
(in this case, three neocortical mRNA expression databases: P3,
P14, and P60), and cis-eQTLs.

We first isolated those genes with non-synonymous SNPs or
indels, reasoning that only genes with allelic differences between
the two parent strains could account for the QTL. Of the 48 genes
in the interval, 14 had SNPs between B6 and D2 (4921530L21Rik,
AU017455, Dgkh, Diap3, EG629734, Kiaa0564, Klhl1, Mtrf1, Naa16,
Pcdh8, Pcdh9, Pcdh20, Tdrd3, Tnfsf11). We next identified those
genes that had moderate to high expression in forebrain at some
stage of development – values above the average of 8 in at
least one neocortical expression database (Dgkh, Diap3, Kiaa0564,
Mtrf1, Naa16, Pcdh20, Pcd8, Pcdh9, Tdrd3). Of these, seven were
identified as having cis-eQTLs in at least one of the expres-
sion databases: Dgkh, Kiaa0564, Naa16, Mtrf1, Diap3, Tdrd3,
and Pcdh9. Finally, we examined the interval for genes with-
out non-synonymous SNPs but with significant cis-eQTLs, and
identified Rgc32 (1190002H23Rik) as another potential candi-
date (Table 1; Figure 3A). Gene expression of these candidates is
highly intercorrelated and their expression correlates with MSACC
(Figure 3B).

Dgkh (diacylglycerol kinase, eta) is an integral protein in the
lithium-sensitive phosphatidyl inositol pathway, and has been
associated in a genome wide association study (GWAS) with
bipolar disorder (Baum et al., 2008). Another GWAS linked
Kiaa0564 (KIAA0564 putative ATP-binding protein) to bipolar
disorder co-morbid with migraine (Oedegaard et al., 2010), and
another GWAS identified KIAA0564 as a potential common allele
related to autism (Anney et al., 2010). Rgc32 (response gene to
complement 32 protein) has been associated with susceptibility

to epithelial ovarian cancer (Notaridou et al., 2011). Naa16
(N(alpha)-acetyltransferase 16, NatA auxiliary subunit) codes for
the production of an NMDA receptor-regulate protein, and has
been implicated in cellular regulation (Arnesen et al., 2009).
The Mtrf1 (mitochondrial translational release factor 1) gene
codes for a protein that directs the termination of translation
in response to peptide chain termination codons, acting as a
bioregulator of intercellular machinery (Zhang and Spremulli,
1998). Diap3 (diaphanous homolog 3, drosophila) is a member
of the diaphanous family of genes, and is thought to be required
for cytokinesis among other functions (Peng et al., 2003; Wallar
et al., 2006). Tdrd3 (tudor domain containing 3) codes for a novel
stress granule-associated protein, which interacts with FMRP, the
protein of the gene associated with Fragile X syndrome, thereby
implicating it as a potential contributor to this disorder (Linder
et al., 2008). Pcdh9 belongs to the δ1 non-clustering protocadherin
family (Kim et al., 2011), and is part of a network of cadherins
and protocadherins that have been linked to laminar specification
in the neocortex (Hertel and Redies, 2011; Krishna et al., 2011).
Pcdh9 is one of a network of genes that has recently been linked
to schizophrenia and bipolar disorder though its association with
GSK3β/β-catenin signaling (Pedrosa et al., 2010).

CORRELATIONS WITH BXD PHENOTYPES
An advantage of the BXD family of strains is that one can test for
genetically driven correlation and covariation with thousands of
other phenotypes that have already been quantified using the same
set of genotypes. We correlated MSACC with the BXD Published
Phenotypes Database of GN, which contains a large number of
behavioral, anatomic, and physiologic phenotypes gathered from
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FIGURE 2 | Mapping MSACC in BXD RI strains. (A). Interval map of
MSACC corrected for histological shrinkage across the entire genome. The
x -axis represents the physical map of the genome; the y -axis and thick blue
line provide the LRS of the association between the trait and the genotypes
of markers. The two horizontal lines are the suggestive (blue) and significance
(red) thresholds computed using 2000 permutations. There is a suggestive
QTL mapping to the distal portion of Chr. 10 (red arrow). (B) Correlations
between MSACC and brain weight (left) and age (right) indicate that these
two variables significantly contribute to MSACC. Solid lines indicate linear
relationship of the variable. Dotted line indicates quadratic relationship of the

variables. (C) Interval map of MSACC corrected for shrinkage with the effects
of age, sex, epoch, and brain weight regressed out. There is a suggestive QTL
on Chr 14 (red arrow). (D) Interval map of all of Chr 14. Green line indicates
contribution of DBA/2J alleles. Orange lines on x -axis represent high density
SNP map. Discontinuous track along the top are the genes on this
chromosome. (E) Haplotype map of all 76 BXD strains on 20 Mb QTL interval
on Chr14 (77.5–97.5 Mb). Red lines indicate C57BL/6J alleles (maternal), green
lines indicate DBA/2J alleles (paternal), blue lines indicate heterozygous
alleles, and gray lines are unknown. Strains are arranged from smallest to
largest MSACC (top to bottom).

the BXD set. We adjusted the alpha levels to 0.005 using meth-
ods described above. A total of 39 published and unpublished
traits were found to significantly correlate with MSACC. There
were two groups of highly intercorrelated traits – both from the
same original data source and paper (Philip et al., 2010). One set
of 12 traits (Trait IDs: 11471, 11484, 11487, 11488, 11741, 11745,
11985, 11986, 11997, 11998, 12001, 12002) measured the locomo-
tion response to cocaine administration, with correlations ranging

from r = 0.35–0.41 (N = 63, P < 0.002). Another set of traits
(Trait ID = 11542, 11543, 11546, 12057) measured the locomo-
tion response following saline administration, with correlations in
a similar range as above (r = 0.35–0.40, N = 63, P < 0.002). Using
GN, we computed the principal components of each of these traits
and correlated them with MSACC (Figure 4A), both of which are
significant (P < 0.002). In addition, we found a significant corre-
lation between MSACC and errors of omission on an unpublished
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Table 1 | Positional candidate genes on Chr 14.

Gene SNP ID Mb Exon Transcript

Dgkh rs30360004 78.998908 17 ENSMUST00000074729

rs30360004 78.998908 15 110850

rs49769496 79.027914 5 074729

rs49769496 79.027914 2 110850

Kiaa0564 rs30746850 79.307953 3 012714

rs51868253 79.336966 9 012714

rs32214272 79.418475 18 040990

rs30115968 79.420441 19 040990

rs31329914 79.460368 24 040990

MRS3935663 79.460395 24 040990

rs32207446 79.462440 25 040990

MRS3935988 79.486498 29 040990

MRS3935990 79.486598 29 040990

rs31025485 79.503384 37 040990

rs32202692 79.559864 39 040990

rs31045152 79.598039 44 040990

Rgc32 MRS3937963 79.688584 3′ UTR 022595

MRS3937964 79.688604 3′ UTR 022595

rs32197873 79.688755 3′ UTR 022595

MRS3937966 79.688827 3′ UTR 022595

wt37-14-79688839 79.688839 3′ UTR 022595

wt37-14-79688840 79.688840 3′ UTR 022595

MRS3937967 79.688855 3′ UTR 022595

rs32197869 79.688903 3′ UTR 022595

rs32196702 79.701439 5′ UTR 022595

Naa16 MRS3938412 79.750616 13 163486

MRS3938618 79.768970 8 163486

MRS3938629 79.769893 7 163486

Mtrf1 MRS3939003 79.801579 3 022600

wt37-14-79802643 79.802643 4 022600

MRS3939061 79.806414 5 022600

MRS3939062 79.806415 5 022600

Diap3 MRS3955238 87.056221 28 022599, 168889

rs30389082 87.228885 23 168985

rs30389082 87.228885 24 022599, 168889

rs30389082 87.228885 25 172255

MRS3957866 87.366380 15 172008, 168985

MRS3957866 87.366380 16 022599, 172255, 168889

MRS3958062 87.385469 10 172008, 168985

MRS3958062 87.385469 11 022599, 172255, 168889

Tdrd3 rs47069144 87.871933 4 170712

rs46958936 87.880555 7 170712

rs30586586 87.905647 11 022596

rs30315555 87.905830 11 022596

MRS3962376 87.905889 11 170865

MRS3962377 87.906060 11 022596

MRS3962378 87.906099 11 022596

MRS3962379 87.906152 11 168275

Pcdh9 rs30545411 94.287183 1 068992
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FIGURE 3 | Candidate gene evaluation. (A) Interval maps of gene
expression from three neocortical mRNA expression databases for each of
the candidate genes on the Chr 14 QTL interval. These databases
represent neocortical mRNA expression at three ages – P3, P14, and P60.

Numbers in red indicate mean expression level of the gene, and asterisks
indicate cis-eQTLs. (B) Network graph illustrating correlations among
MSACC and positional candidate gene expression from the three
databases.
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FIGURE 4 | Covariation of MSACC with behavioral traits. (A) Scatterplot
of MSACC correlated with principle component comprised of 12 traits
measuring locomotor response to cocaine administration (Philip et al., 2010;
black circles) and four traits measuring the same response following saline
administration from the same study (white circles). Solid line is linear
correlation of cocaine response, and dotted line is linear correlation of saline
response. (B) Scatterplot of MSACC correlated with errors of omission on a
test of attention.

task that measures attention (Trait ID 13371, S Spijker and AB
Smit, Neuro-Bsik Mouse Phenomics Consortium, Figure 4B).

DISCUSSION
In this experiment, we estimated the MSACC in over 300 individ-
uals representing 78 inbred lines of highly diverse but genetically

fully characterized lines of mice. These data represent the largest
sample of inbred strains ever assessed for this, or any other, neu-
roanatomical phenotype. We found a remarkably large variation
in this measure, with a nearly 4-fold difference among individuals
with the smallest and those with the largest areas. When strain
means were taken into account, the range became smaller, but still
represented a 2.5-fold difference. ANOVA and heritability esti-
mates clearly demonstrated that MSACC is a highly heritable trait,
and we found a suggestive QTL modulating this trait on an interval
in the distal portion of Chr 14. Using sequence data and neocorti-
cal expression databases, we identified eight positional candidate
genes. Finally, we were able to examine covariation of MSACC with
a wide variety of behavioral, physiological, and anatomical traits,
and identified significant correlations with locomotor activity and
attentional tasks.

The large number of strains and individuals phenotyped in this
experiment allows us to assess factors that influence and covary
with MSACC. We found a significant effect of age on the size of
the corpus callosum, with MSACC generally increasing during the
first year of life, with only a modest decrease in size afterward
(Figure 2B). In humans, it is generally accepted that the size of
the callosum decreases with age, but this appears mostly to be due
to cerebral atrophy – in healthy aging, there is not a demonstra-
ble decrease in the callosum size (Pozzilli et al., 1994; Rauch and
Jinkins, 1994). This is similar to what has been reported in other
species, including capuchin monkeys, whose quadratic relation-
ship between age and MSACC is similar to that seen in the current
study (compare Figure 3 from Phillips and Sherwood, 2012 with
Figure 2B in the current study).

The issue of sex difference in size and shape of the corpus
callosum has been a controversial topic in the human literature,
with some investigators reporting that regions of corpus callosum
(the splenium, for example) are smaller in females (de Lacoste-
Utamsing and Holloway, 1982; Holloway and de Lacoste, 1986;
Elster et al., 1990; Holloway et al., 1993), with other researchers
failing to confirm this finding (Bell and Variend, 1985; Weber
and Weis, 1986; Oppenheim et al., 1987). Investigations of the
size (rather than shape) of the corpus callosum are also con-
troversial, with some finding smaller MSACC in females (de
Lacoste-Utamsing and Holloway, 1982), others reporting no sex
differences (Going and Dixson, 1990; Allen et al., 1991), and still
other researchers finding that that the MSACC of females is larger
than males when corrected for brain volume (Steinmetz et al.,
1995). We found no sex differences in the MSACC in the current
study, but we cannot address potential sex differences in shape of
the corpus callosum because we did not assess these parameters.

We found a suggestive QTL modulating MSACC on a 20 Mb
interval on the distal portion of Chr 14. Within this interval,
we identified positional candidate genes based on whether (1)
they contained non-synonymous SNPs between the parental geno-
types, (2) they were expressed in the cerebral cortex during early
and late postnatal periods, and (3) they modified their own
expression (cis-eQTL). Using these criteria, we identified Dgkh,
Kiaa0564, Rgc32, Naa16, Mtrf1, Diap3, Tdrd3, and Pcdh9 as posi-
tional candidate genes. Different GWA studies have identified
Dgkh (Baum et al., 2008) and Kiaa0564 (Oedegaard et al., 2010)
as potential modulators of bipolar disorder, a disorder that has
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also been associated with decreased size of the callosum (Arnone
et al., 2008a; Kempton et al., 2011) and generally disordered inter-
hemispheric communication (Bellani et al., 2009; Lu et al., 2011).
Moreover, MSACC correlates significantly with the expression of
both of these genes in each of the three databases used in this
study (Figure 3B). Pcdh9 is a member of a network of cadherins
and protocadherins that have been linked to laminar specification
in the neocortex (Hertel and Redies, 2011; Krishna et al., 2011),
as well as to disorders such as autism (Morrow et al., 2008). In
addition, Pcdh9 is one of a network of genes that has recently been
linked to schizophrenia and bipolar disorder though its associa-
tion with GSK3β/β-catenin signaling (Pedrosa et al., 2010). Like
bipolar disorder discussed above, schizophrenics appear to have
smaller callosum than unaffected controls (Arnone et al., 2008b).

A previous study (Le Roy et al., 1998) reported QTLs on Chr
1 and 4 that together explained about 25% of the variance of
MSACC. We were unable to replicate these findings in the current
experiment. One possibility that might account for the discrep-
ancy in these results is that Le Roy et al. mapped MSACC corrected
for hemispheric area, rather than MSACC alone as we have done.
Another possibility may relate to the different populations being
studied in these two experiments. Le Roy et al. used F2s generated
from a cross of NZB/BlNJ (N) and B6 mice, whereas the BXD ref-
erence panel is the result a cross between D2 and B6. If N and D2
haplotypes are identical by descent in the Chr 1 and Chr 4 intervals,
then the polymorphic regions with B6 would also be identical, and
one might expect high mapping concordance between the studies.
In contrast, if significant regions of these QTL intervals are not
identical by descent and areas of polymorphism differed between
the crosses, then mapping concordance would be compromised.
We used the SNP Browser of GeneNetwork to identify the missense
SNPs among N, B6, and D2 strains in Chr 1 interval (166–193 Mb),
and found that only 48% of the 818 N and D2 SNPs in the inter-
val were identical by descent. Similarly, only 40% of the 993 SNPs
in the Chr 4 interval (119–142 Mb) were identical by descent for
these strains. It is therefore possible that the lack of replication in
this study is due to different patterns of inheritance between the
reference populations.

Caution is necessary when interpreting these mapping results.
First, our estimation of MSACC was made on coronally cut
sections, and so it could be argued that we only indirectly assessed
the midsagittal area. We contend that our stereologic measure is in
practice more precise than MSACC taken from histologically cut
sagittal sections. In our case, we can accurately delineate the dorsal-
ventral distance at the precise midsagittal point, whereas it is diffi-
cult to ascertain the precise midsagittal plane in histologic sections.
That said, confirmation of our results with high-resolution MRI
(e.g., Badea et al., 2009), which doesn’t suffer from the limitation of
a fixed plane of section, would provide validation. Second, the QTL
that we described did not reach significance at the genome-wide
level. Thus, while this QTL is suggestive, replication with another
genetic cross or even a human cohort would provide greater confi-
dence. In addition,we found that larger MSACC in this BXD family
was associated with the paternal (D) allele. This is despite the fact
DBA2/J mice have smaller MSACC than the C57BL/6J (mater-
nal) strain. We hypothesize that inheriting a B allele at this locus
acts to decrease callosal area, perhaps through mechanisms known

to affect the number of callosal fibers including axon outgrowth,
synaptogenesis, and axon pruning.

Another potential issue is that of sample size. In this exper-
iment we phenotyped ∼4 mice in each of 78 strains, and the
question could be raised whether our ability to detect a QTL
would have been improved had we increased number of biological
replicates. When dealing with RI strains, the main question is
whether effort should be geared toward increasing the number
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FIGURE 5 | Power analysis to determine optimal number of strains and

mice/strain. (A) Power statistics for number of mice within strain as a
function of effect size. Increasing the number of mice beyond 4 offers little
benefit. (B) Power analysis of different numbers of RI strains as a function
of percent variance. Increasing the number of RI strains increases the
likelihood of detecting small effect QTLs.
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of strains or toward phenotyping more mice in fewer strains. To
address this question, we performed a power analysis to estimate
of the probability of detecting QTLs of different effect sizes using
data from a previously published study on striatal volume (Rosen
et al., 2009). The results, summarized in Figure 5, were generated
using qtlDesign by Sen et al. (2005a,b).

The issue of within-strain sample size (biological replicates)
on the detection of QTLs has been discussed in detail (Belknap,
1998; Crusio, 2004). They point out that QTL detection in RI sets
improves with greater number of strains, and that increasing the
number of subjects within a strain has only marginal effects when
h2 is high. We have confirmed this by holding the number of strains
constant at 80, and plotting the number of subjects in each strain
against the effect size. These data are summarized in Figure 5A.
Increasing the number of subjects from 2 to 4 offers substantial
improvement in QTL detection. Increasing the number from 4
to 6 or even 8, does not appreciably improve power. In order to
determine the effect of an increase strain number, we held the total
biological variance at 145 arbitrary units, the genetic variance at
100, the number of biological replicates at 4, and varied the QTL
effect size (Figure 5B). With 30 strains one can identify a QTL that
explains approximately ∼40% of the variance with a power of 0.8.
In contrast, phenotyping 80 strains permits detection of a QTL
that explains ∼20% of the variance. We are therefore confident
that counting ∼4 mice in each of nearly 80 strains is sufficient to
detect QTLs. In previous publications, we have empirically con-
firmed that this number is sufficient to reliably map QTLs for traits
with moderate heritability (Gaglani et al., 2009).

Phenotyping the large BXD family of strains enables us and
other investigators to study patterns of covariation with other
phenotypes (Rosen et al., 2007). In this experiment, we report a
significant correlation between MSACC and two measures of loco-
motor activity in an open field apparatus. Locomotor activity in
this context has been commonly used as a measure for exploration,
novelty seeking, anxiety and predisposition to addiction to drugs
of abuse, with decreased activity associated with increased anxiety
(Philip et al., 2010). The positive correlation indicates that those
strains with larger corpus callosum are less anxious than those
strains with smaller MSACC. These data are in agreement with
studies in the human literature that suggest that individuals with a
variety of disorders where anxiety plays an important role are more
likely to have a decreased MSACC compared to controls, such as
bipolar disorder (Arnone et al., 2008a). We also found a positive

correlation between MSACC and percentage of errors of omission
in an attention task, suggesting that strains with larger MSACC
perform relatively poorly on this task compared to those with small
MSACC. In humans, however, patients with ADHD have smaller
corpus callosum size than controls (Cao et al., 2010). One poten-
tial explanation for the discrepancy is that this particular measure
taps into but one of many behavioral factors (such as accuracy,
motivation, and impulsivity) that affect attention (Guillem et al.,
2011).

To identify positional candidates, we relied on a number of
publicly available databases, some of which are reported here for
the first time. Specifically, we used neocortical mRNA expression
databases that were derived from two ages – P3 and P14 – during
early development. These databases were constructed by dissec-
tion of neocortex from 43 BXD strains, and complement similar
databases of striatal mRNA expression. We aim in the future to
create expression databases at other prenatal and postnatal ages,
and to provide on-line tools for time series analysis of these
datasets.

In conclusion, we estimated MSACC in the largest population
of genetically diverse mice ever previously reported. There are a
number of similarities between morphometric studies in humans
and the current study. As with humans, MSACC positively cor-
relates with brain weight. Age is also a significant contributor to
MSACC, with callosal size increasing during the first year of life. In
humans, callosal size tends to decrease in during aging, but we were
unable to assess this degenerative change as we lacked sufficiently
old mice. Interestingly, we found no differences between the sexes
in our measure of callosal area, which may inform the controversy
in the human literature. There is a remarkable degree of varia-
tion in MSACC, and a high degree of heritability. We mapped
our phenotype to an interval on the distal end of Chr 14, and
identified eight positional candidates that may modulate this trait.
Future experiments with knockout mice could help to confirm
these candidates.
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