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The causal relationship between atrazine exposure and the

occurrence of breast cancer in women was evaluated using the

framework developed by Adami et al. (2011) wherein biological

plausibility and epidemiological evidence were combined to

conclude that a causal relationship between atrazine exposure and

breast cancer is ‘‘unlikely’’. Carcinogenicity studies in female

Sprague-Dawley (SD) but not Fischer-344 rats indicate that high

doses of atrazine caused a decreased latency and an increased

incidence of combined adenocarcinoma and fibroadenoma mam-

mary tumors. There were no effects of atrazine on any other tumor

type in male or female SD or Fischer-344 rats or in three strains of

mice. Seven key events that precede tumor expression in female SD

rats were identified. Atrazine induces mammary tumors in aging

female SD rats by suppressing the luteinizing hormone surge,

thereby supporting a state of persistent estrus and prolonged

exposure to endogenous estrogen and prolactin. This endocrine

mode of action has low biological plausibility for women because

women who undergo reproductive senescence have low rather than

elevated levels of estrogen and prolactin. Four alternative modes of

action (genotoxicity, estrogenicity, upregulation of aromatase gene

expression or delayed mammary gland development) were consid-

ered and none could account for the tumor response in SD rats.

Epidemiological studies provide no support for a causal relationship

between atrazine exposure and breast cancer. This conclusion is

consistent with International Agency for Research on Cancer’s

classification of atrazine as ‘‘unclassifiable as to carcinogenicity’’

and the United States Environmental Protection Agency’s classifi-

cation of atrazine as ‘‘not likely to be carcinogenic.’’

Key Words: atrazine; mode of action; endocrine; breast cancer;

weight-of-the-evidence; framework.

Toxicology is rapidly being transformed from a descriptive

science to one capable of prediction. Central to this progress

is the understanding of key genomic, proteomic, biochemical,

physiological, and pathological events on the pathway from

chemical exposure to the expression of toxicity. The succession

of key events following initial exposure, through intermediate

states and ultimately to measurable adverse outcomes has been

called a ‘‘mode of action’’ (Meek et al., 2003; Sonich-Mullin

et al., 2001; USEPA, 2005). When the sequence of events is

understood at a fundamental level of chemical-cell molecular

interaction, the mode of action becomes a mechanism of

toxicity. Mechanisms of toxicity are often postulated but in fact

are rarely established. In the expression of toxicity, it is not

uncommon for different facets of toxicity to be triggered at

different dose levels (Slikker et al., 2004a,b) or through

different mechanisms. Furthermore, differences between species

with respect to absorption, distribution, metabolism, elimination,

and target-specific susceptibility may render the extrapolation

from in vitro models or even from in vivo animal data to humans

difficult.

To accommodate the complexity of evaluating a mode of

action, systematic approaches have been developed to evaluate

the relevance of findings in animal studies to humans (Meek

et al., 2003). Three key questions are: (1) Is there sufficient

evidence in animal studies to propose a mode of action? (2) Is

that mode of action operative in humans? and (3) Is the mode of

action relevant to humans after considering differences between

species with respect to pharmacokinetic and toxicodynamic

factors operative at expected levels of human exposures?

Ultimately, the question of whether humans display toxicity

following exposure to the chemical through ingestion, in-

halation, or dermal contact can best be ascertained from

observational epidemiology. Although there is a long history of

interpreting epidemiology studies, only recently have methods
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been developed to systematically integrate animal data with

data from observational epidemiology (Adami et al., 2011;

European Center for Ecotoxicology and Toxicology of

Chemicals, 2009; Swaen, 2006). This paper presents a case

study utilizing the methodology described by Adami et al.
(2011) wherein toxicological and epidemiological evidence

were combined in a systematic framework to conclude whether

a causal relationship exists between atrazine exposure and

breast cancer in humans. Mode of action research using animal

models (Brusick, 1994; Cooper et al., 2007; Eldridge and

Wetzel, 2008; Stevens et al., 1994; Yi, Simpkins, and

Breckenridge, in preparation) and epidemiology studies on

breast cancer in women were evaluated. Breast cancer was

selected for this case study because there were many mode of

action research studies and a number of epidemiological

studies on breast cancer that have been previously evaluated by

regulatory authorities as part of a comprehensive cancer risk

assessment (Australian Pesticides and Veterinary Medicines

Authority [APVMA], 2004, 2008; Food and Agricultural

Organization of the United Nations and the World Health

Organization [FAO/WHO], 2009; USEPA, 2003b, 2006). A

detailed review of the association between triazine exposure

and any cancer has also just recently been published

(Sathiakumar et al., 2011).

MATERIALS AND METHODS

The five-step method outlined by Adami et al. (2011) was followed

including (1) collection of all relevant studies, (2) assessment of quality, (3)

evaluation of the weight of evidence, (4) assignment of a scalable conclusion,

and (5) placement on a causal relationship grid. All relevant toxicological and

epidemiological studies were identified and study quality was assessed

according to guidelines for evaluating toxicological (USEPA, 1993, 2001,

2003a) and epidemiology studies (London Principles, 1995: von Elm, 2007).

Studies that characterize the effect of atrazine on the latency and the incidence

of adenocarcinoma and fibroadenoma in the mammary glands of female

Sprague-Dawley (SD) rats were summarized (Cooper et al., 2007; Eldridge and

Wetzel, 2008; Stevens et al., 1994, 1999).

Studies relevant to the proposed mode of action underlying the effect of

atrazine on mammary tumors were evaluated and a concordance analysis was

conducted. The framework analysis also examined and rejected alternative

modes of action including hypotheses relating to

� Genotoxicity (Brusick, 1994);

� Direct estrogenicity (Eldridge et al., 2008);

� Induction of aromatase expression in vivo resulting in excess formation of

estrogen (Sanderson et al., 2000, 2001; Yi, Simpkins, and Breckenridge,

in preparation); and

� Delayed mammary gland development leading to an extended period in

which the mammary gland remains undifferentiated and vulnerable to

genotoxic or viral carcinogens (Hovey et al., 2010; Russo et al., 2006).

Once the weight of the evidence assessment was completed, the relevance of

the mode of action to humans was considered. This analysis included

a consideration of the dose at which humans are likely to be exposed to

atrazine. The most probable mode of action underlying the occurrence of

mammary tumors in animal models was identified and whether it was plausible

that the mode of action underlying the mammary tumor response in rats would

be operative in humans.

Epidemiological studies that evaluated the association between human

exposure to atrazine and the incidence of breast cancer were identified. The

quality of the studies was characterized and whether collectively the results

supported an inference of causality. The overall assessment was completed by

using a causal inference grid and assigning atrazine to one of the four categories

described by Adami et al. (2011).

RESULTS AND DISCUSSION

Effects of Atrazine on Mammary Tumors in Female SD Rats

Stevens et al. (1999) summarized the results from nine

carcinogenicity studies on atrazine in male and/or female SD

rats (five studies), female Fischer 344 rats (two studies), and

CD-1 mice (two studies). Additional non-guideline studies

were conducted in SD and Fischer-344 rats and in two cross-

bred mouse strains (C57Bl6 x C3H/Anf or AKR) (Table 1). In

female SD rats, atrazine caused a decreased latency and/or

increased combined incidence of mammary adenocarcinoma

and fibroadenoma tumors (Figs. 1a and 1b) with no effect on

the incidence of any other tumor type. There were no effects of

atrazine at the maximum tolerated dose on the incidence

of mammary tumors, on the incidence of any other tumor

type in the female Fischer-344 rats (Fig. 1c) or on tumor

incidence in three strains of mice (Table 1). Overall, the weight

of the evidence indicates that the effect of atrazine on tumor

incidence is specific to mammary tumors in female SD rats.

Key Events Underlying the Occurrence of Mammary Tumors
in Female SD Rats

Key events (Fig. 2) leading to a decreased latency and an

increased incidence of mammary tumors in atrazine-treated female

SD rats have been proposed (Stevens et al., 1994) such that:

� Atrazine causes a dose-dependent effect on the

synchronized activity of gonadotrophin-releasing hor-

mone (GnRH) neurons during the estrogen-induced

luteinizing hormone (LH) surge so that the amplitude of

the LH surge is reduced (Foradori et al., 2009b).

� The reduction in the LH surge amplitude and a reduced

area under the LH curve causes a failure of the maturing

ovarian follicles to ovulate their eggs.

� The failure of ovulation results in continuous secretion

of estrogen over successive days until the unovulated

follicles undergo atresia.

� Repeated failure of ovulation over successive days of the

estrous cycle produces a persistent state of estrus resulting

in prolonged exposure of the mammary gland and the

pituitary to endogenous estrogen. Estrogen is known to

be mitogenic and a metabolite of estradiol, 4-hydroxy

estradiol, is possibly directly carcinogenic by redox

recycling between a semiquinone and quinine form

liberating supraoxide radicals (Jefcoate et al., 2000).

� Under the influence of estrogen, proliferative changes

are observed earlier in the mammary gland and in the
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pituitary. Prolonged stimulation of ductal tissue in the

mammary gland by estrogen causes an increased

incidence and a decreased latency of adenocarcinomas

(Sielken et al., 2005).

� Proliferative changes in the pituitary in response to

increased exposure to endogenous estrogens are

postulated to result in an earlier development of

pituitary tumors resulting in hyperprolactinemia

(O’Connor et al., 2000).

� Prolonged exposure of ductal tissue in the mammary

gland to endogenous prolactin is postulated to cause an

earlier occurrence of mammary fibroadenoma (Eldridge

et al., 1999a,b; Eldridge and Wetzel, 2008; Sielken

et al., 2005; Stevens et al., 1994).

Experimental Evidence Supporting the Proposed Mode of Action

Figure 3 shows the number of estrous days in female control

SD rats (Fig. 3a) and in those exposed to 400 ppm atrazine

(Fig. 3b) after 26 weeks of treatment. High-dose atrazine-

treated female SD rats displayed an increased proportion of

days in constant estrus commencing after three months of

treatment (week 13–14) in the 400 ppm dose group (Fig. 3b)

compared with untreated controls (Fig. 3a). A dose-dependent

relationship existed, with a modest increase in the percent days

in estrus noted in the 70 ppm group after nine months of

treatment (Fig. 4b); no effect was observed at feeding levels

less than or equal to 50 ppm (Fig. 4a). The earliest appearance

of disrupted estrous cycles in the 400 ppm treated groups

occurred prior to the earliest appearance of the increased

incidence of mammary tumors (week 26; Fig. 1b). There was

no effect of 400 ppm atrazine on either mammary tumor

incidence (Fig. 1c) or on the estrous cycle in female Fischer-

344 rats (Fig. 4c).

Studies investigating the effect of atrazine on the estrogen-

induced LH surge in female SD and Fischer-344 rats indicate that

doses of atrazine that disrupted the estrous cycle and caused

a decreased latency and/or increased incidence of mammary

TABLE 1

Effect of Oral Administration of Atrazine on the Incidence and/or Latency of Tumors in Rodents

Study reference Species Strain Sex

Levels tested

(mg/kg/day)

Duration

(months) Results

Innes et al. (1969)

(NTP Study)

Mouse C57BL/6 X C3H/Anf;

C57BL/6 X AKR

M and F 21.5a 18 Negative

Stevens et al. (1999) (M1) Mouse CD-1 M and F 0, 10, 300, and 1000b M 21, F 22 Negative

Stevens et al. (1999) (M2) Mouse CD-1 M and F 0, 1.6, 47.9, 246.9, and 482.7 21 Negative

Pintér et al. (1990) Rat Fischer-344 M and F 0, 375, and 750b 29 Inconclusive

Thakur et al. (1998) Rat Fischer-344 F 0, 0.7, 4.7, 13.6, and 27.4 24 Negative

Thakur et al. (1998) Rat Fischer-344 M and F 0, 0.7, 4.7, 13.6, and 27.4 24 Negative

Stevens et al. (1994)

(Study 1)

Rat SD M and F 0, 0.5, 5.5, and 60 24 Male: negative

Female: positive

(0.5, 60 mg/kg/day)

Increased incidence

Stevens et al. (1999) (SDR1) Rat SD M and F 0, 0.5, 3.5, 29.5, and 64.7 24 Male: negative; Female:

positive (3.5, 29.5, 64.7

mg/kg/day)

(Increased incidence)

Stevens et al. (1994)

(Study 3)

Rat SD F 0, 0.7, 3.5, and 37.6 24 Negative

Stevens et al. (1999) (SDR2) Rat SD F 0, 4.3, and 25.6 24 Positive: (early onset)

at 25.6 mg/kg/day

No effect on incidence

Stevens et al. (1999) (SDR3) Rat SD F 0, 4.3, and 25.6 24 Positive: (early onset)

at 25.6 mg/kg/day

No effect on incidence

Stevens et al. (1999) (SDR5) Rat SD F (intact) 0, 1.5, 3.1, 4.2, and 24.4 12, 24 Positive: (early onset)

at 24.4 mg/kg/day

No effect on incidence

Stevens et al. (1999) (SDR4) Rat SD F (ovex) 0, 1.2, 2.5, 3.5, and 20.9 12, 24 Negative

Pettersen and Turnier (1995)c Rat SD F 0, 0.8, 1.7, 2.8, 4.1, and 23.9 12 Positive: (early onset)

at 23.9 mg/kg/day

No effect on incidence

aOnly female doses given.
bPresented in ppm only, as conversion data were unavailable.
cStudy has not been published.
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tumors in female SD rats also suppressed the LH surge (Fig. 5a).

In contrast, there was no effect of dietary concentrations of

atrazine up to 400 ppm on the estrogen-induced LH surge in

female Fischer-344 rats (Fig. 5b). This latter finding is consistent

with the absence of an effect of atrazine on the estrous cycle

(Fig. 4c) or on the latency or incidence of mammary tumors in

female Fischer-344 rats (Fig. 1c).

The weight of evidence indicates that atrazine induces

mammary tumors in female SD rats by suppressing the LH

surge, thereby supporting a state of persistent estrous and

prolonged exposure to endogenous estrogen and prolactin. The

results are consistent, within and across studies as discussed

above, with respect to dose and duration of exposure needed to

produce the neuroendocrine-mediated effects. The results are

highly specific to the female SD rat because another strain of

rat, the Fischer-344, is insensitive to this mode of action.

Neither the LH surge, the estrous cycle, nor mammary tumor

incidence are altered in atrazine-treated female Fischer-344 rats

compared with untreated controls. The Fischer-344 rat is non-

responsive because it maintains a normal estrous cycle through

a greater portion of its life span, followed by a decline in

ovarian estrogens similar to the human female (Table 2).

Structure-activity assessments indicate that the chlorotria-

zines share this common mechanism of action. When other

functional groups are substituted for the chlorine atom on the

triazine nucleus (S-methyl, O-methyl, and hydroxy), there was

no effect of treatment on mammary tumor incidence in chronic

bioassays in SD rats (Supplementary Figure S1). Terbumeton,

which has an O-methyl group substitution, was the only

exception (Stevens et al., 1994).

Relevance of the Proposed Mode of Action for Women

Folliculogenesis during the mammalian ovarian cycle is

regulated by relatively low levels of circulating LH and

follicule-stimulating hormone (FSH) produced by a ‘‘basal’’

mode of gonadotropin secretion, which is controlled by the

negative feedback action of ovarian steroids, primarily

estradiol. Ovulation, which occurs at the end of the follicular

phase, is achieved by a massive discharge of LH that is

generated by a ‘‘surge’’ mode of gonadotropin secretion. Both

modes of gonadotropin secretion are dependent on hypophy-

siotropic stimulation from the hypothalamus in the form of

GnRH. Basal gonadotropin secretion is dependent on the

intermittent release of brief ‘‘pulses’’ of GnRH from the

hypothalamus into the hypophysial portal circulation, and this

pulsatile secretion occurs approximately every 20–60 min

depending on species (Freeman, 2006; Zeleznik and Pohl,

2006). The neural mechanism that generates pulsatile GnRH

release is resident in the medial-basal hypothalamus (MBH)

(Blake and Sawyer, 1974; Krey et al., 1975) and is termed the

GnRH pulse generator (Knobil, 1980). While incompletely

understood, emerging models of GnRH pulse generation

suggest similarity across species (Lehman et al., 2010;

Wakabayashi et al., 2010). Intermittent GnRH stimulation of

the gonadotropin-secreting cells of the pituitary, which is

FIG. 1. (a) Atrazine administered at dietary concentrations of 500 or 1000 ppm caused a decreased latency of the combined incidence of adenocarcinoma and

fibroadenoma mammary tumors in female SD rats. The 500 ppm had no effect on the terminal incidence of mammary tumors; 70 ppm was the no observed effect

level (NOEL) for both latency and incidence (Study SDR1, Stevens et al., 1999). (b) Atrazine administered at dietary concentration of 400 ppm caused a decreased

latency of the combined incidence of adenocarinoma and fibroadenoma mammary tumors in female SD. The NOEL was 70 ppm (Studies SDR3; Stevens et al.,

1999). (c) Atrazine administered at dietary concentration of 70 or 400 ppm had no effect on the latency or the combined incidence of adenocarinoma and

fibroadenoma mammary tumors in female Fischer-344 rats (Study FR4; Stevens et al., 1999).

FIG. 2. Key events associated with the earlier appearance and increased

incidence of mammary tumors in atrazine-treated female SD rats.
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obligatory for sustained gonadotropin secretion (Belchetz

et al., 1978), induces a corresponding pulsatile pattern of LH

secretion into the systemic circulation. Thus, the pulsatile

pattern of LH concentration in peripheral blood serves as

a surrogate for the GnRH pulse generator (Plant, 1986). Surge

gonadotropin secretion is achieved either by amplification of

pituitary gonadotropin responsiveness to GnRH pulses or by

activation of a hypothalamic GnRH surge generator that results

in a large and relatively sustained discharge of GnRH into the

hypophysial portal circulation. The relative importance of these

mechanisms for generating gonadotropin surges in mammals is

species dependent.

The estrous cycle in rodents is short, and the pre-ovulatory

LH surge is brief, governed by the light-dark cycle, with the

hypothalamus playing a key role in timing the pre-ovulatory

LH surge (Freeman, 2006). Every afternoon during a critical

FIG. 3. (a) Characterization of the estrous cycle in individual control female SD rats (Study SDR3 Stevens et al., 1999) during treatment weeks 1 and 2, 9 and

10, 13 and 14, 17 and 18, 21 and 22, and weeks 25 and 26. A normal estrous cycle was defined as a cycle lasting four or five days. Persistent diestrus was defined

as occurring when there were more than two successive days of diestrus; persistent estrus was defined as occurring when there were two or more successive days

when the vaginal smear indicated that the rat was in estrus. Each row represents the result from 1 of 90 rats evaluated in each group. (b) Characterization of the

estrous cycle in individual 400 ppm atrazine-treated female SD rats (Study SDR3, Stevens et al., 1999).

FIG. 4. (a) Dose- and time-dependent effect of 0, 25, 50, or 400 ppm atrazine administered in the diet on the percent days in estrus in female SD rat; 50 ppm

was the no observed effect level (Study SDR3, Stevens et al., 1999). (b) Comparison of the dose- and the time-dependent effects of atrazine administered at dietary

concentrations of 0, 70, or 400 ppm on the percent days in estrus in female SD rats; 70 ppm was the no observed effect level (Study SDR3, Stevens et al., 1999). (c)

Atrazine administered at dietary concentrations of 70 or 400 ppm had no effect on the percent days in estrus in female Fischer 344 rats (Study FR2, Stevens et al.,

1999).
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period spanning ~2 h, the rodent brain generates a circadian

signal, which in combination with the positive feedback action

exerted by the elevated levels of circulating estradiol on

proestrus, activates the GnRH surge generator that triggers

the LH surge. Thus, the role of the rodent brain in controlling

the timing of ovulation may be viewed as deterministic. The

hypothalamic neurons synthesizing GnRH in the rodent brain

are located primarily in the pre-optic area (POA), with few in

the more caudal MBH (Silverman et al., 1994). Release of

GnRH into the portal circulation is dependent on increased

activity of norepinephrine neurons located in the brainstem

(Sawyer, 1995; Simpkins et al., 1979a,b; Herbison, 1997; Wise

et al., 1997, 1999) and on kisspeptin neurons located in the

anteroventral periventricular nucleus of the POA (Oakley et al.,
2009), the site of positive feedback of ovarian estradiol

(Goodman, 1978). As such, inhibition of neural activity early

in the afternoon of proestrus by administration of barbiturate or

other centrally-acting drugs blocks the pre-ovulatory LH surge

in rats (Freeman, 2006, Goodman and Knobil, 1981). Another

fundamental characteristic of the GnRH surge mechanism in

the rodent is its susceptibility to perinatal programming by

testicular androgens such that the hypothalamus of the adult

male rat is unable to respond to the positive feedback of

estradiol (Feder, 1981).

The human menstrual cycle is long and exhibits a protracted

pre-ovulatory LH surge spanning 2–3 days and ends with

menses, due to the involution of the corpus luteum and the

resulting decline in estrogens and progesterone (Hall, 2009;

Zeleznik and Pohl, 2006). In contrast to the rodent, the role of

the primate brain, although obligatory in driving the menstrual

cycle, is permissive rather than deterministic. In the human

female, the preovulatory LH surge appears to occur in the

FIG. 5. (a) Atrazine administered for 6 months at dietary concentration of 400 ppm significantly suppressed the estrogen-induced LH surge in female SD rats;

50 ppm was the no observed effect level (Study SDR3, Stevens et al., 1999). (b) Atrazine administered for 6 months at a dietary concentration of 400 ppm had no

effect on the estrogen-induced LH surge in female Fischer-344 rats (Study FR2, Stevens et al., 1999).

TABLE 2

Species Differences in Reproductive Senescence (Adapted from Chapin et al., 1996)

Parameter SD rat Fischer-344 rat Women

Start of Senescence

(% of normal lifespan)

30–40% 60–70% 60–70%

Principal cause of senescence Hypothalmic failure to

stimulate LH/FSH

Hypothalmic failure to

control prolactin surges

Depletion of ovarian

follicle content

LH surge capability Lost Maintained Maintained

Predominant cycle pattern Persistent estrus Pseudopregnancy episodes Menopause

Estrogen/progesterone ratio Elevated/prolonged Reduced Reduced

Prolactin secretion Persistently elevated Episodically elevated Reduced

Spontaneous mammary

tumor incidence (lifetime)

30–40% 2–5% 8–10%

Principal known factors

that increase MT Risk

Prolactin, estrogen,

chemical mutagens

Prolactin, estrogen,

chemical mutagens

Estrogen, nulliparity,

family history

Prolactin dependence High Medium None
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absence of a GnRH surge (Hall et al., 1994; Martin et al., 1998;

Ottowitz et al., 2008) and unfolds in the face of an unchanging

frequency of the GnRH pulse generator, as reflected by

pulsatile LH release (Adams et al., 1994; Martin et al., 1998).

Thus, it must be concluded that the LH surge is timed and

elicited by a positive feedback action of estradiol at the level of

the pituitary to dramatically enhance responsiveness to

pulsatile GnRH stimulation in women. Indeed, the spontaneous

menstrual cycle can be recapitulated in women deficient in

GnRH, simply by the exogenous administration of a series of

pulses of GnRH (Hall, 2009; Filicori et al., 1986; Martin et al.,
1998; Santoro et al., 1986). These findings indicate that the

entire pattern of gonadotropin secretion throughout the human

menstrual cycle is governed by the negative and positive

feedback actions of ovarian estradiol at the level of the

pituitary. Similar observations regarding pulsatile GnRH

replacement have been made in female rhesus monkey

following hypothalamic lesions that abolish endogenous GnRH

release (Knobil et al., 1980; Zeleznik and Pohl, 2006). In the

monkey, however, the preovulatory LH surge is associated

with a GnRH surge (Pau et al., 1993), which, in contrast to the

rat, the GnRH surge is timed solely by the positive feedback

action of estradiol acting at the level of the MBH-pituitary unit

(Karsch et al., 1973). Unlike the rodent, many GnRH neurons

in primates are located in the MBH (Silverman et al., 1994).

In contrast to rodents (Simpkins et al., 1985), inhibition of

neural activity by administration of barbiturates or other

centrally acting drugs does not affect the estrogen induced

pre-ovulatory LH surge in women or the female monkey

(Knobil, 1974; Weiss et al., 1977). The hypothalamic control

of the pre-ovulatory LH surge in primates is emancipated from

perinatal programming by testicular androgen secretion, as

reflected by the ability of estradiol to elicit LH surges in adult

male rhesus monkeys castrated postpubertally, and either

bearing a subcutaneous ovarian transplant (Norman and Spies,

1986) or receiving estradiol to mimic a late follicular phase

pattern of circulating estradiol (Karsch et al., 1973).

Reproductive aging in rodents and women is also different.

In female SD rats, reproductive senescence occurs as a result of

a breakdown of the brain regulation of the LH surge, while the

ovaries remain functional very late into life (Aschheim, 1976;

Meites et al., 1978). The decline in reproductive function is

primarily a result of (1) the inability of brain norepinephrine

neurons to transmit the estrogen signal to GnRH neurons

(Meites et al., 1978; Simpkins et al., 1979a,b; Weiss et al.,
1977), (2) the inability to stimulate a pre-ovulatory LH surge

resulting in the maintenance of ovarian follicles, and (3) the

persistent secretion of estrogens. Increased secretion of estro-

gens causes a persistent state of hyperprolactinemia (Sarkar

et al., 1982). Thus in the SD rat, reproductive senescence is

characterized by persistent hyperestrogenemia and hyper-

prolactinemia with low levels of LH and FSH.

In contrast to female SD rats, which begin to display

episodes of persistent estrus as early as six months of age,

female Fischer-344 rats maintain normal 4–5 day estrous

cycles through 18 months of age (Estes et al., 1982; Estes and

Simpkins, 1984; Lu et al., 1979, 1980). At two years of age,

Fischer-344 rats display normal estrous cycles, interspersed

with periods where corpus lutea (CLs) are maintained for

extended periods, accompanied by secretion of ovarian pro-

gesterone (Estes and Simpkins, 1984; Lu et al., 1980). Thus, in

the aging Fischer-344 rat, the hypothalamic-pituitary-gonadal

(HPG) axis maintains the ability to mediate an estrogen-induced

LH surge although it cannot inhibit episodic prolactin surges

after the LH surge has occurred (Estes and Simpkins, 1982).

This creates an endocrine state called pseudopregnancy (Beach

et al., 1975; Estes et al., 1982) because prolactin secretion is

prolonged and CLs are maintained (Estes et al., 1982).

In women, reproductive aging and the occurrence of

menopause is due to the exhaustion of ovarian follicles and

a diminution of ovarian estrogen (Burger et al., 2007; Hale and

Burger, 2005; Hale and Burger, 2009; Rance, 2009; Schiff and

Wilson, 1978). During the menopause, however, the ability of

exogenous estrogens to induce a pre-ovulatory LH surge is

maintained, albeit slightly diminished (Santoro, 2005). In the

absence of endogenous estrogen secretion, the feedback signal

from the ovary governing the cyclic pattern of gonadotropin

secretion is lost, and a constant hypergonadotropic state is

produced as a result of GnRH pulse generator activity that is

robustly maintained in the postmenopausal women. Post-

menopausal estrogens and prolactin are very low, but LH and

FSH secretions are greatly elevated (Burger et al., 2007; Hale

and Burger, 2005; Hale and Burger, 2009; Rance, 2009; Schiff

and Wilson, 1978). The major differences between aging of the

human menstrual cycle and rodent estrous cycles are

summarized in Table 2 and discussed specifically for atrazine

in Chapin et al. (1996).

Possible Alternative Modes of Actions

Genotoxicity. Atrazine is one of the most extensively

tested chemicals for genotoxicity. Published studies include

in vitro and in vivo experiments with mammalian cells,

microbial systems, invertebrates, fish, and several plant species

(Supplementary Tables S1 and S2; Brusick, 1994). Utilizing

a weight of the evidence approach developed by the

International Commission for Protection against Environmental

Mutagens and Carcinogens (Brusick et al., 1992; Lohman

et al., 1992), Brusick (1994) evaluated all published and

registrant studies on the genotoxicity of atrazine. The

evaluation was later expanded to include all studies published

through December 2010. Seventeen of the 23 gene mutation

studies following in vitro exposure of mammalian cell lines to

atrazine were negative (Supplementary Table S1); gene

mutation studies on atrazine metabolites (hydroxyatrazine,

deethyl atrazine [DEA], deisopropylatrazine [DIA], and

diaminochlorotriazine [DACT]) were also negative (Supple-

mentary Table S3). With the exception of studies conducted in
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plant-based systems (Supplementary Table S4), the majority of

the studies show that atrazine or its metabolites do not directly

interact with DNA resulting in mutation. Hence, governmental

agencies responsible for reviewing and interpreting toxicology

data have concluded that atrazine is not genotoxic (APVMA,

2004, 2008; FAO/WHO, 2009; International Agency for

Research on Cancer (IARC), 1999; USEPA, 2003a).

While the results shown in Supplementary Tables S1–S3 are

predominately negative, there are a few isolated positive

results. Isolated conflicting responses are not uncommon when

a chemical is evaluated in a large number of studies. Such

isolated occurrences are considered spurious responses due to

normal variability or technical inadequacies (Brusick et al.,
1998). Multiple positive responses tended to occur for those

methods that detect chromosomal damage (structural or

numerical changes) or DNA strand breakage (Gebel et al.,
1997; Pino et al., 1988; Ribas et al., 1995; Singh et al., 2008).

Unlike tests measuring gene mutation, these types of studies

can give positive responses due to cytotoxic or other secondary

effects that are not true indicators of a genotoxic mode of

action. Atrazine has been reported to cause lipid peroxidation

in vivo at high doses (Singh et al., 2011), and oxidative

peroxidation is known to cause cell death and necrosis, which

will yield false-positive effects in tests such as alkaline elution

techniques and the comet assay (Choucroun et al., 2001; Pool-

Zobel et al., 1999). A study by Singh et al. (2008) reported

increased micronuclei and comet tail lengths in liver cells

obtained from rats exposed to 300 mg/kg of atrazine for 7, 14,

and 21 days. This dose level appeared to be high enough to

induce oxidative damage in the target tissue, as the reported

positive effects were minimized by the co-administration of an

antioxidant. Consequently, the increased levels of DNA strand

breakage in this and other elution assays may have been

secondary to toxicity-induced apoptosis and not from direct

effects of atrazine on liver cell DNA.

Some studies report chromosomal changes in atrazine-

exposed cells evaluated using flow-cytometry (Biradar and

Rayburn, 1995a,b; Rayburn et al., 2001; Taets et al., 1998).

Flow cytometry quantifies changes in whole-cell DNA or

individual chromosomes through analysis of coefficients of

variation (CVs) in flow histograms. Biradar and Rayburn

reported that atrazine caused a statistically significant increase

in the CV of DNA content of G1 cells at concentrations as low

as 0.005lM. In an assessment of the Biradar and Rayburn

flow studies, Kligerman et al. (2000a) concluded that flow

cytometry and the use of changes in CV is not a reliable

method for the determination of clastogenicity. Application of

flow analysis to chromosomal CV is generally subjected to

computer-generated analysis of the results. Biradar and

Rayburn (1995a) were unable to find statistically significant

increases in the atrazine results using computer-based analysis

and instead applied a unique manual approach to their studies

to generate positive effects. When utilizing methods that permit

the direct visualization of chromosomal damage, the vast

majority of atrazine studies were negative (Adler, 1980; Basler

and Rohrborn, 1978; Meisner et al., 1992; Kligerman et al.,
2000a,b; Ribas et al., 1998).

Supplementary Table S4 gives the results of genotoxicity

studies in plants and fungi. Atrazine is active in most plant-

based tests as well as in a number of tests employing fungi.

Compared with the data from tests in animals or animal cells,

these results indicate that atrazine is handled differently in

plant-based systems. Although there may be multiple reasons

for the differences, clearly unique attributes of animal

metabolism and detoxification processes not present in plant-

based systems are likely most relevant. Thus, these studies are

of minimal value in evaluating the genotoxicity potential of

atrazine.

Except for studies on genotoxicity in plants and fungi, there

is no reason to give more weight to in vivo studies versus

in vitro studies because the chloro- and hydroxyl- metabolites

of atrazine tested for mutagenic potential in in vitro are the

predominant metabolites formed in vivo (Kim et al., 2010;

McMullin et al., 2003). Oxidative metabolism of atrazine

(Supplementary Figure S1) has been well characterized in vitro
and in vivo in rodents (Hanoika et al., 1999), nonhuman

primates (Hui et al., 2011; Maibach et al., 2001) and humans

(Ademola et al., 1993; Buchholtz et al., 1999; Joo et al., 2010;

Maibach et al., 2001). Although phase II metabolites such as

glutathione conjugates and mercapturates (Supplementary

Figure S2) are unique to in vivo systems and their formation

in vivo might be a basis for assigning more weight to in vivo
studies, these metabolites appear to be toxicologically less

active (USEPA, 2002; Yi, Simpkins, and Breckenridge, in

preparation) and are rapidly eliminated (Hui et al., 2011;

Maibach et al., 2001). Overall, considering the results from

both in vitro and in vivo models, the weight-of-evidence

supports the conclusion that atrazine and its phase I and phase

II metabolites are unlikely to be genotoxic.

Estrogen receptor agonist/antagonist. Eldridge et al.
(2008) recently summarized the results of more than 40 studies

that evaluated the potential of atrazine to bind to or interact

with estrogen receptors (ERs) in 17 estrogen-dependent

systems in vivo or in more than a dozen different ER reporter

or binding systems in vitro. None of the 24 studies that

evaluated the in vivo expression of estrogen following atrazine

exposure showed any estrogen-agonist effects, irrespective of

the species or the strain of rat evaluated (Supplementary Table

S5). In 10 of 15 studies, atrazine inhibited the action

of estrogen in vivo, but only when the administered dose

of atrazine was at least 100,000 times greater than the dose of

estradiol. Four other studies showed no effect of atrazine at

high concentrations and one study was inconclusive. None of

the 18 studies reported any stimulatory effect of atrazine on

estrogenic expression systems in vitro; weak inhibition of

estrogen was reported in 3 of 10 studies (Supplementary Table

S6). Weak competition between atrazine and estrogen for ERa
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or ERb was noted in 10 of 17 studies that used donor tissues

from a variety of species including two strains of rats

(Supplementary Table S7). In some studies, weak competition

was seen only when atrazine was pre-incubated with the

receptor before estradiol was added to the media.

Overall, the weight of evidence indicates that atrazine does

not act as an estrogen agonist. Atrazine may act as a weak ER

antagonist if present in tissues at concentrations that are more

than 100,000-fold greater than the concentration of estradiol.

This is unlikely to occur under conditions of human exposure.

For example, a 60 kg person consuming 2 l of water containing

atrazine at the Maximum Contaminant Level (MCL) of 3 ppb

would receive a dose of 0.1 lg atrazine/kg. Assuming the

human plasma concentration scaled 1:1 to the plasma

concentration determined in the rat (See Supplementary Figs.

S4 and S5), then the expected steady state plasma concentra-

tion of total triazine in humans exposed at the MCL would be

0.1 ppb (4.8 3 10�10M). Total chlorotriazine concentration in

plasma is expected to be approximately fivefold lower in

humans because the concentration of total chlorotriazine

eliminated in urine of men comprised only 14.4% of the

administered dose (Maibach et al., 2001). Tissue concentration

of atrazine is likely to be at parity with plasma at steady state

because plasma:tissue partition coefficients are near 1.0 (P. S.

Coder, unpublished data). The Kd for estradiol binding to the

estrogen receptor is 7.7 3 10�10M (Laws et al., 2006; Rider

et al., 2009). Thus, under conditions of human exposure, the

concentration of atrazine equivalents in tissue is approximately

the same as the Kd for estradiol. Therefore, it is unlikely that

atrazine will antagonize the binding of estradiol to its receptor

in vivo. Even if atrazine was a weak estrogen receptor

antagonist in vivo, the consequence would likely be a diminu-

tion of estrogenic activity rather than an increase called for by

the results of the carcinogenicity studies on atrazine.

Induction of messenger RNA for aromatase and/or aroma-
tase enzyme activity. In vitro studies (Sanderson et al., 2000,

2001) indicate that high concentrations of atrazine in 0.1%

dimethyl sulfoxide increases aromatase activity and gene

expression in the H295R adrenocorticocarcinoma cell line

and in JEG-3 placental choriocarcinoma cells but not in the

MCF-7 breast cancer cells or the R2C rat Leydig cell cancer

cells (Heneweer et al., 2004; Supplementary Table S8). Carp

hepatocytes treated with atrazine in vitro did not show altered

vitellogenin synthesis (Sanderson et al., 2001). In the majority

of these studies, statistically significant induction of aromatase

activity or gene expression was observed only at the

concentration near the solubility limit of atrazine (30lM; 6.5

ppm) although effects on aromatase have been reported in

some studies at 10lM but not at 1lM of atrazine (Yi, Kim,

Breckenridge, and Simpkins, in preparation). Ohno et al.
(2004) reported that aromatase activity was unaffected by

atrazine in KGN ovarian granulosa carcinoma cells and Keller

and McClellan-Green (2004) found no effect of atrazine in an

immortalized sea turtle cell line. The results from primary

ovarian granulosa and endometrial stromal cells are mixed.

Tinfo et al. (2011) reported a 2- to 2.5-fold increase in

aromatase activity with atrazine but no change in aromatase

message or protein in rat granulosa cells. Holloway et al.
(2008) did not see a dose-response in human granulosa cells

exposed ex vivo to atrazine and found no effect of atrazine on

human endometrial stromal cells (Supplementary Table S8).

Crain et al. (1997) and Spiteri et al. (1999) reported increased

aromatase activity in alligator eggs painted with 14 ppm atrazine

dissolved in ethanol. Even under these extreme conditions, not

a single male was converted to a female. In contrast, when the

male eggs were treated with 14 ppb of estradiol, 100% of the

males were feminized. This indicates that the reported changes

in aromatase in alligator eggs were of no functional consequence.

A study in chicken eggs failed to show any effect on atrazine on

aromatase activity (Matsushita et al., 2006).

The effect of other chlorotriazines such as simazine, as well as

primary (Supplementary Figure S1) and secondary metabolites of

atrazine (Supplementary Figure S2) on aromatase activity has

been investigated (Supplementary Table S8). Exposure to DEA

and DIA resulted in weaker responses than did exposure to

atrazine, whereas DACT, the major animal chlorometabolite of

atrazine, had no effect (Sanderson et al., 2000; Tinfo et al., 2011;

Yi, Kim, Breckenridge, and Simpkins, in preparation). The

glutathione and mercapturate conjugates of atrazine, which are

secondary metabolites of atrazine, as well as hydroxyatrazine

(HA) and ammeline, which are major plant metabolites, had no

effect on aromatase messenger RNA (mRNA) in H295R or JEG3

cells (Yi, Kim, Breckenridge, and Simpkins, in preparation).

The weight of the evidence indicates that high micromolar

concentrations of atrazine and to a lesser extent, its mono-

dealkylated metabolites at concentrations above the solubility

limit in aqueous media, cause an approximately twofold

increase in expression or activity of aromatase in sensitive cell

lines capable of steroidogenesis. Neither the major atrazine

chlorometabolite, DACT, nor the glutathione or mecapturates

of atrazine had any effect; HA or ammeline, the predominant

plant metabolites of atrazine also were negative (Yi, Kim,

Breckenridge, and Simpkins, in preparation). Because atrazine

and the mono-dealkylated metabolites of atrazine are rapidly

metabolized after ingestion, these chemicals are not expected to

persist long enough to have any effect on aromatase activity

in vivo (APVMA, 2010; FAO/WHO, 2009; Yi, Simpkins, and

Breckenridge, in preparation). As discussed in the previous

section, tissues concentration of atrazine equivalents will not be

greater than 10�10M for humans exposed to atrazine at the

MCL. In the rat, a repeated oral dose of 0.25 mg/kg for 5 days

would be needed to produce a tissue concentration of 1lM

atrazine (Supplementary Fig. S5), a concentration which

clearly had no effect on aromatase activity or expression when

evaluated in any in vitro system. However, atrazine is rapidly

metabolized to less active metabolites, most notably DACT

and the concentration of atrazine in plasma is short lived (tmax
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¼ 30 min; half-life of clearance from plasma is 30–45 min;

Kim et al., 2010). In contrast, in the in vitro aromatase models,

atrazine had to be present in media for at least 2 h at

a concentration above 1lM to significantly affect aromatase

mRNA expression (Yi, Kim, Breckenridge, and Simpkins, in

preparation).

Studies on intact animals (Supplementary Table S9) indicate

that neither the induction of mRNA aromatase gene expression

nor the increased aromatase activity is observed in atrazine-

treated animals. Hayes et al. (2002) argued that changes in

circulating or whole body testosterone reflect an alteration in

aromatase activity in atrazine-exposed Xenopus laevis. How-

ever, this cannot be taken as evidence that atrazine is altering

aromatase expression because plasma hormone levels change

dynamically from moment to moment and are subject to a host

of variables (age, sex, season, time of day, and stress level) that

are uncontrolled in environmental studies (Kang et al., 1995).

Other studies have failed to observe a relationship between

triazine exposure and testosterone levels in wild-caught

Xenopus laevis (Hecker et al., 2004). Furthermore, the reported

‘‘feminization’’ effect of atrazine on amphibian gonadal

development (Hayes et al., 2002), which has been attributed

to an effect on aromatase, has not been replicated by other

laboratories (Kloas et al., 2009a). Lastly, when changes in

aromatase mRNA were evaluated in amphibians, no effects of

atrazine exposure were found (Hecker et al., 2004, 2005a,b;

Kloas et al., 2009b).

High doses of atrazine (50 or 200 mg/kg/day) administered

daily to 60-day-old male Wistar rats for 1, 2, 3, 4, or 21 days

resulted in slight and highly variable increases in serum

androstenedione, testosterone, estradiol, estrone, corticoste-

rone, and progesterone, as quantified by radio-immuno-assay

(Modic et al., 2004). Although the acute effect of high doses of

atrazine on corticosterone and progesterone have been

confirmed in subsequent studies (Fraites et al., 2009; Laws

et al., 2009), the effect on androstenedione testosterone,

estradiol, and estrone has not been confirmed by liquid

chromatography with tandem-mass spectrometry (LC-MS-

MS) using internal 13C-stable label for identification and

unlabeled standards for quantification (Handa, 2010).

Overall, the weight of the evidence indicates that high

micromolar concentrations of atrazine and its mono-dealkylated

metabolites, but not DACT, caused an approximate twofold

increase in aromatase mRNA and activity in immortalized cell

cultures in vitro. The absence of effects in vivo is likely

attributed to the rapid metabolism to inactive metabolites (Kim

et al., 2010). Hence, the in vitro mode of action is not likely

relevant to intact mammals.

Delayed development of the mammary gland. It has been

proposed that a delay in the development and differentiation of

mammary gland increases susceptibility to physical, chemical,

or viral agents that initiate cancer (Russo et al., 1992;

Trichopoulos et al., 2008), whereas factors that delay the

onset of menarche are protective (Russo et al., 2001, 2006).

In utero exposure of female Long-Evans rats to 100 mg/kg/day

atrazine (Rayner et al., 2005) or a mixture of atrazine and its

metabolites (Enoch et al., 2007) has been reported to delay

postnatal mammary gland development using, for the most

part, subjective rating scales. When an unbiased, blinded

quantitative assessment of mammary glands (ductal length,

ductal area, epithelial area, epithelial density, and cell

proliferation) was used, there was no evidence of a delay in

mammary gland development at doses of atrazine up to

100 mg/kg/day (Hovey et al., 2010). Hovey and colleagues

controlled for the effect of treatment-related reductions in body

weight gain in the pregnant dams on subsequent pup

development, as well as for atrazine-induced delay in sexual

maturation, which has been reported in atrazine-treated females

(Ashby et al., 2002; Laws et al., 2000). Delay in sexual

maturation is known to affect mammary gland development

because growth during puberty is allometric and sensitive to

hormonal changes during the estrous cycle (Hovey et al.,
2002). The results from a second laboratory confirmed the

absence of an atrazine effect on postnatal mammary gland

development at doses as high as 100 mg/kg/day (Davis et al.,
2011). In addition, female SD rats exposed to atrazine in utero
and throughout life did not have an increased incidence of

mammary tumors compared with controls, suggesting that

in utero exposure to atrazine did not contribute to an increased

risk of developing mammary tumors later in life (Stevens et al.,
1999). However, this study was underpowered (N ¼ 30 per

group); thus small effects may not have been detectable.

Overall, there is no compelling evidence to indicate that

in utero exposure to atrazine increases the incidence of

mammary tumors in rodents. There is a clear trend among

females in developed countries to experience an earlier onset of

puberty, leading to an earlier rather than a delayed development

of breasts in young girls. The prolongation of exposure to

endogenous estrogen increases breast cancer risk later in life

(Russo et al., 2006; Trichopoulos et al., 2008).

Conclusions of Animal Mode of Action Research

The hypothesis that decreased latency and increased incidence

of mammary tumors in female SD rats is mediated through the

key events shown in Figure 2, is strongly supported by the data.

This conclusion is consistent with a detailed analysis conducted

by FAO/WHO (2009; Appendix 1, pp 118–124).

The mechanism of action underlying the effect of atrazine on

the HPG axis is unknown because the molecular target(s) have

yet to be identified. Some hypotheses have been ruled out but

none has been established (Cooper et al., 2007). Recent work

has allowed for a comparison of the effect of atrazine on the

HPG and HPA axes in female Wistar, Long-Evans, and SD

rats. Although the Wistar and inbred strains of Long-Evans rats

have not been evaluated in traditional carcinogenicity studies,

both SD and Long-Evans rats were derived from the original
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Wistar albino rat (Lindsey, 1979) and both Wistar and Long-

Evans rats respond to high doses of atrazine with reduced LH

surges (Cooper et al., 2000; Foradori et al., 2009a,b). New

mechanistic studies suggest that the effect of atrazine on the

LH surge may be secondary to an activation of corticosterone

release in the rat (Fraites et al., 2009; Laws et al., 2009).

However, the effect of atrazine on the estrogen plus pro-

gesterone induced LH surge in female Wistar rats was

unaffected by adrenalectomy, whereas the suppressive effect

of atrazine on pulsatile LH release was abolished (Foradori

et al., 2011). This suggests that the effect of atrazine on the

final common hypothalamic pathway (i.e., suppression of

pulsatile versus surge release of GnRH/LH) may be mediated

via distinct mechanisms in rodents. This dichotomy in the

response to atrazine is intriguing because the control

mechanism of pulsatile GnRH release in nonhuman primate

and women is similar to the rodent control mechanisms. In

contrast, major differences exist in the regulation of the LH

surge in rodents compared with nonhuman primates and

women. In the human female, the preovulatory LH surge

appears to occur in the absence of a GnRH surge (Hall et al.,
1994; Martin et al., 1998; Ottowitz et al., 2008).

The proposed mode of action underlying the decreased

latency and increased incidence of mammary tumor response in

the female SD rat is unlikely to be relevant to women due to the

differences in reproductive aging of rodents and women.

Although it is plausible that high doses of atrazine could

suppress the LH surge in women by interfering with GnRH

pulse generation, the consequence of that suppression would

not result in an increased incidence of breast cancer in women.

Therefore, atrazine was placed in the lower half of the

biological plausibility scale described by Adami et al. (2011).

There is little uncertainty in this conclusion because of the

quality and the breadth of the studies that underlie the

assessment. This conclusion is consistent with independent

reviews by regulatory authorities around the world (AVMPA,

2004, 2008; FAO/WHO, 2009; IARC, 1999; USEPA, 2003b,

2006).

The evidence supporting alternative modes of action

evaluated in this paper (genotoxicity, estrogenicity, aromatase,

and delayed mammary gland development) is not compelling

and do not indicate that these alternate modes of action play

a role in the mammary tumor response observed in atrazine-

treated female SD rats. These alternate modes of action are also

unlikely to contribute to the occurrence of breast cancer in

women, especially at doses to which women could conceivably

be exposed.

Atrazine exposure and breast cancer: epidemiological
evidence. The potential association between atrazine expo-

sure and the risk of breast cancer has been evaluated in

epidemiological studies of incidence or mortality among

women involved in triazine manufacture (MacLennan et al.,
2002, 2003); women who lived on farms (Engel et al., 2005) or

in proximity to farms and/or were associated with agricultural

work (Reynolds et al., 2004); and women potentially exposed

to atrazine via drinking water (McElroy et al., 2007).

Ecological studies have also been conducted in which breast

cancer incidence was examined across geographic areas

defined by triazine exposure (Hopenhayn-Rich et al., 2002;

Kettles et al., 1997; Mills and Yang, 2006; Muir et al., 2004;

Reynolds et al., 2005).

Cohort studies on women involved with triazine manufac-
ture. Breast cancer incidence was examined in women

employed in the manufacture and formulation of triazines

(primarily atrazine). Among 184 women employed in a Loui-

siana plant who were followed from 1985 to 1997, one was

diagnosed with breast cancer (expected ¼ 1.5) (MacLennan

et al., 2002). In a parallel study of mortality at this same plant,

there was one death from breast cancer during 1970–97 among

211 female employees (expected ¼ 0.6) (MacLennan et al.,
2003).

The quality of these studies was classified as acceptable. One

strength was that exposure to atrazine at this production facility

could be quantified using job histories in a fashion similar to

that employed by Hessel et al. (2004) in a study of prostate

cancer at this facility. The major weakness was that there were

only a few breast cancer cases and thus the study did not have

adequate statistical power.

Cohort studies on women with potential exposure to atrazine
or triazines on farms. Spouses of professional pesticide

applicators, recruited to the Agricultural Health Study in Iowa

and North Carolina from 1993 through 1997, provided

information about their own herbicide exposures and potential

risk factors for breast cancer (Engel et al., 2005). Of the 309

women who went on to be diagnosed with breast cancer

through the year 2000, only 11 (3.6%) had directly used

atrazine; this was similar to the percentage for controls

diagnosed with breast cancer (4.4%, relative risk [RR] ¼ 0.7,

95% confidence interval [CI] 0.4–1.2). Among women who did

not apply any pesticide, the percentage of their husbands who

had done so was similar for cases and controls (74.8 vs. 73.8%,

respectively, RR 1.1, 95% CI 0.7–1.6). Similar results were

obtained when the assessment was based on 13 women with

breast cancer who reported using triazines (Supplementary

Table S10).

The study was classified as acceptable. The strength of the

study was its prospective design with exposure assessment

prior to disease diagnosis. The weakness was that there were

too few cases through the end of 2000 to provide adequate

statistical power.

The California Teachers study evaluated residential proxim-

ity to areas of simazine application and incidence of breast

cancer in these regions (Reynolds et al., 2004). In this study,

1552 participants were diagnosed with breast cancer during

1996 through 1999. Using data obtained in the California
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Pesticide Use Reporting System for 1993 through 1995, the

incidence of breast cancer was examined in relation to the

amount of various pesticides and herbicides applied in the area

within one-half mile of the residence of each participant. Breast

cancer incidence did not vary appreciably across levels of

simazine application compared with women living in an area in

which less than one pound of simazine per square mile had

been applied; the relative incidence was 0.9, 0.9, and 1.1 for

women living in areas of simazine application of 1–13 pounds

per square mile, 14–40 pounds per square mile and 41 or more

pounds per square mile, respectively. A subset analysis of

women who lived within 0.5 mile radius of the section of land

sprayed or who lived within the section of land sprayed,

yielded hazard ratios of 1.17 (CI ¼ 0.82–1.67) and 1.44 (CI ¼
1.01–2.05), respectively, based upon an unspecified numbers

of cases.

This study was categorized as acceptable. Strengths of the

study included a large number of breast cancer cases and the

control for suspected risk factors for breast cancer. However,

the relationship between residential proximity to application of

simazine and actual exposure was not quantified. Furthermore,

confounding for co-exposure to other pesticides, which were

used in proximity to the residence of women with breast

cancer, was not controlled.

Case-control study on women with potential exposure to
atrazine via groundwater. This study evaluated the amount of

atrazine in the groundwater near residences of women with and

without breast cancer (McElroy et al., 2007). Female residents

of rural Wisconsin (ages 20 through 79 years) who had been

diagnosed with breast cancer during 1987 through 2000 were

identified (n ¼ 3275), as were 3669 demographically-similar

control women. All women were interviewed with respect to

exposure and characteristics relevant to the risk of breast

cancer. Using data from surveys of atrazine levels in well water

in 1994, 1996, and 2001, the investigators assigned an atrazine

level to each woman’s own well water, based on the proximity

of the well to those wells for which atrazine concentration had

been determined. The distribution of estimated levels of

atrazine in well water was nearly identical between the wells

of cases and those of the controls. For women whose water was

estimated to contain less than 0.15 ppb of atrazine, the relative

risk of breast cancer in those whose water had 1–3 ppb atrazine

was 1.1 (95% CI 0.9–1.4), adjusted for other breast cancer risk

factors. Only nine women (five cases and four controls) had

wells with an atrazine concentration estimated at greater than

3 ppb, too small a number to draw any conclusion.

Study quality was classified as acceptable. Strengths

included the fact that 83 percent (11,001) of eligible case

women and 83.1% (11,494) of eligible age-matched control

FIG. 6. Summary of the weight of evidence of the mode of action

(biological plausibility) and the epidemiological evidence for a causal

relationship between atrazine exposure and the occurrence of breast cancer in

women.

TABLE 3

Framework Assessment of the Animal Mode of Action, the

Relevance of the MOA to Breast Cancer in Women and the

Epidemiology Evidence

EPA human cancer

classification Carcinogenic Likely Suggestive

Not

likely

Human evidence

Causation established No

Association established No

Animal evidence

Multi versus single

(sex, species, strain,

and site)

Yes

Mode of action

Key events proposed Yes

Concordance of dose

response relationships

Yes

Temporal association

of key events

Yes

Strength, consistency,

and specificity of

association

Yes

Biological plausibility

and coherence

Yes

Alternative MOAs

evaluated

Yes

Human relevance

MOA operative at

any dose

No

MOA operative at

plausible human dose

No

Framework: unlikely

(category 4)
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women participated in the study. A non-biased approach was

used to assign residence and well water concentration of

atrazine or atrazine plus its chlorometabolites, but there was no

control for duration of time in residence. The authors controlled

for confounding by potential breast cancer risk factors

(Supplementary Table S11). Weaknesses in the study included

the fact that atrazine exposure was not assessed during a period

of time that was etiologically relevant to development of

breast cancer. In general, atrazine concentrations in ground-

water were low (0.15–3 ppb) and varied over too narrow

a concentration range to plausibly permit the documentation of

a dose-response.

Ecological studies on breast cancer and triazines use in
geographical regions. Because ecological studies are gener-

ally hypothesis generating rather than hypothesis testing, the

quality of individual studies in this category are not discussed

except for the study of Muir et al. (2004), which appeared to

have major limitations.

Reynolds et al. (2005) characterized residences in each

square mile of the state of California in terms of estimated

pesticide application during 1990 through 1997. The incidence

of breast cancer during 1988 through 1997 bore no relation to

the quantity of simazine application: rates were identical

among women living in areas in the upper-fourth of the

distribution of simazine application and those living in areas

where virtually no simazine had been applied (RR 1.0, 95% CI

0.95–1.07).

A county-level study in California among Latin women

during 1988 through 2000 similarly found no association

between the incidence of breast cancer and the quantity of

application of either simazine or atrazine (Mills and Yang,

2006). After adjusting for age, socioeconomic status, and

fertility rates, the RRs for low, mid, and high ‘‘exposed’’

groups ranged from 0.83 to 0.87, 0.94 to 0.91, and 0.86 to 0.87,

respectively, for assessment periods from 1988 to 1993 and

from 1994 to 1999.

Two studies in Kentucky correlated breast cancer incidence

with county-level exposure to triazines. The latter was

estimated by jointly considering triazine levels in water

samples, the amount of corn crops grown and county-specific

pesticide use data. The first of these studies (Kettles et al.,
1997) observed that in 1991 through 1992, the adjusted

incidence of breast cancer in the 24 counties with the greatest

estimated triazine exposure was nine percent higher than in

the 54 counties with the lowest exposure. In 1993–1994,

the corresponding figure was a 22% increase. In contrast, the

second study (Hopenhayn-Rich et al., 2002) observed a 2%

lower breast cancer incidence during 1993 through 1997 in

counties with the highest, compared with the lowest, estimated

atrazine exposures.

One additional ecologic study of breast cancer and atrazine

(and cyanazine), in groupings of electoral wards in two districts

of England (Muir et al., 2004), was not considered because the

incidence rates varied across geographic groupings to such an

implausibly large degree, more than 24-fold, that chance must

have been exerting a strong influence. This variability was

probably due to the evaluation of small geographic areas and

the narrow window of time (1989 through 1991).

In summary, the association between exposure to atrazine or

triazines exposure and breast cancer was largely null. These

results are consistent with conclusions reached by various

regulatory agencies that atrazine or the triazines are ‘‘un-

classifiable as to carcinogenicity’’ (IARC, 1999) or that

atrazine is not likely to be carcinogenic (USEPA, 2003b,

2006) with regard to any cancer.

CONCLUSIONS

Using the framework outlined by Adami et al. (2011),

atrazine is placed within the lower left hand quadrant of the

framework categorical diagram (Fig. 6), which classifies

atrazine in Category 4 unlikely. This conclusion is based upon

(1) epidemiological evidence suggesting that exposure to

atrazine is not associated with the occurrence of breast cancer

in women and (2) the lack of a plausible mode of action for the

occurrence of atrazine-related breast cancer in women.

This classification took into account a substantial body of

literature on the mode of action plus the absence of positive

epidemiological evidence, recognizing that the majority of the

relevant studies were underpowered and might not detect small

changes in breast cancer incidence. This conclusion is

consistent with previous schemes for the classification of the

carcinogenic potential of atrazine in humans (Table 3). These

assessments collectively have taken into account the animal

and all the human epidemiology evidence (IARC, 1999;

USEPA, 2003b, 2006). However, the integrated approach

developed by Adami et al. (2011) and used here provides

explicit guidance on how to weigh study quality and how to

integrate toxicological and epidemiology evidence. This

approach has the additional advantage of qualitatively

characterizing the uncertainty associated with any inference

of causality and identifying whether additional mechanistic

studies or epidemiological research would be more effective in

reducing uncertainty.
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