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Abstract: Nonequilibrium work relations and fluctuation theorems permit us to extract equilibrium
information from nonequilibrium measurements. They find application in single-molecule pulling
experiments where molecular free energies can be determined from irreversible work measurements
by using unidirectional (e.g., Jarzynski’s equality) and bidirectional (e.g., Crooks fluctuation theorem
and Bennet’s acceptance ratio (BAR)) methods. However, irreversibility and the finite number of
pulls limit their applicability: the higher the dissipation, the larger the number of pulls necessary to
estimate ∆G within a few kBT. Here, we revisit pulling experiments on an RNA three-way junction
(3WJ) that exhibits significant dissipation and work-distribution long tails upon mechanical unfolding.
While bidirectional methods are more predictive, unidirectional methods are strongly biased. We
also consider a cyclic protocol that combines the forward and reverse work values to increase the
statistics of the measurements. For a fixed total experimental time, faster pulling rates permit us to
efficiently sample rare events and reduce the bias, compensating for the increased dissipation. This
analysis provides a more stringent test of the fluctuation theorem in the large irreversibility regime.

Keywords: Jarzynski equality; Crooks fluctuation theorem; Bennet’s acceptance ratio; RNA folding;
single-molecule force spectroscopy

1. Introduction

Thermodynamic properties of nucleic acids and proteins are commonly studied in
bulk assays; however, since the advent of single-molecule technologies, molecular thermo-
dynamics can be determined with unprecedented detail. Techniques such as fluorescence
resonant energy transfer (FRET) and force spectroscopy techniques, such as laser optical
tweezers, permit us to monitor reactions one molecule at a time [1,2]. By exerting forces
at the ends of a biopolymer, it is possible to monitor unfolding/folding reactions from
the recorded changes in extension, allowing us to measure folding free energies [3–5] and
binding energy of ligands to substrates [6–8].

Two different kinds of experiments are usually performed: hopping and pulling
experiments. In hopping experiments, the unfolding/folding and binding/unbinding
reactions are investigated under equilibrium conditions [9–15]. The main limitation of these
experiments is the height of the kinetic barriers that molecules must cross, which, if too
high, do not permit sampling of the different conformations in the experimentally accessible
time [16,17]. Instead, in pulling experiments, the force is ramped at a given rate and the
unfolding/folding and binding/unbinding reactions are followed under nonequilibrium
conditions. In pulling experiments, the barrier height is modulated with time, rendering
the folding energy landscape accessible even for molecules with high kinetic barriers, such
as long RNAs or proteins [18–22].

In pulling experiments, the optical trap is moved back and forth to mechanically unzip
the molecule while a force-trap position curve is recorded. Some molecules exhibit a large
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hysteresis between the unfolding and folding trajectories, indicative of a high kinetic barrier.
A useful approach to estimate the folding free energy from nonequilibrium experiments is
the Crooks fluctuation theorem (CFT) [23] and its corollary, the Jarzynski equality (JE) [24],
which relate the work done under nonequilibrium conditions with the equilibrium folding
free energy.

The CFT is a bidirectional method that uses the unfolding and folding trajectories to
derive the folding free energy, ∆G. In contrast, the JE is unidirectional, meaning it only
considers the unfolding or folding trajectories to estimate ∆G. Here, we investigate the
limitations of the CFT and the JE using an RNA three-way junction (3WJ) as a model sys-
tem [25]. The 3WJ is an interesting example of an RNA with high kinetic barriers to unfold
and fold, which shows significant work dissipation in pulling experiments. Besides the
CFT and the JE, ∆G0 has been estimated using Bennet’s acceptance ratio (BAR) to compare
the different methods. BAR minimizes the statistical variance of the free-energy estimator
from the CFT. We compare the three methods under different conditions to study their
performance in determining folding free energies from irreversible work measurements.

2. Materials and Methods
2.1. Synthesis and Single-Molecule Experiments

The molecular construction has been synthesized following the protocol described in
reference [3]. Briefly, the DNA sequence encoding the RNA 3WJ (Merck) is inserted between
EcoRI (New England Biolabs, NEB, Ipswich, MA, USA) and HindIII (NEB) restriction sites
of pBR322 vector (NEB) and cloned by ultra-competent E. coli cells (Invitrogen). Initially, T7
primers were used for PCR amplification (KOD polymerase, Merck, Township, NJ, USA) of
the DNA containing the 3WJ sequence flanked by the handles. Next, RNA is synthesized
by in-vitro transcription (T7 megascript, Merck). The transcribed RNA contains the 3WJ
sequence flanked by 527 and 599 bases at the 3’-end and 5’-end, respectively. Hybrid DNA-
RNA handles are made by hybridizing the RNA strand with PCR-amplified complementary
DNA sequences. Handles are labeled with a biotin (5’-end) and a tail of digoxigenins (3’-
end) that specifically bind to streptavidin-coated (SA) beads and anti-digoxigenin-coated
(AD) beads. Schematics of the experimental setup are shown in Figure 1A. The molecular
construction is tethered between the SA (2.1 µm Kisker Biotech) and AD beads (3.0–3.4 µm,
Kisker Biotech). The SA bead is held by air suction at the tip of a glass micropipette, while
the AD bead is captured in the optical trap.

Here, we have carried out non-equilibrium pulling experiments using a Mini-Tweezers
optical setup [19] at room temperature (298 K) and monovalent salt conditions (300 mM
NaCl) in a 10 mM HEPES buffer containing 1mM EDTA and 0.01% NaN3. The optical trap
is moved up and down between two selected positions at a given pulling speed (Figure 1B).
At the initial (λ0) and final (λ1) positions, the 3WJ is folded at a low force ( f0) and unfolded
at a high force ( f1), respectively. Upon moving the optical trap up (down), unfolding
(folding) events are observed as sudden force jumps in the force-distance curves (FDCs)
(black and gray trajectories in (Figure 1B). The work, W, for the unfolding and folding
trajectories is defined as the area below the FDCs between λ0 and λ1 [26].
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Figure 1. (A) Schematics of the experimental setup. λ stands for the trap-pipette distance, the control
parameter in pulling experiments. (B) Force-distance curves (FDCs) (black, unfolding; grey, folding)
and secondary structures (colored dotted-diagrams) of native (left) and misfolded (right) states in the
RNA three-way junction (3WJ). FDCs have been horizontally shifted for clarity. Nucleotide color
code shown on top.

2.2. Free-Energy Difference Determination: A Reminder

In this section, we summarize the main formulae for determining the free-energy dif-
ference between the folded and the unfolded RNA, (∆GFU), from non-equilibrium pulling
experiments. In the presence of a misfolded state, the standard Crooks fluctuation theorem
(CFT) [23] and its corollary, the Jarzynski equality (JE) [24], are not directly applicable.
Instead, one must use the extended versions of the CFT and the JE (hereafter referred to as
ECFT and EJE) that consider the formation of different competing structures besides the
native one [21,27,28]. In addition, we have also used the Bennet’s acceptance ratio (BAR)
method [29] to extract ∆G. The different energy estimates are then compared to predictions
computed using Mfold [30] and the Vienna package [31].

2.2.1. The Extended Crooks Fluctuation Theorem (ECFT)

The CFT establishes a symmetry between the work distributions measured in a
nonequilibrium process and its time-reverse, conditioned to start in full (Boltzmann–Gibbs)
equilibrium at the beginning of each process. In the ECFT, this condition is replaced by the
more general partial equilibrium condition; at the beginning of each process, the system is
partially equilibrated in a given subset of the conformational space. In the pulling experi-
ments shown in Figure 1, the RNA folds into two distinct conformations (subsets), native
(N) and misfolded (M) [32,33]. Therefore, at the beginning of the pulling cycle, the RNA is
partially equilibrated in N or M, and the ECFT must be applied. For simplicity, we will
consider the N state, but the case for M is identical. Let P→(W) and P←(−W) denote the
partial unfolding and folding work distributions conditioned to start in N at λ0 and end in
U at λ1. Hereafter, the subscripts � indicate the unfolding (→) and folding (time-reverse,
←) processes. The extended Crooks fluctuation theorem (ECFT) for the trajectories that are
in N at λ0 reads [27]:

φ→
φ←

P→(W)

P←(−W)
= exp

(
β
[
W − ∆GNU

])
, (1)

where β = 1/kBT, with kB being the Boltzmann constant and T the temperature. ∆GNU
is the equilibrium free energy difference between N and U. φ→ (φ←) are the fraction of
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trajectories that start at N (U) in λ0 (λ1) and end in U (N) at λ1 (λ0) during the unfolding
(→) and folding (←) processes. Notice that in the standard CFT, φ→ = φ← = 1, because of
the full equilibrium condition. For our RNA molecule, φ→ = 1 (the RNA is always unfolded
at {λ1, f1}), whereas φ← < 1 because the molecule can fold into M (Figure 1B). The work
value where both distributions cross, P→(W?) = P←(−W?), will be denoted as W? and
is given by W? = ∆GNU − C, where C = −kBT log(φ→/φ←) = kBT log(φ←) is denoted
as the ECFT correction. φ← is estimated by classifying unfolding and folding FDCs in
two subsets, N and M, depending on which state the RNA folds into upon refolding.
The classification is made on the basis of the FDC pattern (Figure 1B). Equation (1) also
holds for the M-subset of trajectories. The crossing work value in Equation (1) defines the
ECFT estimate for ∆GNU .

2.2.2. The Extended Jarzynski Equality (EJE)

A corollary of the CFT is the JE. Its extended version reads,

∆GNU� = −kBT log
[
〈e−βW〉�

]
+ C , (2)

with C = kBT log(φ←), and ∆GNU� being the two energies estimates obtained by expo-
nentially averaging (〈. . . 〉�) over each set of nU(F) unfolding→ (folding←) trajectories,
respectively. In practical cases, nU(F) is finite and the exponential average is biased for a
finite number of experiments. The bias of the EJE is defined as,

B�n = −kBT log
[
〈e−βW〉�

]
− ∆GNU + C (3)

where the averages 〈. . . 〉� are taken over different sets of n samples.
For FDCs presenting high hysteresis (Figure 1B), the unfolding ∆GNU→ and folding

∆GNU← estimates differ. To overcome this, it is preferable to combine the unfolding and
folding work measurements (e.g., using the ECTF Equation (1) and BAR; see next) to
estimate ∆GNU .

2.2.3. The Bennet’s Acceptance Ratio (BAR)

The Bennett’s acceptance ratio (BAR) method minimizes the statistical variance of the
free-energy estimator given by the CFT. Bennet demonstrated that the function
Φ(W) = (1 + (nU/nF) exp [β(W − ∆GNU)])

−1 is the one that minimizes the statistical
variance of the estimator ∆G [29]. Rearranging Equation (1) and multiplying it by Φ(W),
we obtain:

Φ(W)P→(W) = Φ(W)P←(−W) · exp [β(W − ∆GNU + C)]

Integrating over W give us the expected values of Φ(W) over the work distributions:

〈Φ(W)〉→ = 〈Φ(W)eβW〉← · exp [β(−∆GNU + C)]

Taking logarithms and defining u = ∆GNU − C, and the functions zF(u) and zU(u):

zU(u) = log

[
1

nU

nU

∑
i=1

(
e−βW→i

1 + nU
nF

e−β(W→i −u)

)]
, (4a)

zF(u) = log

[
1

nF

nF

∑
i=1

(
1

1 + nU
nF

eβ(W←i +u)

)]
, (4b)

with W→i , W←i being the work values measured in the unfolding and folding processes. In
Equation (4), nU and nF denote the number of unfolding and folding trajectories, respec-
tively. With these definitions, the ECFT takes the form:

u = kBT [zF(u)− zU(u)], (5)
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The solution to Equation (5), u?, defines the BAR free energy estimate, ∆GNU = u? + C.

2.2.4. The Matching Method

An alternative and simple method to estimate ∆GNU , useful in those cases where
work distributions do not cross, is the so-called matching method. In this method, we
determine the value of ∆GNU by imposing continuity between the measured P→(W) and
the reconstructed one from P←(−W) using Equation (1):

P→(W) = P←(−W) · exp
(

β
[
W − ∆GNU + C

])
(6)

The value of ∆GNU that best matches the two work distributions in the crossing work
region (around W? = ∆GNU − C) defines the matching estimate [22]. Below, we will focus
on the previous three estimates (ECFT, EJE, BAR), but will use Equation (6) to illustrate the
matching method.

3. Results

We have carried out pulling experiments at two different pulling speeds: 50 nm/s and
200 nm/s. The recorded FDCs show two different patterns (Figure 1B) corresponding to
two different folded structures: native and misfolded. We have determined the folding
free-energy of the native state (N), ∆GN , using the three estimators described in Section 2.2
(ECFT, EJE, BAR). In the case of the misfolded state, as shown in Figure 1B, the trajectories
for the misfolded state do not present a significant hysteresis, due to its quasi-reversibility
in unzipping experiments. Therefore, we can just derive the free energy by taking the linear
response formula to the first order, ∆G(1) = (〈W〉→ + 〈W〉←)/2, or to the second order in
a cumulant expansion, ∆G(2) = (〈W〉→ + 〈W〉←)/2− (σ2

→ + σ2
←)/(12kBT) [34]. For the

misfolded state, we found ∆G(1)
M = 48(1)kBT and ∆G(2)

M = 48(1)kBT. From the ECFT and

BAR, we obtain ∆G(ECFT)
M = 51(1)kBT and ∆G(BAR)

M = 50(1)kBT. Averaging all estimators,
we measured ∆GM = 49(1)kBT. All these results agree with the prediction using both
Mfold and Vienna packages, which is ∆G0

M = 49(2)kBT at our salt conditions. Results for
the misfolded state can be found in Table A2 and are illustrated in Figure A1.

To determine ∆GNU from the FDCs, we classify pulling trajectories into two sets (N
and M), select the N subset, estimate the fraction of trajectories, φ←, and measure the
partial work distributions (P→(W), P←(−W)). From the work W, we have subtracted
the energy contributions coming from the bead displacement, the stretching of the DNA-
RNA handles, and the 3WJ single-stranded RNA (ssRNA). To do so, we have followed
the methodology described in [22,35]. Briefly, the elastic response of the ssRNA and
hybrid DNA-RNA handles is calculated using the inextensible worm-like chain model [36].
The elastic parameters (p for persistence length and db for the interphosphate distance)
used in this study are: p = 0.9 nm and db = 0.65 nm/base for the ssRNA and p = 40 nm
and db = 0.3 nm/basepair for the hybrid handles [35,37–41]. The folded hairpin is modeled
as a freely-rotating dipole of 2 nm length [37]. The bead contribution has been estimated by
solving the equation for λ( f ) by applying the elastic models and using a harmonic optical
trap with a cubic non-linear correction reported in previous experiments [35,42].

In Figure 2A,B (left) we show the unfolding (solid lines) and folding (dashed lines) work
distributions for all investigated molecules at the two pulling speeds. From Equation (1), we
derive ∆GNU from the crossing work value. The crossing point has been estimated by
fitting a generic kernel probability density distribution to the experimental histograms.
In Figure 2, we have subtracted the crossing work value W? from the partial work W. We
note that the unfolding work distributions are broader than the folding ones, suggesting
that the transition state upon folding is closer to the native state. To characterize the
work distributions, we have investigated their Gaussianity. To do so, we have defined
a parameter R that relates the dissipated work, 〈Wdis〉 = |〈W〉 −W?|, with the variance
of the work, σ2

W : R = σ2
W/(2kBT〈Wdis〉); according to the ECFT, R = 1 indicates perfect

Gaussian behavior. For the folding work distributions, we find R = 0.9(0.1) and R = 1(0.1)
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for the 50 nm/s and 200 nm/s pulling rates, respectively. In contrast, the unfolding work
distributions have R = 2.0(0.2) and R = 2.1(0.1) for 50 nm/s and 200 nm/s, respectively.
This result indicates that the unfolding and folding work distributions have different
behavior; only the folding distributions can be well approximated with a Gaussian function,
which is suggestive of quasi-reversible folding. The average work values (〈W〉), variance
(σ), and average dissipated work (〈Wdis〉) for the investigated loading rates are summarized
in Table 1. The results for each studied molecule are gathered in Table A1 (Appendix A).

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

        

   

   

 

  

  

  

      

   

   

 

  

  

  

Figure 2. (A,B) Left: Partial work histograms for forward and reverse trajectories. Solid (dotted) lines
are the generic kernel densities fitted to the forward (reverse) work measurements. Values for the
histograms of P→(W) and P←(−W) are represented as error bars. These errors were computed by
bootstrapping. (A,B) Right: Bias of the EJE (Equation 3) with the number of measurements. Errors
have been computed with the variance of several random data subsets. In all panels, each color
represents one of the eight different molecules. Horizontal lines indicates the mean value of the
forward (solid lines) and reverse (dashed lines) distributions (color code: 50 nm/s dark yellow and
200 nm/s dark blue).

Table 1. The subscripts → and ← denote the unfolding and folding process. Energy values are
expressed in kBT units. Values within parenthesis indicates the statistical error.

Pulling
Speed 〈W〉→ σ→ 〈W〉← σ← 〈Wdis〉→ 〈Wdis〉← R→ R←

50 nm/s 82 (2) 8.8 (0.6) 49 (2) 4.9 (0.3) 20 (2) 13 (2) 2.0 (0.2) 0.9 (0.1)
200 nm/s 88 (2) 10.7 (0.2) 48 (2) 5.0 (0.2) 28 (2) 13 (2) 2.0 (0.2) 1 (0.1)

The biases, Bn, of the EJE estimator (Equation (3)) for different n values are shown
in the right plots of Figure 2A,B. We have investigated data subsets of different sizes,
each containing a random sample of work values. As expected, as the size of the subset
grows, the bias decreases [43]. The free energy estimations using EJE Equation (2) are
tabulated in Table 2. The average work values 〈W〉→ (〈W〉←) overestimate (underestimate)
W? because the average dissipation 〈Wdis〉→ = 〈W〉→ −W? (〈Wdis〉← = W? − 〈W〉←) is
always positive.
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As mentioned before, crossing work values (W?) allow us to estimate the energy
difference, ∆GNU = W? + C. In Figure 3A, we tested ECFT Equation (1) using fits to the
generic kernel densities by plotting the ratio between the unfolding and folding work
distributions in a log-normal representation. As all energy values are presented in kBT
units, the slope of Equation (1) is expected to be equal to 1 (dark solid line). The average
slope (dashed line) equals 0.9± 0.1, in agreement with the expected behavior (slope values
for each molecule are shown in Table A1). In addition, we checked the ECFT by applying
the matching method (Equation (6)). If the ECFT holds, we expect to see continuity between
the measured (solid symbols) and the reconstructed P→(W) using Equation (6) (empty
symbols) (Figure 3B). Although there is continuity, we also appreciate a change in the slope
around the crossing point. Moreover, we have estimated ∆GNU using BAR (Figure 3C).
The value of u? = ∆GNU − C is defined as the intersection (empty symbols) between the
identity line (dark solid line) and the lines defined by Equation (5) (colored lines). As can
be seen, the function zF(u)− zU(u) is almost constant in a range of ∼ 4kBT around the
crossing point, u?. Figure 3C shows the results using BAR for ∆GNU for all molecules and
pulling rates. Results are summarized in Table 2.

    
  

  

  

 

 

 

 

    

   

   

            
 

  

   

         
     

     

    

         
     

     

    

    
  

  

  

 

 

 

 

    

   

   

            
 

  

   

         
     

     

    

         
     

     

    

Figure 3. (A) Proof of the CFT applying Equation (1). The dark solid line represents the theoretical
slope (1) and the dashed line is the result of a linear fit by considering all points. (B) Illustration of
the matching method. Solid points are the direct histogram for P→(W) and empty points are the
reconstructed tails using Equation (6) (legend). (C) Result for the BAR. The dark solid line represents
the identity function, while the colored lines are the result for zU(u)− zF(u). Empty points are the
intersection of both lines, u?. For all panels, diamond (square) shaped points correspond to the
pulling speed of 50 (200) nm/s.
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Table 2. Summary of the results for the different ∆GNU estimators (see Table A1 for results for each
molecule). EJE, ECFT, and BAR results are the mean value for all molecules at each pulling speed.
∆G0 is the mean value considering all the estimators. Energy values are expressed in kBT units.
Values within parentheses indicates the statistical error.

∆GNU
φ← C ∆G0

EJE→ EJE← ECFT BAR

50 nm/s 65 (2) 58 (2) 59 (2) 65 (2) 0.53 (0.04) −2.7 (0.4) 62 (2)
200 nm/s 62 (2) 57 (2) 60 (2) 62 (2) 0.77 (0.01) −1.1 (0.1) 60 (1)

Both 63 (1) 58 (1) 59 (1) 63 (1) - - 61 (1)

Finally, we tested the CFT over the pulling-cycle protocol defined by connecting the
unfolding and folding processes, as shown in Figure 4. In this protocol, the trajectories
are defined as the closed cycle determined by the unfolding and the subsequent folding
trajectory. Therefore, the initial and final states are the same, i.e., the native molecule at
{λ0, f0}. By definition, in a cyclic protocol with a single control parameter, the forward and
reverse work distributions are identical, i.e., P→(W) = P←(−W) ≡ P(W) in Equation (1).
The work for a single realization of a closed cycle is defined as W = WU +WF, with W{U,F}
being the unfolding and folding work measurement values. If we restrict the analysis to
native cycles (i.e., trajectories that start and end in N), the free energy difference for the
closed cycle equals zero, ∆GNN = 0 and the fractions φ→ = φ← < 1, so C cancels out and
the ECFT Equation (1) takes the form:

P(W)

P(−W)
= exp(βW), (7)

In Figure 4 (bottom panels), we show the work histograms (dark solid boxes) for the
cyclic protocol, P(W). Work histograms are shown for the two pulling speeds: 50 nm/s
(bottom left), and 200 nm/s (bottom right). These histograms have been calculated con-
sidering all the trajectories from all molecules. Notice that the boxes do not reach W = 0,
and P(W) and P(−W) do not intersect at W? = 0, so we are not able to test the CFT as
in Figure 3A. To circumvent this, we have combined the datasets of unfolding (WU) and
folding (WF) work values. We have built a new dataset for the work cycle (W = WU + WF)
by drawing WU and WF independently from each dataset. While the original histograms
in Figure 4 are calculated with N closed trajectories, by mixing each unfolding trajectory
with all the folding trajectories, we obtain a total of N2 observations, which allow us to
extend the tails of the histograms by increasing the number of trajectories from 457 (838)
to 208,849 (702,244) at 50 (200) nm/s. The new histograms are displayed as error bars
(red and green) in Figure 4, bottom. Note that with this procedure, we obtain virtual
cycles that, despite never occurring, would be possible but extremely rare. As expected,
the obtained distribution reasonably fits the original histogram. In exchange, we have
obtained a few values for W < 0 populating the leftmost tail of the histogram for the
molecules pulled at 200 nm/s. These values allowed us to construct a P(W)/P(−W) and
test Equation (1). The result is shown in the bottom right panel of Figure 4, inset. The
dark solid line represents the unity slope. On the other hand, the same procedure over the
dataset for the pulling velocity of 50 nm/s did not produce those values. Although a lower
speed lowers the dissipation, this comes at the price of reducing the number of pulls for a
given experimental time. Our results demonstrate that, for a given experimental time, it is
preferably to increase dissipation by increasing the pulling speed and the number of cycles.
In Table 3, we show the main parameters of the work distributions in the cyclic protocol.
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Figure 4. (Top panel). Scheme of the definition of the cyclic protocol. Dark (light) colors represent
the forward (reverse) trajectories. (Bottom) Work distributions for the cyclic protocol (dark solid
boxes) obtained by merging data from all molecules. Colored error bars correspond to the mixed
data sets. Histogram errors are computed by bootstrapping. Left (right) panels are for pulling speeds
of 50 (200) nm/s. (Bottom, right, inset) Proof of the CFT for the cyclic protocol. To test the CFT, we
used the forward work distribution calculated by combining all unfolding and refolding trajectories.
For the cyclic protocol, P(−W) is computed as the reflection of P(W) over the y axis. The green
points were obtained by computing P(W)/P(−W) in the work range [−5:5] kBT and then fitting it
to a line (green solid). The slope of the black solid line is equal to 1.

Table 3. Characterization of the work distributions for the cyclic protocol. All energy values are
expressed in kBT units.

Data 〈W〉 σW R

50 nm/s Original 33 10 1.4
Mixed 34 10 1.6

200 nm/s Original 40 11 1.5
Mixed 40 12 1.8

4. Discussion

We have applied the Jarzynski equality (JE) and the Crooks fluctuation theorem
(CFT) to determine the folding free energy of a native RNA three-way junction (3WJ),
∆GNU , from pulling experiments. The RNA 3WJ exhibits hysteresis between the unfolding
and folding trajectories (see Figure 1B), which translates into a significant dissipation
upon mechanical unfolding. The RNA 3WJ shows a misfolded two-hairpin structure [44]
(Figure 1), which is predicted with the Vienna package [31]. Here we have focused on
deriving the free energy of the native 3WJ only, where the crossing region between the
unfolding and refolding work distributions (P→(W), P←(−W)) is less populated and the
determination of the folding free energy is more challenging.

In the presence of a misfolded structure, the standard JE and CFT must be corrected
with the term C = kBT log(φ←), where φ← is the fraction of trajectories that fold into the
native structure upon refolding. If there is no misfolding, φ← = 1 and C = 0. We applied



Entropy 2022, 24, 895 10 of 14

three estimators to the experimental data (Section 2.2): the extended Jarzynski equality
(EJE), the extended Crooks fluctuation theorem (ECFT), and Bennet’s acceptance ratio
(BAR). The average dissipated work for the unfolding process is ∼30 kBT, which is almost
half of the folding free energy (at zero force) predicted by Mfold [30,45]; ∆G0 = 67(3) kBT
at [NaCl] = 1 M. This value must be corrected for salt dependence [37] to obtain a value of
∆G0 = 62(3) kBT in our experimental conditions. Combining the different estimators, we
obtain ∆G0 = 61(1) kBT (see Table 2, bold), in agreement with the expected value.

We have applied the EJE to the unfolding and folding trajectories independently.
In Figure 2 (right panels), we quantified the bias [46] of the EJE, B, and studied the
convergence of the estimator with the number of pulls, following reference [43]. Despite the
large average dissipation (∼20–30 kBT for unfolding and ∼13 kBT for refolding), the EJE
estimator converges after one hundred pulls. Averaging estimators for unfolding and
refolding, we obtain |∆GNU→ − ∆GNU← |∼12 (8) kBT for 50 (200) nm/s (see Table A1). We
remark that faster pulling velocities allow us to obtain more pulls before the tether breaks,
and a less biased energy estimator.

We have combined unfolding and refolding measurements in the ECFT (Equation (1)).
This method yields a better estimate for the folding free energy (see Table 2). However,
bidirectional estimators require that P→(W) and P←(−W) are sampled around the crossing
region. A way to test the ECFT is shown in Figure 3, where a log-normal representation
of Equation (1) shows a straight line with a slope close to 1 (see Table A1 for individual
slopes). Further validation of Equation (1) is obtained with the matching method shown in
Figure 3B, where continuity between the measured P→(W) and the reconstructed one from
P←(W) using Equation (6) is imposed on the data to derive ∆GNU .

Bennett’s acceptance-ratio (BAR) method provides a third estimator of ∆GNU . In
Figure 3C, we plot zF(u)− zU(u) obtained by solving Equation (5). Although the difference
is not flat throughout the u-axis, it is reasonably constant, with a range of 10 kBT around
u?, which give us confidence in the BAR results.

The RNA 3WJ was chosen because, despite its significant dissipation, there is a visible
crossing point between unfolding and folding work distributions. This feature makes it an
excellent candidate for comparing the different estimators.

Regarding the estimators, bidirectional methods (i.e., the extended Crooks fluctuation
theorem (ECFT) and the Bennet acceptance ratio (BAR)) are more predictive because they
combine data from unfolding and refolding in a unique formula. In contrast, the extended
Jarzynski equality (EJE) uses the unfolding and folding work data separately. In general,
when work distributions cross, it is advisable to take the crossing value as the free energy
estimator. This includes the situation where dissipation is low (a few kBT, for example,
in the case of the misfolded structure). However, in this case, linear response theory
provides good estimations for the free energy [34] (see Section 3, Results). If dissipation is
large and the crossing work value is inaccessible, rare events must be sampled to reconstruct
the leftmost (unfolding) and rightmost (folding) tails of the work distributions. In this
case, it is advisable to increase the pulling speed to collect more trajectories for a given
total experimental time (to more efficiently sample rare events) and apply the BAR method,
which minimizes the statistical variance of the free energy estimator.

It is important to remark that, in the linear and low dissipation regime, work distri-
butions tend to be Gaussian. In this case, the variance σ2

W and the mean dissipated work
(〈Wdis〉) follow linear response theory, so σ2

W = 2kBT〈Wdis〉. However, for dissipation
comparable to kBT, drift effects, finite measurement bandwidth, and experimental errors
set a lower bound to the variance, so σ2

W > 2kBT〈Wdis〉. Strictly speaking, Crooks FT does
not hold; however, the crossing method and BAR still give good ∆G estimates. In particular,
the Jarzynski equality overestimates the weight of the tails, yielding a negative free energy
bias. This leads to misleading predictions; for instance, the unidirectional Jarzynski free
energy estimator of the unfolding process is lower than the refolding one.

We want to remark that ∆G is an equilibrium quantity that does not depend on the
pulling rate. Therefore, by collecting a sufficiently large number of trajectories, all the
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estimators would give the same ∆G value. However, as shown in Table 1, dissipation
increases with the pulling rate, which would imply that more trajectories are necessary to
estimate ∆G correctly. However, for a fixed total experimental time, faster pulling rates
permit us to sample rare events much better, compensating for the increased dissipation.

Finally, we considered a new method of data analysis in which unfolding and folding
trajectories are mixed to obtain full pulling cycles with ∆G = 0. Forward and reverse work
distributions are equal and the crossing equals W? = 0 by definition. The work histogram
reaches W? = 0 for the largest pulling speed (Figure 4, 200 nm/s), and Equation (7) is
fulfilled (inset). Future studies might address methods to increase the statistics around the
crossing region to extract valuable information about the molecular folding energy landscape.
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Appendix A. Results for the Native Structure

Table A1. Summary of the results for every native molecule. All energy values are expressed in
kBT units.

Pulling Speed 50 nm/s 200 nm/s

Molecule 1 2 3 4 5 6 7 8

Total cycles 73 172 91 121 297 231 166 144

Native cycles 39 71 52 73 227 181 125 114

〈W〉→ 86 83 77 84 91 92 85 85

σ〈W〉→ 9 10 8 9 11 11 11 10

〈W〉← 53 48 44 51 51 52 46 43

σ〈W〉← 5 6 5 5 5 5 6 5

〈Wdis〉→ 19 20 19 19 27 30 28 26

〈Wdis〉← 14 14 14 14 13 10 12 17

R→ 2.2 2.5 1.5 1.9 2.2 1.9 2.1 2

R← 0.74 1.2 0.8 0.8 1 1 1.3 0.7

EJE→ 69 62 60 67 65 62 58 64

EJE← 61 60 56 58 61 59 54 53

ECFT 62 58 54 62 64 62 57 56

slopes 1.00 0.79 1.19 0.73 0.68 0.86 0.70 0.99

BAR 69 62 60 67 65 62 58 64

φ← 0.5 0.4 0.6 0.6 0.8 0.8 0.8 0.8

C −2.6 −3.6 −2.3 −2.1 −1.1 −1 −1.2 −1
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Appendix B. Results for the Misfolded Structure

Table A2. Summary of the results for every misfolded molecule. All energy values are expressed in
kBT units.

Pulling Speed 50 nm/s 200 nm/s

Molecule 1 2 3 4 5 6 7 8

〈W〉→ 50 50 48 51 51 50 50 50

σ〈W〉→ 5 3 4 5 3 4 3 3

〈W〉← 44 46 46 48 46 45 47 46

σ〈W〉← 5 4 4 4 4 4 4 4

〈Wdis〉→ 2 1 1 1 1 1 1 1

〈Wdis〉← 3 3 2 2 4 4 4 4

∆G(1) 47 48 47 50 49 48 49 48

∆G(2) 47 48 47 49 49 48 49 48

ECFT 49 49 49 52 52 51 54 52

BAR 49 49 47 49 52 50 53 53

φ← 0.5 0.6 0.4 0.4 0.2 0.2 0.2 0.2

C −2.9 −2.1 −3.8 −3.8 −6.7 −6.7 −6.7 −6.7

                  

 

     

     

     

                  
  

  

  

  

Figure A1. FT results for the misfolded structure. (Top) Partial work distributions for the misfolded
structure. Solid (dashed) correspond to the unfolding (folding) work histograms with error bars
computed by bootstrapping. Solid (dashed) lines are Gaussian fits to the data. The intersection
between both distributions, W?, is indicated with dotted vertical lines and by solid symbols. (Bottom)
BAR method. The dark solid line represents the identity function and colored lines are the result for
zF(u)− zU(u). Empty symbols indicate u?. In both panels, the diamond (square) symbols correspond
to 50 (200) nm/s pulling speed.
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