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Abstract

The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable
researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution.
Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and
therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for
shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to amplify more than 90% of sequences in the
Greengenes database and with the ability to distinguish nearly twice as many species-level OTUs compared to existing
protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable
and conserved regions, the resulting shotgun sequences can be used to accurately quantify the constituents of complex
microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision
(.90%) in species-level identification thereby opening up potential application of this approach for clinical microbial
characterization.
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Introduction

The use of high-throughput short-read sequencing of the 16S

rRNA amplicon for the profiling of microbial communities has

become an increasingly attractive option for researchers due to its

cost-effectiveness, and this has been further aided by the capability

to do multiplexed sequencing [1,2]. However, this approach is

limited by its perceived lack of precision in characterizing a

microbial community and the presence of amplification biases for

various variable regions of the 16S rRNA gene [3,4,5,6]. In

particular, all published Illumina protocols have been restricted by

an approach based on end-sequencing of specific short variable

regions [7,8,9,10,11,12,13], due in part to the fragment-size

limitations for paired-end Illumina sequencing, but also due to the

bioinformatics challenge in a combined analysis of short-reads

from different variable regions.

Correspondingly, despite being substantially more costly, 454

pyrosequencing of 16S rRNA amplicon sequences is still a popular

approach in the scientific community [14] as the longer reads can

provide more reliable and specific matches and enable easier

analysis (though recent studies suggest that longer read lengths

occasionally may not provide more information [15,16]). This

advantage is in part offset by the presence of homopolymer errors

and the lower read counts that impact the identification of rare

and novel taxa. Furthermore, 454 pyrosequencing is currently

prohibitively expensive for clinical microbiome studies that often

involve hundreds of samples and multiple time points. Therefore,

improved application of relatively inexpensive short-read sequenc-

ing platforms is a critical need.

In this study, we report a shotgun short-read sequencing

approach (developed on, but not specific to the Illumina

platform) for reconstructing 16S rRNA amplicon sequences that

we demonstrate is a) less biased and tuned to capture a greater

fraction of 16S rRNA gene sequences and b) provides accurate

assignment (precision .90%) at deeper taxonomic levels using

the sequences. While the advantage of shotgun sequencing of a

significant fraction of the 16S rRNA gene is almost self-evident,

it is not clear if the resulting short read data can be assembled

reliably and used effectively. In this work, we demonstrate using

several in silico and experimental datasets that the resulting

shotgun short reads can be precisely re-assembled into amplicon

sequences for characterizing the constituents of complex micro-

bial communities. Significantly, the ability to accurately recon-

struct sequences enables, to our knowledge, the first reported

approach for accurate species-level identification based on the

16S rRNA gene using Illumina sequencing. This makes our

approach valuable for clinical applications and represents a step

in the direction of routine microbial diagnostics based on high-

throughput sequencing.
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Materials and Methods

Sample Collection
Stool samples were collected from a healthy 34-year-old adult

and a healthy 2-year-old infant. Throat swab sample SW18 is from

an adult with macular degeneration whereas 50658 is from a

healthy control. A 33-species artificial bacterial community of

known composition, referred to here as ABC33 (for Artificial

Bacterial Community; see Table S1 in File S1), was created by

pooling equimolar concentrations of bacterial genomic DNA

acquired from the American Type Culture Collection (ATCC),

the Deutsche Sammlung von Mikroorganismen und Zellkulturen

(DSMZ), and the Japan Collection of Microorganisms (JCM).

Nucleic Acid Extraction from Swab Samples
Swabs were broken off and placed in Lysing Matrix E tubes

(MP Biomedicals). 360 ml of Buffer ATL (QIAGEN) was added

and samples were homogenised at 6 m/s for 40 seconds on

FastPrep Automated Homogenizer (MP Biomedicals). The

suspension was centrifuged at full speed for 1 minute. 20 ml of

Proteinase K (QIAGEN) was mixed thoroughly with homogenized

supernatant and incubated for 30 mins at 56uC. Next, 200 ml of

Buffer AL (QIAGEN) was added and vortexed, followed by 200 ml

of 96–100% ethanol.

The mixture was transferred into a DNAeasy Mini Spin column

and centrifuged at $60006 g for one minute, and the eluate

discarded. This step was done for the first time with the addition of

500 ml of Buffer AW1 (QIAGEN) and repeated for a second time

with 500 ml of Buffer AW2 (QIAGEN). DNA elution was done

using 50 ml of Buffer EB (QIAGEN) and stored at 220uC.

Nucleic Acid Extraction from Stool Samples
100–200 mg of stool sample was weighed in a microcentrifuge

tube and transferred into Lysing Matrix E tube (MP Biomedicals)

before adding 1.4 ml of Buffer ASL (QIAGEN). Samples were

homogenised twice at 4 m/s for 30 secs using a FastPrep

Automated Homogenizer (MP Biomedicals). The suspension was

next heated at 95uC for 5 mins and centrifuged at full speed for

1 min. One InhibitEX tablet was added to each sample and

vortexed for 1 min. The suspension was incubated for 1 min at

room temperature before centrifuging at full speed for 3 mins.

15 ml of Proteinase K (QIAGEN) and 200 ml Buffer AL

(QIAGEN) were added to the supernatant and incubated for

10 mins at 70uC.

Next, 200 ml of 96–100% ethanol was added and samples were

transferred into QIAamp Spin columns (QIAGEN). The columns

were centrifuged at full speed for 1 min, and the eluate discarded.

This step was done for the first time with the addition of 500 ml of

Buffer AW1 (QIAGEN) and repeated for a second time with

500 ml of Buffer AW2 (QIAGEN). DNA elution was done using

200 ml of Buffer AE (QIAGEN) and stored at 220uC.

Evaluation of PCR Primer Universality
PCR primer sequences were compared against the sequences in

three popular 16S rRNA databases namely Greengenes (dated

May 9, 2011) [17], RDP (Release 10 Update 27) [18] and SILVA

(Release 108) [19]. A perfect match (after fully accounting for

ambiguous letters) between the primer sequence and a subse-

quence in the database entries was considered a hit.

16S rRNA Gene Amplification and Sequencing
Bacterial 16S rRNA gene sequences were amplified using the

primer pair 338F* (59-ACTYCTACGGRAGGCWGC-39) and

1061R (59-CRRCACGAGCTGACGAC-39); see Figure 1 and

related text for details. Briefly, each 50 mL of polymerase chain

reaction (PCR) reaction contains 100 ng of fecal genomic DNA or

3 mL of throat swab genomic DNA respectively as template, 10 mL

56HotStar HiFidelity PCR buffer, 0.5 mM of each primer, 1 mL

of HotStar HiFidelity DNA polymerase (2.5U) and 1 mL of

25 mM MgSO4 (all part of the HotStar HiFidelity Polymerase Kit

from QIAGEN).

PCR reactions were carried out using the respective protocols:

(1) for the stool samples, an initial denaturation step performed at

95uC for 5 min followed by 30 cycles of denaturation (95uC, 30 s),

annealing (59uC, 30 s) and extension (72uC, 1 min), and a final

elongation of 6 min at 72uC; (2) for ABC33 and throat swabs, the

parameters were the same as above but we used 35 PCR cycles.

PCR products between 700 and 1,000 bases in size were then

purified using QIAquick PCR Purification Kit (QIAGEN) and

quantified using NanoDrop (Thermo Fisher Scientific). Purified

amplicons were then sheared in a controlled manner to fragments

with an average length of 180 bases using Adaptive Focused

AcousticsTM (Covaris). DNA sequencing libraries were constructed

from the fragments using NEBNExtH DNA Sample Preparation

Reagents (New England Biolabs) according to the manufacturer’s

protocol.

DNA sequencing libraries were labeled with different multiplex

indexing barcodes using the Multiplexing Sample Preparation

Oligonucleotide Kit from Illumina. Finally, multiplexed paired-

end sequencing (2675 bp reads) of the sheared fragments was

done using an Illumina Genome Analyzer IIx.

Pre-processing of Sequencing Datasets
Image analysis and base calling were done on the Genome

Analyzer IIx using CASAVA 1.7. After de-multiplexing of data

and removal of reads that failed Illumina’s purity/chastity filter

(PF = 0), reads were converted to FASTQ format. Reads were

then filtered and trimmed by removing trailing bases with quality

scores lower or equal to 2, followed by removal of read pairs

containing reads shorter than 60 bases [20].

Resolution of Sequencing Approaches
In order to provide a theoretical measure for the resolution of

various primer combinations and sequencing approaches, corre-

sponding regions were extracted (the whole amplicon for shotgun

sequencing) from 16S rRNA sequences in the Greengenes

database (dated May 9, 2011; current_prokMSA_unaligned.fasta;

Table 1) and clustered using UCLUST [21] (version 2.0.591;

parameters: –optimal) at the species (97% identity) and genus level

(95% identity). Clusters were also assessed for purity i.e. the

percentage of clusters that do not have discordant species or genus

level taxonomy assignments, based on the taxonomy assignments

provided in Greengenes (current_GREENGENES_gg16S_una-

ligned.fasta: OTU ids were used at the species level).

Generation of Simulated Datasets
Three simulated datasets were generated based on three

community composition profiles (‘‘Oral’’, ‘‘Gut’’ and ‘‘Complex’’)

using the metagenomic simulator MetaSim [22]. The composition

of the ‘‘Gut’’ community was determined based on 2,062 16S

rRNA gene sequences (DDBJ/EMBL/GenBank accession num-

bers DQ325545 to DQ327606) reported by Gill et al. [23].

Sequences were searched using BLAST against a pruned version

of the Greengenes database which only contains sequences for

which taxonomic information is specified down to the species-

level, and the top BLAST hit returned (E-value ,1e-4; all

sequences had hits) was collected to generate a composition

profile. The composition of the ‘‘Oral’’ microbiome was based on

Shotgun 16S rRNA Sequencing
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14,115 16S rRNA gene sequences found in human saliva samples

reported by Nasidze et al. [24] and determined in a similar fashion

(Mihai Pop, personal communication). The composition of a

‘‘Complex’’ community was obtained from Turnbaugh et al. [25]

(Table S3 in File S1, ‘‘Uneven 1’’) and contains 67 taxa of vastly

varying abundances ranging from 0.000103% to 10.3%.

The simulation options for MetaSim were set to mimic features

of the sequencing dataset for ABC33. For each community a total

of 3.3 million paired-end reads of length 75 bases with an insert

size of 160 and a standard deviation of 40 were simulated. The

sequencing error profile for MetaSim was derived from the base-

pair quality scores averaged per position of the ABC33 dataset.

Quality values used for generating the error profile were then

Figure 1. In silico evaluation of 16S rRNA PCR primers. A) Percentage of sequences matching individual primers, with the top two primers
highlighted in boxes. B) Percentage of sequences amplifiable by various primer pairs (338F*/1061R is the best pair). Percentage of matched
sequences is measured against the Greengenes 16S rRNA sequence database. See Table S4 in File S1 for primer sequences and results measured
against the RDP and SILVA databases. Primer numbering is based on the E. coli system of nomenclature as in Brosius et al. [37] and for simplicity the
same name (say 784F) is used for both forward and reverse primers at a given position.
doi:10.1371/journal.pone.0060811.g001

Table 1. Species- and genus-level resolution of various sequencing approaches.

Sequencing Approach Reads From Species-level OTUs Genus-level OTUs

End sequencing

V3 (338F*/533R*) 59-end 7,388 (76%) 4,526 (83%)

39-end 35,763 (92%) 27,699 (97%)

V4 (533R*/805R) 59-end 10,971 (83%) 6,671 (88%)

39-end 15,000 (87%) 9,993 (92%)

V5 (805R/907F) 59-end 23,301 (91%) 17,138 (96%)

39-end 10,501 (83%) 6,746 (89%)

V6 (907F/1061R) 59-end 3,701 (73%) 2,221 (77%)

39-end 39,886 (92%) 31,285 (96%)

Shotgun sequencing

V3–V6 (338F/1061R) Whole amplicon 59,378 (97%) 34,869 (99%)

V3–V6 (338F*/1061R) Whole amplicon 61,298 (97%) 36,361 (99%)

V3–V6 (341F/1061R) Whole amplicon 59,272 (97%) 35,109 (99%)

V4–V6 (533R*/1061R) Whole amplicon 59,436 (97%) 35,161 (99%)

Resolution was measured by the number of OTUs/clusters produced using UCLUST [21] at the species (97% identity) and genus level (95% identity) for 16S rRNA
sequences in the Greengenes database, based on various end-sequencing (76 bases in length from either the 59 or 39 end) and shotgun-sequencing approaches and
primer combinations. A higher OTU/cluster number indicates a theoretical higher level of resolution for taxonomic classification. The numbers in parenthesis provide
the purity of clusters as measured by the percentage of clusters with homogenous taxonomy assignments in Greengenes. Entries with the highest resolution and/or
purity for each sequencing approach are marked in bold. The primer sequences can be found in Table S4 in File S1.
doi:10.1371/journal.pone.0060811.t001
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uniformly applied to all simulated sequences to obtain valid

FASTQ files.

Reconstruction of 16S rRNA Amplicon Sequences
The expectation-maximization based assembly program

EMIRGE [20], originally designed for whole genome datasets,

was adapted to help reconstruct the amplicon sequences from the

short-read datasets. Specifically, to reduce resource usage and

runtime, the analysis was limited to the top (in terms of average

quality) 100,000 reads, where the results were confirmed to be

robust to sampling (Table S2 in File S1). EMIRGE (GIT version

98787b5) was run with parameters set to match known read and

insert lengths and sequences with relative abundance below 0.1%

were filtered out (except when stated otherwise).

Classification of Amplicon Sequences
Sequences reconstructed by EMIRGE were trimmed to the

primer amplified regions and searched using BLAST against the

complete Greengenes database (dated May 9, 2011; curren-

t_GREENGENES_gg16S_unaligned.fasta). BLAST hits were sorted

in consecutive order by lowest E-value, highest bit-score, highest

percent identity and longest alignment length, and only the top hit

according to these sorting criteria was used for classification. Hits

below predefined percent identity (97% at the species level, 95% at

the genus level and 80% at the phylum level) were not considered

for classification purposes and dropped. Note that the dropped hits

are either sequences incorrectly reconstructed by EMIRGE or

novel sequences that do not have similar enough sequences in the

Greengenes database.

Classification results from EMIRGE (and modQIIME and

RTAX, see below) were evaluated in terms of precision ( = TP/

(TP+FP)) and recall ( = TP/(TP+FN)). A hit was considered a true

positive (TP) if it matched the classification (at the appropriate

level, species or genus) of a member of the simulated community,

and was otherwise marked a false positive (FP). Members of the

simulated community with relative abundance above the appro-

priate threshold (typically 0.1%, except when stated otherwise)

that did not have a true positive hit were marked as false negatives

(FN).

Characterization of Community Composition
Sequences reconstructed by EMIRGE are also assigned

abundance estimates by the program and this enabled us to use

EMIRGE results to directly characterize community composition

at various taxonomic levels. As an alternative to EMIRGE, we

evaluated the generic 16S rRNA analysis pipeline QIIME version

1.3.0 [26] for its ability to provide higher recall rates and thus be

more sensitive in detecting constituents of a community. Specif-

ically, we assigned operational taxonomic units (OTUs) to the

reads by using QIIME’s ‘‘OTU reference’’ option (pick_otus:o-

tu_picking_method = uclust_ref, pick_otus:similarity = 0.97) with a

pre-clustered Greengenes database (gg_97_otus_4feb2011.fasta),

with the reverse strand matches option enabled (pick_otus:ena-

ble_rev_strand_match = True) and sequences with relative abun-

dance below 0.1% filtered out (the false positive rate was found to

increase quickly at lower thresholds). To extend QIIME to handle

paired-read data, the pipeline was run separately for each of the

two read files and the results were merged with a filtering step that

accepts a read classification only if both ends of a read were

mapped to the same OTU. Note that this approach (modQIIME)

has greater precision when compared to the single read version

(Table S3 in File S1) and a more sophisticated alternative called

RTAX [16] is now available as part of the QIIME package.

Results

Tuned Selection of 16S rRNA Amplicons
As a result of fragment size limitations, existing Illumina end-

sequencing protocols (with reads from the ends of an amplified

region) for the 16S rRNA gene have been limited in the choice of

primer combinations that could be explored. Our extension to a

shotgun sequencing approach enabled us a wider choice of primer

combinations and the opportunity to tune it better for a desired

optimization criterion. In particular, we used an in silico assessment

to identify primers likely to minimize the number of species whose

16S rRNA genes are not amplified.

Our results clearly highlight that the three top-performing

primers at the 59 end are 338F*, 533R* and 341F, whereas at the

39 end, 1061R is the standout best-performing primer (Figure 1A
and Table S4 in File S1). Assessment of all primer combinations

further emphasized the advantage of these three combinations –

338F*/1061R, 533R*/1061R, 341F/1061R – with each primer

pair capable of amplifying more than 90% of the sequences in the

Greengenes database (Figure 1B; note that a similar analysis can

also be done using the package PrimerProspector [27]). This is

when only perfect matches are considered as hits and therefore an

even higher percentage is likely to be amplified in practice. As a

longer amplicon implicitly contains more information about the

corresponding 16S rRNA gene segment (see below), we selected

the combination 338F*/1061R (covering 92% of sequences in the

Greengenes database), which amplifies the region covering V3 to

V6 of the 16S rRNA gene, for the rest of our analysis. The primer

pair 338F*/1061R was also evaluated using NCBI BLAST and

the UCSC In-Silico PCR software against several human genome

assemblies (hg16, hg17, hg18 and hg19) to confirm that no

amplification artifacts are expected – a consideration which is of

relevance in the clinical context.

As shown in Table 1, shotgun sequencing approaches have a

substantial advantage over end-sequencing protocols, having on

average twice as many species-level OTUs that can be identified,

in principle. Among end-sequencing protocols, sequencing the 39-

end of the V3 regions provides the greatest resolution, though the

59-end is substantially less informative. In contrast, both ends of

the V6 region can resolve more than 24,000 OTUs, possibly

explaining the popularity of this choice in published studies

(Table S5 in File S1). As expected, clusters produced from

whole-amplicon sequences also had significantly higher purity

(Table 1). A similar pattern was observed at the genus level,

although the best end-sequencing protocol (sequencing the 39-end

of the V3 region) is comparable in resolution to shotgun

sequencing approaches. Cluster purity was in general higher at

the genus level and whole-amplicon sequences were uniformly

better than end-sequencing approaches. Among shotgun proto-

cols, the choice of 338F*/1061R is marginally better in resolution

than 533R*/1061R and 341F/1061R at the species level but is a

clearer winner at the genus level. Overall, 338F*/1061R

performed the best under all metrics (Figure 1 and Table 1)

and was the primer pair of choice in this study.

Precise Reconstruction of the 16S rRNA Gene from
Shotgun Sequences

While shotgun sequencing of the V3 to V6 region of the 16S

rRNA gene has the potential to more completely capture

microbial OTUs and with greater resolution (Table 1), accurate

reconstruction of the region from short reads is a potential

challenge. In our analysis, we used several in silico datasets (‘‘Oral’’,

‘‘Gut’’ and ‘‘Complex’’) as well as real sequencing data from an

Shotgun 16S rRNA Sequencing
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artificial bacterial community (ABC33) to assess the capability of

the 16S rRNA gene sequence assembler EMIRGE.

Similar to the results in the original paper [20] based on whole-

genome shotgun sequencing data, EMIRGE was able to

reconstruct sequences with precision consistently higher than

90% at the genus as well as at the species level, and even achieved

perfect precision at the species level for the in silico ‘‘Gut’’

community (Table 2). The few false positives reported were found

to match species closely related to the true positives and may have

arisen due to the limitations of the ‘‘best BLAST hit’’ criterion we

adopted for classification. To our knowledge, this is the first report

of precise species-level identification using Illumina sequencing of

the 16S rRNA gene.

Precision/Recall Tradeoffs Using modQIIME
Our evaluation of amplicon sequences from EMIRGE suggests

that while the ‘‘reconstruction followed by classification’’ approach

can result in high precision, recall rates, especially at the species

level, may be low for some communities. This observation could

be a function of the conservative reconstruction approach

employed by EMIRGE. However, our naive BLAST-based

classification could also be the culprit and more sophisticated

algorithms could potentially lead to higher recall rates.

Trading off precision in order to achieve a higher recall, we

explored a modified clustering-based approach that directly

classifies reads without an intermediate reconstruction step

(modQIIME). Our results (Table 2) suggest that at the genus

level, we can indeed do this tradeoff and obtain recall rates higher

than 90%, with a variable loss in precision. An alternative tradeoff,

typically intermediate between EMIRGE and modQIIME, is also

possible using RTAX [16] which has recently become available as

part of the QIIME package (Table 2). Species-level classifications

however continued to have modest recall rates using clustering-

based approaches, suggesting that EMIRGE would be more

appropriate for this task. Note that species-level recall rates for all

approaches and, in particular for EMIRGE, was significantly

lower for the ‘‘Complex’’ and ABC33 datasets, highlighting the

challenge of species-level identification when many closely-related

species are present in a community (Table 2). In terms of diversity

metrics, all three approaches mostly over-estimated the diversity of

the samples (Table S6 in File S1), with RTAX and EMIRGE

typically being the closest to the true answer. Both EMIRGE and

modQIIME were moderately compute and memory intensive

(typically taking a few hours and ,11 hours with 4 CPUs and

,25 Gb of RAM) while RTAX required several days to analyze a

dataset in the worst case.

Concordance of Microbial Community Structure
A strong advantage of deep sequencing of the 16S rRNA gene

on the Illumina platform is the potential to accurately quantify

abundances for even rare members of a microbial community.

Our analysis of the in silico datasets suggests that the abundances

estimated from the reconstructed sequences were indeed quite

accurate even at the species level (Figure 2A) and with correlation

coefficients greater than 0.95 for EMIRGE on all datasets. The

clustering approaches (modQIIME and RTAX), generally have

poor correlation coefficients at the species level (20.2 to 0.7), but

have modest results at the genus level (correlation coefficient

.0.7).

Analysis of sequencing datasets from the throat swab and stool

samples using EMIRGE and modQIIME showed a broad

agreement in their results and with what is known about these

microbial communities through Sanger and 454 sequencing

(Figure 2B). For example, the stool microbiota was dominated

by Bacteroidetes and Firmicutes, followed by Actinobacteria and

Tenericutes, in agreement with previous Sanger [28,29] and 454

[30] sequencing surveys. The most notable compositional differ-

ence between the infant and adult stool samples is the difference in

their Bacteroidetes:Firmicutes ratio [31,32,33], with a lower

percentage of Firmicutes observed in the 2-year-old infant

compared to the 34-year-old adult.

Table 2. Evaluation of EMIRGE, modQIIME and RTAX on different datasets.

Method Genus-level recall (%) Genus-level precision (%) Species-level recall (%) Species-level precision (%)

‘‘Oral’’

EMIRGE (33%) 88 90 66 96

modQIIME (93%) 97 63 66 51

RTAX (95%) 88 88 61 68

‘‘Gut’’

EMIRGE (30%) 84 95 69 100

modQIIME (92%) 92 82 71 94

RTAX (92%) 88 76 82 77

‘‘Complex’’

EMIRGE (13%) 64 100 32 86

modQIIME (78%) 100 55 59 59

RTAX (86%) 76 53 49 38

ABC33

EMIRGE (60%) 83 94 39 93

modQIIME (95%) 94 85 48 70

RTAX (96%) 100 90 52 61

Precision and recall rates for the ‘‘Oral’’, ‘‘Gut’’, ‘‘Complex’’ and ABC33 datasets using EMIRGE, modQIIME and RTAX at a 0.1% relative abundance threshold. The
percentage of sequences/OTUs removed because of the abundance threshold is given in parentheses for each method.
doi:10.1371/journal.pone.0060811.t002

Shotgun 16S rRNA Sequencing
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Figure 2. Community composition based on 16S rRNA sequence reconstruction using EMIRGE. A) Correlation between known and
estimated relative abundances of predicted species on three in silico datasets. A log-scaled version of this plot can be seen in Figure S1 in File S1. B)
Composition at the phylum level for the throat swab and stool sequencing datasets.
doi:10.1371/journal.pone.0060811.g002

Shotgun 16S rRNA Sequencing
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For the throat swab samples, the five most abundant phyla

detected were Actinobacteria, Bacteroidetes, Firmicutes, Proteo-

bacteria and Fusobacteria, which is in agreement with 454

sequencing results reported by Jakobson et al. [34] and with 16S

rRNA gene microarray by Lemon et al. [35]. The high variability

in composition between samples has also been noted before from

saliva [24], and in particular in this study, throat swab sample

SW18 has a much higher abundance of Actinobacteria and lower

abundance of Fusobacteria compared to sample 50658. Interest-

ingly, our analysis revealed a significant proportion of sequences

that could not be annotated at the species-level (.15% in terms of

relative abundance for SW18; though they can be classified at the

phylum-level - Figure 2B), highlighting the strength of our

approach for studying novel constituents of a microbial commu-

nity.

Analysis at the species level identified 38 members in the two

stool samples and 44 members in the two throat swabs we

sequenced, with several members detected at as low as 0.01%

abundance (Tables S7 and S8 in File S1). Interestingly, at the

species level the infant and adult stool samples have few species in

common whereas the throat samples share most of their abundant

members. As a sanity check, we also confirmed that a majority of

the reported species are common constituents of the gut and oral

microbiota (Table S7 in File S1).

Discussion

The novel shotgun 16S rRNA Illumina sequencing protocol

presented here has clear theoretical advantages, with a primer pair

optimized to amplify a longer stretch of the 16S rRNA gene as well

as more sequences (92% of the Greengenes database) and selected

to have high resolution at both the genus and species level. Our

empirical results further highlight its utility for precise (.90% at

the species level) and high-resolution microbiome profiling, though

additional benchmarking using long-read sequencing datasets

would be ideal. Taken together, we believe this makes for a good

case for wide usage of this protocol (especially when species-level

classification is desired) on the Illumina platform. While the read

lengths analyzed here were around 75 bp, longer reads (up to

150 bp) can currently be generated on an Illumina HiSeq at a

greater cost and with higher sequencing error rates (even longer

reads of up to 250 bp can be generated for a significantly higher

cost on the MiSeq). These longer reads should allow for more

precise reconstruction and analysis and as read lengths approach

the typical amplicon length (this is already possible on a PacBio RS

sequencer but at a much greater cost), computational analysis of

the resulting sequences will get simplified.

With recent improvements in sequencing throughput, using

deep DNA sequencing as a pathogen screening tool is an attractive

idea but its utility is limited by contamination from non-microbial

and host DNA. The use of 16S rRNA amplicon sequencing can

address this drawback but it comes with the cost of amplification

biases. Our results for the sequencing and analysis protocol

presented here suggests that with a careful choice of primers, the

biases can be minimized, and that microbial constituents of a

sample can be precisely quantified at the species level using as few

as 100,000 reads. With improved automation of library-prepara-

tion and multiplexing steps, this approach will be cost and time

effective for future clinical microbiome studies with hundreds of

samples and multiple time points. A recent example of such a

study is one that looked at the association of gut microbiota with

type 2 diabetes and uncovered potential biomarkers [36]. A 16S

rRNA-based approach such as the one described here would be

more cost effective when similar studies are conducted for

microbiota of body sites where host DNA contamination can be

significant (e.g. oral and skin).

The principal approaches used for short-read sequence analysis

in this study (EMIRGE and modQIIME) were moderately

compute and memory intensive (requiring large clusters if

hundreds of samples need to be analyzed) and had modest recall

rates. Improved algorithms for data analysis could potentially

enable better tradeoffs between compute resources, sequencing

depth and sensitivity for reliable detection of rare species in a

microbial community.

Availability
Simulated datasets and community profiles can be found at

http://collaborations.gis.a-star.edu.sg/̃shotgun_16S_sequencing/.

The post-processor script for modQIIME can be found at https://

github.com/CSB5/16s-arxiv-1210.3464 (version 1). The five

human sample datasets (adult gut, infant gut, throat SW18, throat

50658 and ABC33) can be accessed from NCBI Sequence Read

Archive (SRA) via accession numbers SRX148649–148652.

Supporting Information

File S1 Supporting figures and tables.

(DOC)
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