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Abstract

Aims/hypothesis Diminished cortical filamentous actin
(F-actin) has been implicated in skeletal muscle insulin
resistance, yet the mechanism(s) is unknown. Here we
tested the hypothesis that changes in membrane cholesterol
could be a causative factor, as organised F-actin structure
emanates from cholesterol-enriched raft microdomains at
the plasma membrane.

Methods Skeletal muscle samples from high-fat-fed animals
and insulin-sensitive and insulin-resistant human participants
were evaluated. The study also used L6 myotubes to directly
determine the impact of fatty acids (FAs) on membrane/
cytoskeletal variables and insulin action.
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Results High-fat-fed insulin-resistant animals displayed
elevated levels of membrane cholesterol and reduced
F-actin structure compared with normal chow-fed animals.
Moreover, human muscle biopsies revealed an inverse
correlation between membrane cholesterol and whole-
body glucose disposal. Palmitate-induced insulin-resistant
myotubes displayed membrane cholesterol accrual and
F-actin loss. Cholesterol lowering protected against the
palmitate-induced defects, whereas characteristically mea-
sured defects in insulin signalling were not corrected.
Conversely, cholesterol loading of L6 myotube membranes
provoked a palmitate-like cytoskeletal/GLUT4 derange-
ment. Mechanistically, we observed a palmitate-induced
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increase in O-linked glycosylation, an end-product of the
hexosamine biosynthesis pathway (HBP). Consistent with
HBP activity affecting the transcription of various genes,
we observed an increase in Hmgcr, a gene that encodes
3-hydroxy-3-methyl-glutaryl coenzyme A reductase, the
rate-limiting enzyme in cholesterol synthesis. In line with
increased HBP activity transcriptionally provoking a mem-
brane cholesterol-based insulin-resistant state, HBP inhibi-
tion attenuated Hmgcr expression and prevented membrane
cholesterol accrual, F-actin loss and GLUT4/glucose
transport dysfunction.

Conclusions/interpretation Our results suggest a novel
cholesterolgenic-based mechanism of FA-induced mem-
brane/cytoskeletal disorder and insulin resistance.

Keywords Actin - Cholesterol - Fatty acid - GLUT4 - Insulin
resistance - Membrane - Palmitate - Skeletal muscle

Abbreviations

DON 6-Diazo-5-oxo-L-norleucine

FA Fatty acid

F-Actin Cortical filamentous actin

GSV GLUT4 storage vesicle

HBP Hexosamine biosynthesis pathway
HMGR 3-Hydroxy-3-methyl-glutaryl coenzyme A

L6-GLUT4myc

reductase

Rat L6 skeletal muscle cells that stably
express GLUT4 and carry an exofacial
myc-epitope

PIP, Phosphatidylinositol 4,5-bisphosphate
PM Plasma membrane

Spl Specificity protein 1

SREBP Sterol regulatory element-binding protein
BCD Methyl-3-cyclodextrin

Introduction

Increased circulation of fatty acids (FAs) and accumulation
of lipids in muscle contributes to glucose intolerance [1, 2].
Several FA-induced mechanisms of this metabolic defect
have been described [3]. Although it is possible that one of
these dominates, a consensus is that these mechanisms are
interdependent [3]. Similar to the negative consequences of
FAs, hyperinsulinaemia causes metabolic derangement [4,
5], possibly because of impaired insulin-responsive GLUT4
regulation. In fact, hyperinsulinaemia-induced GLUT4
dysregulation has been documented in 3T3-L1 adipocytes
and L6 myotubes [6, 7]. Although the details remain to be
defined, data from these cells suggest cortical filamentous
actin (F-actin) loss, not defects in insulin signalling, as a
basis of hyperinsulinaemia-induced GLUT4 dysregulation
[6, 7]. A comparable loss of F-actin is also observed in
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skeletal muscle obtained from insulin-resistant obese
Zucker rats [7]. These findings complement an emerging
appreciation in the field that, while defects in proximal
insulin signalling may occur in various insulin-resistant
models, distal GLUT4 defects may represent another
critical node of impaired glucose metabolism [8—10].

It is well documented that insulin elicits a rapid dynamic
remodelling of actin filaments into a cortical mesh, and that
this mesh is necessary for GLUT4 translocation [9]. Also
relevant are data that place GLUT4 storage vesicles (GSVs)
in the F-actin meshwork, suggesting that this cytoskeletal
structure tethers GSVs in the region beneath the plasma
membrane (PM), where the final steps of GSV/PM docking
and fusion are critically regulated [9]. Interestingly,
cholesterol-enriched regions of the PM have been implicat-
ed in regulating F-actin structure [11-13]. While underex-
plored, cholesterol regulation at the PM is likely to play a
very relevant role in GLUT4 regulation. For example,
extraction of small (<30%) amounts of PM cholesterol
enhances insulin-stimulated GLUT4 translocation [14, 15].
The cholesterol-dependent gain in PM GLUT4 resulting
from a small decrease in PM cholesterol is not associated
with an inhibition of endocytosis [14, 15], but this does
occur with extraction of larger amounts [14—17].

These findings prompted this study to examine mem-
brane/cytoskeletal features under in vivo and in vitro
conditions of FA-induced insulin resistance. Herein, data
suggest that excess FAs induce the accrual of skeletal
muscle membrane cholesterol and that this provokes a loss
in F-actin that plays a critical role in GLUT4 translocation.
Data further indicate that the accumulation of membrane
cholesterol results from increased hexosamine biosynthesis
pathway (HBP) activity engaging a cholesterologenic
transcriptional response. Adding to the notion that defects
other than those in proximal insulin signalling contribute to
insulin resistance, it was found that cholesterol lowering
rescues F-actin and GLUT4 responsiveness, but not
defects in insulin signalling. Together, these data
highlight the hitherto unappreciated importance of
membrane/cytoskeletal derangement in GLUT4 dysfunction
in insulin resistance.

Methods

Animals Male C57/BL6J mice (Jackson Laboratory, Bar
Harbor, ME, USA), 4 weeks old, were assigned to two
groups for 4 weeks of treatment. Control mice (n=3)
received a diet containing 18% energy from protein, 78%
energy from carbohydrates and 4% energy from fat (Harlan,
Indianapolis, IN, USA). High-fat-fed mice (n=3) received a
diet containing 17% energy from protein, 43% energy from
carbohydrates, and 41% energy from fat (Research Diets,



Diabetologia (2012) 55:457-467

459

New Brunswick, NJ, USA). Hind-limb muscles were
dissected out, blotted on gauze, rinsed in NaCl, and
immersed in 4% paraformaldehyde/phosphate buffer
(vol./vol.) (soleus) or frozen in liquid nitrogen (gastrocnemius).
Ossabaw miniature swine (Purdue-Indiana University School
of Medicine Comparison Medicine Program, Indianapolis, IN,
USA), 3 months old, were assigned to two groups for 55 weeks
of treatment. Control swine (n=9) received a standard lean
chow diet containing 22% energy from protein, 70% energy
from carbohydrates and 8% energy from fat (TestDiet,
Richmond, IN, USA). Control swine ate 6.276 MlJ/day
(1,500 kcal/day) until 6 months of age, then 10.46 MJ/day
(2,500 kcal/day) until they were killed. Similar to the methods
in previous reports from Dyson et al. and Sturek et al. [18,
19], obese swine (n=9) received a high-fat feed com-
posed of lean chow supplemented with (all wt/wt):
cholesterol 2.0%, hydrogenated soyabean oil 47.6%
(contains 56% trans FAs), corn oil 2.5%, and sodium
cholate 0.7%. This mixture yielded a composition of 10%
energy from protein, 17% energy from carbohydrates and
73% energy from fat. Pigs in the obese group ate
~12.550-13.390 MlJ/day (3,000-3,200 kcal/day) until
6 months of age, then 29.290-32.640 MJ/day (7,000—
7,800 kcal/day) until they were killed. All animals were
housed in individual cages/pens with a 12 h light—dark
cycle. Water was provided ad libitum. Fasting plasma
glucose and insulin were determined from blood samples
drawn from conscious pigs to calculate the HOMA value
for insulin resistance [18]. All animal protocols were
approved by the Indiana University School of Medicine
Institutional Animal Care and Use Committee.

Cell culture Rat L6 skeletal muscle cells that stably express
GLUT4 and carry an exofacial myc-epitope (L6-GLUT4-
myc; generously obtained from A. Klip, Hospital for Sick
Children, Toronto, ON, Canada) were cultured as described
by McCarthy et al. [7]. All studies used myotubes 4-6 days
after initiation of differentiation. Palmitate induction of
insulin resistance was performed by treating cells with
palmitate conjugated to FA-free BSA (MP Biomedicals,
Solon, OH, USA) as detailed by Chavez et al. [20]. Briefly,
palmitate was dissolved in ethanol at a concentration of
75 mmol/l. For each experiment this stock was diluted
(1:25) to 3 mmol/l in 1% FBS-DMEM containing 2% BSA
(wt/vol.), sonicated, and incubated at 55°C for 10 min.
Dilutions of this were then prepared in 1% FBS/DMEM/2%
BSA, cooled to room temperature, filter sterilised, and used
to treat myotubes for 15-16 h. To test if inhibition of
glutamine:fructose-6-phosphate amidotransferase (GFAT)
with 6-diazo-5-oxo-L-norleucine (DON; Sigma, St Louis,
MO, USA) protected against the palmitate-induced defects,
0 or 20 pumol/l DON was included in the overnight
incubation medium. Prior to all experiments, cells were

serum starved for 60 min. All acute treatments occurred
during the final 5-30 min of serum starvation, as indicated.

Human biopsies Percutaneous needle biopsies of the vastus
lateralis were obtained from seven individuals (five men/
two women; BMI 27.9+1.7 kg/m?, [range 22.5-34 kg/m?];
age 37.29+4.49 years [range 19-53 years]) in whom
insulin sensitivity was determined by hyperinsulinaemic—
euglycaemic clamp [21]. All individuals gave informed
consent for these studies, which were approved by the
Indiana University-Purdue University Institutional Review
Board.

Glucose transport Cells were incubated in glucose-free
buffer (125 mmol/l NaCl, 5 mmol/l KCI, 1.8 mmol/l CaCl,,
2.6 mmol/l MgSQOy,, 25 mmol/l HEPES, 2 mmol/l pyruvate,
2% BSA) for 30 min, then either left in the basal state or
stimulated with 100 nmol/l insulin for 20 min as described
by McCarthy et al. [7]. Uptake was initiated with the
addition of 2-deoxy[1,2,-*H]glucose (2.035 kBq/ul; Perkin
Elmer, Boston, MA, USA). Non-specific uptake was
quantified via cell-associated radioactivity in the presence
of 20 umol/l cytochalasin B. After 5 min, uptake was
terminated via four quick washes with ice-cold PBS. Cells
were solubilised in 1 mol/l NaOH and [°H] was measured
by liquid scintillation. Counts were normalised to total
cellular protein, as determined by the Bradford method.

Membrane analyses A PM-enriched fraction was prepared
as described by Khayat et al. [22]. Briefly, myotubes were
harvested in a homogenisation buffer (250 mmol/l sucrose,
20 mmol/l HEPES, 2 mmol/l EGTA and 3 mmol/l NaNj,
pH 7.4) containing freshly added protease inhibitors
(200 pmol/l PMSF, 1 pumol/l leupeptin and 1 pmol/l
pepstatin A) and homogenised through a 22 gauge needle
ten times. The homogenate was centrifuged at 760 g for
5 min at 4°C, and the supernatant fraction was centrifuged
at 31,000 g for 20 min to separate a PM-enriched pellet
from an intracellular microsome supernatant fraction. The
PM pellet was resuspended in homogenisation buffer.
Protein and cholesterol contents were determined by the
Bradford and Amplex Red methods as described by Chen et
al. [14]. Several analyses revealed that changes in PM
cholesterol were similarly reflected in total membrane
fractions prepared by centrifuging the original homogenate
at 5,000 g for 20 min and then subjecting the supernatant
fraction to 100,000 g for 30 min. As the number of cells
required to obtain this total membrane fraction was half that
required to prepare PM-enriched fractions, we used total
membrane fractions.

SDS-PAGE analyses Cell extracts were prepared from
10 cm diameter dishes. Myotubes were washed two times
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with ice-cold PBS and scraped into 1 ml lysis buffer
(25 mmol/l Tris, pH 7.4, 50 mmol/l NaF, 10 mmol/l
Na3P,0,, 137 mmol/l NaCl, 10% glycerol, 1% Nonidet
P-40) containing 2 mmol/l PMSF, 2 mmol/l Na;VOy,, 5 pg/ml
aprotinin, 10 pumol/l leupeptin and 1 umol/l pepstatin A,
then rotated for 15 min at 4°C. Insoluble material was
separated from the soluble extract by centrifugation for
15 min at 4°C. Protein concentrations were determined via
the Bradford method and equivalent protein amounts were
loaded onto a 7.5% acrylamide gel. The resolved fractions
were transferred to nitrocellulose (Bio-Rad, Hercules, CA,
USA). Phosphorylated-protein kinase B [PKB/Akt2], -Akt
substrate of 160 kDa (AS160), -insulin receptor (IR) and -
IRS1 proteins were detected with anti-phospho-Akt2
(Ser474) (Genscript, Piscataway, NJ, USA), anti-phospho-
Akt substrate (PAS) (Cell Signaling, Danvers, MA, USA),
and anti-phosphotyrosine (PY20) (BD Biosciences, Lex-
ington, KY, USA), respectively. Equal loading was con-
firmed by Ponceau staining and immunoblot analysis with
anti-Akt antibody (Stressgen Bioreagents, Victoria, BC,
Canada) and anti-actin antibody (Cytoskeleton, Denver,
CO, USA). All immunoblots were labelled with IR-
conjugated secondary antibody and analysed via the
Odyssey imaging system (LI-COR, Lincoln, NE, USA).

Immunocytochemistry Labelling of isolated soleus muscle
and myotubes was performed as described by McCarthy et
al. [7]. Briefly, tissues were fixed for 2 h and then
permeabilised. Paired tissue sections were rinsed three
times in PBS and blocked in 5% milk/PBS/0.05% Tween.
Tissues were then incubated with anti-F-actin antibody and
extensively washed with PBS prior to incubation for 60 min
at room temperature in Rhodamine Red-X-conjugated
donkey anti-mouse IgM. Tissues were again subjected to
an extensive PBS wash and then a quick rinse in double-
distilled H,O. Tissues were mounted in Vectashield and
analysed via confocal microscopy (LSM 510 NLO; Zeiss,
Thornwood, NY, USA). Myotubes were fixed and left
unpermeabilised (L6-GLUT4myc) or permeabilised
(F-actin, O-linked N-acetylglucosylation) in 0.2% Triton
X-100/PBS and blocked in Odyssey blocking buffer. The
samples were then incubated with anti-c-myc antibody
(Santa Cruz Biotechnology, Santa Cruz, CA, USA),
[3-actin-specific mouse IgM anti-human F-actin antibody
(Serotec, Oxford, UK), and anti-O-linked N-acetylglucos-
amine isolated from rat liver (RL2) antibody (Affinity
Bioreagents, Golden, CO, USA). After overnight labelling,
cells were washed and incubated with infrared-conjugated
secondary antibodies. Images were collected and quantified
with the Odyssey imaging system. Immunofluorescent
intensity was normalised to Syto60 nucleic acid staining
(Molecular Probes, Carlsbad, CA, USA). All microscope/
camera settings were identical between groups.
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RNA isolation and RT-PCR Cells were lysed using a
Qiagen (Qiagen, Valencia, CA, USA) QIAshredder and
RNA was isolated using a Qiagen RNeasy mini kit. RNA
(500 ng—1.0 ng) was reversed transcribed with the High
Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Foster City, CA, USA) to produce an RT-PCR
template. Reactions were performed in a 96 well plate
format using the ABI Prism 7000 Sequence Detection
System. Each reaction contained the following: 12.5 pl
SYBR Green, 500 nmol/l of each primer, 5 pul cDNA (from
the cDNA synthesis reaction), and RNase-free water up to a
total volume of 25 ul. Data are expressed relative to Gapdh
using the AAC,; method. See Electronic supplementary
material (ESM) Table 1 for primer sequences used to detect
Acaca, Fasn, Gapdh, Hmgcr and Hmgcsl genes.

Statistics All values are presented as means + SE. The
significance of differences between means was evaluated
by one-way repeated-measures ANOVA. Where differ-
ences among groups were indicated, the Neumann—
Keuls test was used for post hoc comparison between
groups. Differences between two groups were analysed
using the Student’s ¢ test for independent samples.
GraphPad Prism 5 software was used for all analyses.
p<0.05 was considered significant.

Results

Muscle membrane cholesterol is elevated in glucose-
intolerant animals and humans High-fat feeding of
C57BL/6J mice for 4 weeks, which has been reported
to induce insulin resistance [23-25], induced an increase
in skeletal muscle membrane cholesterol compared with
controls (Fig. la). This accrual of skeletal muscle
membrane cholesterol was also observed in high-fat-fed
Ossabaw swine (Fig. 1b). HOMA values shown in Fig. 1c
confirm the insulin-resistant phenotype of this Ossabaw
swine model [18, 19]. Human muscle biopsies from
individuals across a range of insulin sensitivities revealed
an inverse correlation between membrane cholesterol
content and glucose disposal rate (Fig. 1d). From the
mouse soleus muscle used to measure cholesterol
(Fig. la), a thin slice was obtained to image F-actin.
Fig. le shows that high-fat feeding was associated with a
loss of F-actin. Using cultured L6 myotubes, the study
next examined the insulin-desensitising effect of palmitate
on GLUT4/glucose transport regulation and whether
cholesterol accrual and/or F-actin loss were components
of this effect.

Palmitate induces glucose transport system dysregulation
in muscle cells Exposure of L6-GLUT4myc myotubes to
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Fig. 1 Glucose-intolerant humans and animal models display skeletal
muscle membrane cholesterol accrual. Skeletal muscle membrane
cholesterol from control and high-fat-fed C57/B6 mice (a) and
Ossabaw swine (b). HOMA values in the Ossabaw swine (c). Plot of
glucose disposal rate and skeletal membrane cholesterol from humans
with a range of insulin sensitivities assessed by hyperinsulinaemic—
euglycaemic clamp (d); »=—0.7857; p=0.048. Cortical F-actin from
skeletal muscle from control and high-fat-fed C57/B6 mice (e). Values
are means + SE from three mice and nine swine per experimental
group, and three to five images of F-actin/area from three to five
separate experiments. *p<0.05 vs control group. C, control; HF, high-
fat; IF, immunofluorescence. Scale bar, 10 pum

increasing concentrations of palmitate (C16:0, a saturat-
ed FA documented to be a prevalent lipid in rat muscle
[26] and to desensitise muscle and cultured myotubes to
the metabolic effects of insulin [27, 28]) resulted in an
impairment in insulin-stimulated L6-GLUT4myc translo-
cation (Fig. 2a). Recapitulating the findings of others, the
palmitate-induced defect was significant at 300 pwmol/l, a
concentration in the upper range of human physiology [29,
30]. Whereas higher concentrations of this lipid were
associated with a recognised increase in basal GLUT4
translocation and glucose transport (data not shown), this
was not the case with the physiological concentration of
palmitate (Fig. 2b). All subsequent investigations of
insulin action and membrane/cytoskeletal features used
300 wmol/l palmitate. Consistent with the negative effect
of palmitate on insulin-regulated GLUT4 translocation,

insulin-stimulated glucose transport was reduced by 36%
(Fig. 2c¢).

Palmitate-induced insulin-resistant myotubes display in-
creased membrane cholesterol Analogous to the animal
and human findings, membranes prepared from the
palmitate-induced insulin-resistant myotubes displayed a
27% increase in cholesterol and a 33% decrease in F-actin
as compared with controls (Fig. 3a, b). Removal of this
excess cholesterol with a low dose (0.1 mmol/l) of methyl-
-cyclodextrin (3CD) decreased membrane cholesterol in
palmitate-treated myotubes to levels 14% lower than
control (Fig. 3a). As seen in Fig. 3b, this BCD-induced
lowering of membrane cholesterol increased F-actin above
control by 10% (p=0.159 [i.e. trend]). Propidium iodine
staining suggested the low dose of 3CD did not affect cell
viability (ESM Fig. 1). Importantly, the cholesterol lower-
ing/normalisation of F-actin fully restored insulin-
stimulated GLUT4 translocation and glucose transport in
palmitate-treated myotubes (Fig. 3c, d).

Exogenously added cholesterol promotes F-actin loss and
GLUT4 dysregulation Exogenous-cholesterol-loading
experiments were performed to confirm directly the
negative impact of excess membrane cholesterol on
F-actin and glucose transport regulation. Treatment of control
myotubes with BCD conjugated to cholesterol (3CD:Chol)
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Fig. 2 Palmitate induces insulin resistance in L6 myotubes. Incuba-
tion of L6 myotubes in the presence of palmitate (C16:0) for 16 h
impairs insulin-stimulated GLUT4 translocation (a, b) and
2-deoxyglucose uptake (¢). White bars, basal, black bars, insulin-
stimulated for 20 min. Values are means + SE from 3-12 separate
experiments. *p<0.05 vs control group; 'p<0.05 vs control insulin
group. 2-DG, 2-deoxyglucose; IF, immunofluorescence
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increased membrane cholesterol (Fig. 4a) and decreased
F-actin (Fig. 4b). These defects were associated with a
concomitant decrease in insulin-stimulated GLUT4 trans-
location and glucose transport (Fig. 4c, d). Note the loss in
GLUT4 responsiveness induced by CD:Chol was similar
to that induced by palmitate (24.644+3.968 [n=14] vs
26.76+3.932% [n=44]; p=0.7746). In addition, although
appearing more moderate, the loss in glucose transport
induced by 3CD:Chol was not statistically different from
that induced by palmitate (19.59+8.778 [n=3] vs 30.90+
3.229% [n=18]; p=0.2065). Admittedly, testing of the
effect of BCD:Chol on transport may have been under-
powered. However, Fig. 4e indicates that the insulin-
stimulated fold response was decreased by 38% with
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BCD:Chol (p=0.1338 [i.e. trend]) and thus, collectively,
these analyses suggest that exogenous cholesterol loading
induces a palmitate-like insulin resistance.

Defective signal transduction appears independent of
membrane cholesterol accrual Myotubes treated with
100 nmol/l insulin for 5 min displayed an approximately
fourfold increase in Akt2 phosphorylation at serine 474
(Fig. 5). As is well documented [28], palmitate treatment
caused a decrease in phosphorylation of Akt2 (Fig. 5), the
isoform primarily responsible for insulin-stimulated glu-
cose transport [31]. Strikingly, the positive effect of 3CD-
mediated cholesterol removal on palmitate-impaired
GLUT4 translocation and glucose transport (Fig. 3c, d)
was not associated with a rescue of the palmitate-induced
defect in Akt2 phosphorylation (Fig. 5). Consistent with
the observations of others [8], insulin-stimulated IR and
IRS-1 phosphorylation remained intact in palmitate-
treated myotubes, yet in support of an uncorrectable
Akt2 dysfunction, phosphorylation of the Akt2 substrate
AS160 was impaired by palmitate and not corrected by
BCD (ESM Fig. 2).
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Fig. 4 Exogenous cholesterol membrane loading suppresses insulin-
stimulated PM GLUT4 and glucose transport. Membrane cholesterol
(a), F-actin (b), L6-GLUT4myc (c) and 2-deoxylglucose uptake (d, e)
in L6 myotubes treated with or without 5 mmol/l 3CD:cholesterol.
White bars, basal; black bars, insulin-stimulated for 20 min. Values are
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basal; 7p<0.05 vs. control insulin group; *p=0.1338. The significance
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port values was evaluated by a paired one-tailed ¢ test. 2-DG,
2-deoxyglucose; Chol, cholesterol
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Increased O-linked glycosylation engages a cholesterol-
genic response that contributes to membrane/cytoskeletal
defects and insulin resistance A previous study has shown
that lipid infusion in rats [32] and direct palmitate treatment in
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myotubes [33] elevates glucose flux through the HBP.
Moreover, the HBP has recently been implicated in
hyperinsulinaemia-induced membrane cholesterol accrual,
F-actin loss and insulin resistance in 3T3-L1 adipocytes
[34]. Palmitate-treated myotubes displayed a 24% increase in
O-linked glycosylation, an end-product of the HBP, as
determined via anti-RL2 immunofluorescence (Fig. 6a, b).
With regard to cholesterol synthesis, it has been shown that
HBP activity increases specificity 1 (Spl) DNA-binding
activity [33]. A prediction of this modification is induction of
FA synthetic and, albeit to a lesser extent, cholesterol
synthetic genes [35] through Spl-mediated coactivation of
sterol regulatory element-binding protein (SREBP)-1c [36].
The transcript level of Hmgcr, which encodes 3-hydroxy-3-
methyl-glutaryl coenzyme A reductase (HMGR), a rate-
limiting enzyme in cholesterol synthesis, was elevated by
palmitate (Fig. 6c). Use of an antibody that recognises
HMGR also suggested that palmitate-treated cells displayed
a corresponding elevation in HMGR protein, yet the intensity
of the bands detected was too low for accurate analysis.
Inhibition of palmitate-induced HBP activity with the HBP
inhibitor 6-diazo-5-oxo-L-norleucine (DON) lowered
O-linked glycosylation, Hmgcr transcript and membrane cho-
lesterol to or below levels observed in control cells (Fig. 6a—
d). This was accompanied by an increase in F-actin and a
correction of insulin-regulated glucose transport (Fig. 6e, f).
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Discussion

While the derangements that contribute to glucose intoler-
ance are certainly numerous and complex, work throughout
the field has highlighted the detrimental effects of saturated
FAs, and particularly palmitate, on glucose metabolism in
skeletal muscle. Data presented here suggest that membrane
cholesterol accrual may play a contributing role in obesity-
associated glucose intolerance. Mechanistically, the
cholesterol-laden membrane compromises F-actin structure,
documented by several laboratories to be an essential
feature of insulin and GLUT4 action [6, 7, 37-39]. Data
also suggest increased HBP activity as a molecular basis for
the membrane cholesterol accrual via engagement of a
cholesterolgenic programme.

Interestingly, the palmitate-induced decrease in insulin
signalling to Akt2 and AS160 was not as damaging as
would be predicted or not yet advanced to a level to
compromise GLUT4 regulation. Surprisingly, correction of
the membrane/cytoskeletal defect completely restored the
palmitate-induced defect in GLUT4/glucose transport reg-
ulation, but not the Akt2/AS160 impairment. This view is
supported by recent analyses showing that the maximal
effect of insulin on GLUT4 translocation in L6 myotubes
occurs at insulin concentrations where only 5% of the total
Akt pool is phosphorylated [8]. Moreover, treatments with
lower palmitate concentrations (<300 pumol/l) were found to
still impair insulin-regulated GLUT4 translocation, yet
insulin signalling remained intact. Therefore, these data
support a membrane/cytoskeletal defect beyond proximal
insulin signalling as a major GLUT4/glucose transport
system deregulator.

With regard to the cholesterolgenic model of insulin
resistance suggested herein, while we found a significant
elevation in the expression of Hmgcr with palmitate, the
expression of other SREBP-1-regulated genes (e.g. Acaca,
Fasn and Hmgcsl) did not consistently follow the same
pattern of expression (ESM Fig. 3). For example, whereas
the transcript level of Acaca was increased by palmitate,
levels of Fasn and Hmgcsl were not. These variations may
result from the differing contributions of the two splice
variants of SREBP-1 (1a and 1c) in the control of lipogenic
transcription, as it has been documented that SREBP-1a
and SREBP-1c have differing levels of control over these
genes [40, 41]. These experiments also found that DON
was ineffective in preventing the palmitate-induced increase
in Acaca. Unfortunately, we did not measure diacylglycerol
or triacylglycerol levels. Nevertheless, DON treatment
prevented the palmitate-induced cholesterolgenic response,
lending support to a membrane cholesterol-induced, rather
than a lipid-induced, state of insulin resistance. Moreover,
removal of the excess membrane cholesterol with FCD
prevented the membrane/cytoskeletal defect and GLUT4/
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glucose transport dysregulation. Interestingly, this tactic did
not restore insulin signalling, perhaps suggesting that an
increase in intramyocellular lipids is occurring and is the
basis for the palmitate-induced impairment in insulin
signalling. These observations suggest high-fat-feeding-
induced cholesterol, but not diacylglycerol/triacylglycerol,
accrual compromises membrane/cytoskeletal mechanisms
important for glucose transport.

The concept that increased HBP activity might provoke
insulin resistance via a SREBP response is supported by
recent data showing that inhibition of SREBP improves
insulin resistance in high-fat-fed mice [42]. Whether this is
a SREBP/HMGR response is not clear, but our work would
suggest this to be a possibility. In addition to HBP activity
possibly increasing SREBP transcript via O-linked
N-acetylglucosylation of Spl [33, 36], the HBP has also
been implicated in increased liver X receptor-dependent
activation of the SREBP-1c promoter [43]. Given the
complexity of the transcriptional control of cholesterol
synthesis, nuclear analyses dissecting how the HBP provokes
membrane cholesterol toxicity are currently under way.

It should be noted that the high-fat diets we employed
for the swine and mice contained 2% and 0.2% cholesterol,
respectively. This difference in dietary cholesterol amount
did not equate to a similar difference in muscle membrane
cholesterol accrual. For example, the high-fat-fed swine
that consumed more cholesterol displayed a lower increase
in muscle membrane cholesterol than the mice fed a high-
fat diet containing far less cholesterol. As mammalian cells
contain an intricate feedback system that senses the level of
membrane cholesterol and modulates the transcription of
genes that mediate cholesterol synthesis and uptake [44], it
is likely that circulating cholesterol does not contribute to
muscle membrane cholesterol content. In fact, these data
seem to collectively place the HBP as a central participant
in peripheral cholesterol toxicity.

It is possible that the F-actin changes are localised in
cholesterol-enriched caveolae microdomain membrane
regions. Intriguingly, imaging analyses from this study
support the observed reciprocal changes in membrane
cholesterol and F-actin. Notably, F-actin labelling has been
documented in electron micrographs to be localised in
caveolae regions [45]. While caveolae have been postulated
to contribute to many functions in insulin and GLUT4
action through the years [9], these findings must be
cautiously interpreted. Concerns regarding the study of
caveolae are associated with each of the numerous strategic
approaches used to study these structures. In spite of these
caveats, fluorescence confocal labelling of caveolae and
F-actin have revealed actin filaments emanating from
caveolae microdomains [11]. Moreover, quantitative elec-
tron microscopy and freeze-fracture analyses have revealed
that cytoskeletal components, including actin, are highly
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enriched in the membrane area underlying the neck part of
caveolae [12]. These findings assign caveolae a critical role
in the functionality of F-actin organisation. Given the
unequivocal importance of F-actin in insulin-regulated
GLUT4 translocation, these findings also emphasise the
importance of caveolae in GLUT4 regulation.

Of interest to our understanding of caveolae-
associated actin regulation are new electron microscopic
data showing high concentrations of phosphatidylinositol
4,5-bisphosphate (PIP,) at the rim of caveolae [46]. This
localisation of PIP, is consistent with its regulation of the
cytoskeleton where the availability of this lipid is
recognised to modulate membrane/cytoskeleton interac-
tion, the stability of F-actin and the turnover of stress
fibres [47]. Interestingly, reduced PM PIP, and F-actin
structure are observed in hyperinsulinaemia-induced
insulin-resistant 3T3-L1 adipocytes and L6 myotubes. In
these cells insulin-stimulated GLUT4 translocation is
impaired, but can be corrected with exogenous PIP,
addition to the PM that mediates a restoration of F-actin
structure [6, 7].

In striking similarity to our myotube findings, an
approximate 40% reduction in insulin-stimulated muscle
glucose transport has been seen as early as 5 weeks in
C57BI1/6] mice fed a high-fat diet [23] and, at the 4 week
interval, muscle insulin resistance in these animals is also
suggested by a marked decrease in glucose disposal rate
with no change in hepatic glucose production [24].
Interestingly, insulin-stimulated Akt phosphorylation shows
a trend to be decreased by 4 weeks of high-fat feeding,
though this effect did not reach statistical significance until
after 8 weeks; a similar pattern was observed in liver tissue
[25]. Ongoing studies are now specifically evaluating the
temporal sequence of membrane/cytoskeletal and signal
transduction derangements in skeletal muscle from high-fat
fed animals. A prediction we favour is that membrane/
cytoskeletal derangement occurs before signal dysfunction
and this early event may contribute to the initial loss of
insulin sensitivity.

In summary, these data suggest that a contributing factor
in the pathogenesis of glucose intolerance might involve an
accrual of skeletal muscle membrane cholesterol and a
resultant defect in membrane/cytoskeletal function. Inter-
estingly, this membrane/cytoskeletal defect seems to occur
concomitantly with impaired insulin signal propagation in
the L6 myotube system. Nevertheless, the later derange-
ment was not limiting, as correction of membrane choles-
terol excess mitigated cytoskeletal dysfunction and GLUT4
responsiveness, while signalling remained impaired. Col-
lectively, these findings implicate a reversible abnormality
(i.e. elevated cholesterol synthesis/accrual) that may be an
early defect that could be targeted to improve glucose
disposal.
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