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Abstract: This paper presents an out-of-plane electrostatic micro-power generator (MPG).
Electret-based continuous MPGs with different gaps and masses are fabricated to demonstrate the
merits of this topology. Experimental results of the MPG demonstrate output power of 1 mW for a base
acceleration amplitude and frequency of 0.08 g and 86 Hz. The MPGs also demonstrate a wideband
harvesting bandwidth reaching up to 9 Hz. A free-flight and an impact mode model of electrostatic
MPGs are also derived and validated by comparison to experimental results.
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1. Introduction

Advances in low-power integrated circuits have led to the realization of embedded sensors with
low power requirements. Combining these sensors with sustainable energy sources will allow the
deployment of autonomous sensor arrays. Energy harvesting of ambient vibrations is a promising
direction to satisfy this need. Vibrations are widely available in domestic and industrial environments.
Vibration-based micro-power generators (MPGs) have a demonstrated ability to generate electric power
in the micro- to milli-watt range [1].

In addition to the amount of generated power, a low cost implementation is a requirement for using
MPGs in autonomous sensors. Among vibration harvesting techniques, electrostatic MPGs have the
lowest implementation cost since no specialty materials are needed, such as magnetic materials used in
electromagnetic MPGs and ceramic materials used in piezoelectric MPGs. On the other hand, the need
for a charge source and switching losses adds limitations to electrostatic MPGs.

Continuous mode electrostatic MPGs are designed to eliminate the need for switched circuits. Many
of them use electrets, quasi-permanently-charged dielectrics, to induce charges on the capacitor plates
and eliminate the need for an initial charge source. Due to these advantages, significant efforts have been
devoted to developing electret-based electrostatic MPGs. Boland et al. [2] miniaturized an electret-based
generator proposed by Tada [3]. The fabricated MPG had a rotor diameter of 8 mm and output power
of 25 µW. Sterken et al. [4] proposed and fabricated an electret-based electrostatic MPG using in-plane
comb-finger variable capacitors and a predicted output power of 50 µW.
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Tsutsumino and co-workers [5,6] developed the transducer (electric subsystem) of an electrostatic
MPG using electret-based parallel-plate capacitors. A shaker moved an electrode of the variable capacitor
parallel to a fixed electrode (in-plane). Using 10 × 20 mm2 electrodes, they realized a maximum of
278 µW output power. They found that dividing their in-plane variable capacitor into two out-of-phase
capacitors improves the power extraction capacity of the MPG and transforms the electric damping force
from Coulomb to viscous-like [6,7].

Edamoto et al. [8] constructed a fully-functioning MPG by combining this transducer with a
mechanical oscillator. The movable electrodes were attached to an inertial mass supported by soft
parylene springs to create a low-frequency resonator [9]. They also used two electret layers to induce
levitation forces in the movable electrodes, thereby protecting against pull-in [10]. The simulated output
power was 12.5 µW, but it dropped in experimental measurements to 0.28 µW due to misalignment
between the electrodes [11].

Bartsch et al. [12] fabricated two MPG prototypes based on Sterken et al.’s topology: meso-sized
(59× 86 mm2) and micro-sized (3× 6 mm2) with output powers of 0.36 µW and 1.4 nW, respectively [13].
Hoffmann et al. [14] realized another implementation of Sterken et al.’s topology that had a packaged
volume of 0.2 cm3, and was able to produce 3.5 µW at 13 g acceleration amplitude.

Mahmoud et al. [15] proposed another implementation of Sterken et al.’s topology using
parallel-plate capacitors. Their analysis of the new topology showed output power improvement to
89 µW for the same MPG size and operation conditions as [4]. Tao et al. [16] realized a similar electrostatic
harvester and realized 0.1 µW output power at an excitation of 0.2 g.

Tao et al. [17] developed a micro-sized (3 mm radius) parallel-plate electrostatic MPG that harvests
in-plane and out-of-plane vibrations. They found that given similar input power levels, the out-of-plane
mode was more effective with output power of 4.8 nW compared to 0.67 nW and 1/2 nW for two in-plane
modes. They increased the output power of the out-of-plane mode to 950 nW [18] by using two electret
layers instead of one and increasing the excitation level from 0.05 g to 0.48 g. Further, they found that
adding a stopper layer of PDMS on top of one of the electret layers expands the harvesting bandwidth to
3.7 Hz in frequency up-sweep and 2.8 Hz in frequency down-sweep.

In most reported literature, in-plane configurations are used to implement the capacitive transducer
due to the low damping of these motions. However, such implementations require small vertical feature
sizes, as well as high aspect supports to protect against out-of-plane disturbances.

In this paper, we compare in-plane and out-of-plane transducers and report on an out-of-plane
electret-based electrostatic MPG. Test results demonstrate 1 mW of output power at less than 0.08 g
excitation acceleration. Moreover, the prototype exhibits a wideband operation that reaches 9 Hz. We
also report on two models for free-flight and impact MPGs. The simulation results obtained from these
models show good agreement with the experimental results.

In Section 2, in-plane and out-of-plane transducers are compared, and the model for continuous
electrostatic transducers in free-flight is derived. In Section 3, the derived model is validated by
comparing its results to experimental results. Section 4 demonstrates implantation of an electret-based
out-of-plane MPG. A model for impact mode electrostatic MPGs is derived and validated using the
experimental results in Section 5. An improved version of the MPG is presented in Section 6. Finally,
conclusions are drawn in Section 7.

2. Basic MPG Model

Electrostatic energy harvesters (Figure 1) consist of a variable capacitor Cv, a DC voltage source Vdc
and a load resistance R. When vibrations are allowed to change the relative positions of the capacitor
plates, capacitance varies over time Cv(t), AC voltage Vac(t) develops across the capacitor and a current
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Iac(t) is delivered to the load. The electrical model of this electrostatic transducer can be derived by
applying Kirchhoff’s voltage law to the circuit shown in Figure 1:

Vdc =
q

Cv
+ q̇R (1)

where q(t) is the charge stored in the capacitor and q̇ = Iac. Rearranging, we obtain:

q̇ =
Vdc
R
− q

RCv
(2)

which suggests that the current delivered to the resistor depends on Cv.

Figure 1. Circuit diagram for electrostatic energy harvesting.

First, we compare the energy harvesting capabilities of the two most prevalent variable capacitor
implementation: in-plane comb-finger, Figure 2a, and out-of-plane parallel-plates, Figure 2b. The
capacitance of a comb-finger capacitor is:

Cv =
(
1− x

h◦

)
C◦ (3)

where C◦ is the capacitance at the initial finger length h◦ and x(t) is the movable electrode displacement.
The capacitance of parallel-plate capacitors is:

Cv =
C◦

1− x/g◦
(4)

where C◦ is the capacitance at the initial gap g◦ between the electrodes and x(t) is the displacement of
the movable electrode.

(a) (b)

Figure 2. Schematic of (a) in-plane and (b) out-of-plane variable capacitors.
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Assuming a sinusoidally-moving electrode:

x(t) = x◦sin(Ωt) (5)

where x◦ is the peak displacement, we can evaluate the area enclosed by the variable capacitor
charge-voltage (q-VC) curve to determine the amount of electrical energy harvested per conversion cycle.
The curves are obtained by substituting Equation (5), Equation (3) for the in-plane comb-finger transducer
and Equation (4) for the out-of-plane parallel-plate transducer into Equation (2) and integrating the
resulting equation for a cycle. The q-VC curves for the in-plane comb-finger and out-of-plane
parallel-plate are shown in Figures 3 and 4, respectively. Electrode displacements are normalized with
respect to the maximum stroke h◦ and g◦, respectively; voltage is normalized with respect to Vdc; charge
is normalized with respect to C◦Vdc; and therefore, the harvested energy is equal to the area enclosed by
the loci times C◦V2

dc; the magnitude of the initial (static) electric energy.
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Figure 3. The q-VC curves for the in-plane comb-finger transducer for various electrode
displacement amplitudes.

Comparing the two figures, it is clear that for the same normalized stroke (input vibrations), the
singularity in out-of-plane parallel-plate transducers, as motion size becomes comparable to the gap
x◦ → g◦, allows them to harvest much more electrical energy per conversion cycle than in-plane
comb-finger transducers. We conclude that out-of-plane parallel-plate transducers are more effective
in realizing continuous micro-power generators than conventional in-plane comb-finger transducers and
adopt them for this work.

To study the full system dynamics, the electrical model of the transducer, Equation (2), is augmented
with an electromechanical model to describe the capture of kinetic energy. Vibration energy harvesters,
shown schematically in Figure 5, use an inertial mass m to capture base excitations y(t). In electrostatic
harvesters, the inertial mass is attached to a movable electrode supported by a spring that exerts a force
Fs. The electrostatic field exerts a force Fe to attract the moving electrode to the fixed electrode while
a damper opposes the motion, of the mass with a damping force Fd. Using Newton’s second law, the
equation of motion of the inertial mass can be written as [20]:
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mẍ =
q2

2g◦C◦
− k11x− cm ẋ−ma◦ sin(Ωt) (6)

where the capacitor plates are assumed rigid and parallel, the spring is assumed linear with a stiffness of
k11 and a◦ and Ω are the amplitude and frequency of base acceleration. The damping force is composed
of linear viscous damping cl and nonlinear squeeze-film damping csq:

cm = cl + csq (7)

Squeeze-film damping depends on the gap between the electrodes. It can be represented by [19]:

csq =
3

2π

µA2

(g◦ − x)3 (8)

where µ and A are air viscosity and the electrodes’ surface area, respectively.
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Figure 4. The q-VC curves for the out-of-plane parallel-plate transducer for various electrode
displacement amplitudes.

Figure 5. Schematic of a vibration energy harvester.
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Substituting Equations (7) and (8) into Equation (6) and using Equation (4) in Equation (2), the
system dynamics are described by:

q̇ = − q
RC◦

(
1− x

g◦

)
+

Vdc
R

ẍ =
q2

2mg◦C◦
−ω2

mx−
(
2ζlωm −

3
2π

µA2

m(g◦ + x)3

)
ẋ− a◦ sin(Ωt) (9)

where ωm =
√

k11
m is the mechanical natural frequency and ζl =

cl
2
√

k11m is the damping ratio.
This nonlinear system of differential equations represents a lumped-mass model of the energy

harvester in free-flight. It does not account for the possibility of the inertial mass coming into contact
with the fixed electrode, which is addressed later.

3. Model Validation

The prototype used to demonstrate the out-of-plane electrostatic energy harvester was fabricated
using precision machining. It consists of a bottom fixed electrode and an upper movable electrode
supporting a steel inertial mass m1 with dimensions of: 9 mm × 2 mm × 1.8 mm. The movable electrode
is attached to the anchors using four aluminium beams. The anchors are fixed to the base using screws.
The gap between the electrodes is varied by inserting shims between the anchors and the base to obtain
the corresponding gap. Table 1 lists the prototype dimensions.

Table 1. The electrostatic harvester prototype dimensions.

Parameter Value Parameter Value

Plate length 15 mm Plate width 15 mm

Beam length 32 mm Beam width 2 mm

Beam thickness 0.9 mm Inertial mass m1 29.5 gm

The linear spring constant of guided beams can be estimated using the Equation [19]:

k11 = nE
bh3

L3 (10)

where n, E, b, h and L are the number, Young’s modulus, width, thickness and length of the
beams, respectively. Using Equation (10) and the beam dimensions listed in Table 1, k11 is calculated
as 13,361 N/m. The natural frequency is calculated using the inertial mass m1 from Table 1 as
ωb = 673 rad/s or fb = 107 Hz.

To account for the non-idealized geometry and configuration of the beams, nonlinear finite element
analysis (FEA) is carried out on the prototype using COMSOL. The linear spring constant is then extracted
from the relationship between the static force and displacement to be 10,987 N/m. The first and second
mode shapes of the harvester prototype are also found using COMSOL and shown in Figure 6. The first
mode is a torsional mode and occurs at ft = 84.6 Hz. The second mode is a bending mode and exists
at fb = 96.1 Hz. The bending mode is used for energy harvesting; therefore, the effective mass of the
energy harvester is calculated from the second mode natural frequency and the linear spring constant as
m = 30.1 gm.
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(a) (b)

Figure 6. The (a) first and (b) second mode shapes of the prototype.

A schematic of the experimental setup is shown in Figure 7. The prototype is placed on the base of
a pneumatic shaker, which is used to supply base excitations. The prototype is connected electrically to a
DC power supply and load and test resistors. The test resistor Rtest is used in series with the load resistor
Rload to prevent the loading effect of the signal analyser input impedance. The signal analyser measures
the root mean square (RMS) of the output voltage across the test resistor.

Figure 7. The experimental setup of the energy harvester prototype.

The gap between the electrodes is initially set to a nominal value of 250 µm, the DC power supply
to 300 V and load resistance of R = 1.1 MΩ. The load resistance is then broken into primary load and
test resistances 1 MΩ and 100 KΩ, respectively. The frequency-response of the RMS output voltage is
obtained by sweeping the frequency of base accelerations between 70 Hz and 100 Hz while holding the
amplitude constant at a◦ = 0.04 g (RMS). Two peaks are observed in the frequency-response curve,
Figure 8, at ft = 81.41 Hz and fb = 94.1 Hz. The first peak corresponds to the torsional mode, while the
second peak corresponds to the bending mode. The voltage level of the torsional mode is much smaller
than that of the bending mode since torsional motions of the movable electrode do not produce as much
variation in the capacitance as up-and-down motions of the bending mode.

The lower natural frequencies obtained experimentally are due to support flexibility (anchors,
screws and base), unaccounted for in the FE model. Using the effective mass calculated from FEA and the
natural frequency of the second mode obtained experimentally, the linear spring constant is calculated as
k11 = 10,480 N/m.
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Figure 8. RMS of the output voltage obtained experimentally from a frequency sweep of base acceleration
at an amplitude of 0.04 g (RMS).

In order to compare the experimental results with the model, the actual gap g◦ and the damping
coefficients need to be estimated. The actual gap differs from the nominal gap by the amount of static
deflection that occurs because of settling under the weight of the inertial mass. The static deflection is
evaluated as:

xstatic =
mg
k11

(11)

where g is the acceleration of gravity. The static deflection of the prototype is calculated as 25 µm;
therefore, g◦ = 225 µm.

The total damping ratio can be extracted from the experimental results using the half power
bandwidth BW and natural frequency f◦:

ζm =
BW
2 f◦

(12)

Using the results in Figure 8, it is found that ζm = 0.006. A parameter estimation procedure is
developed to estimate ζl based on the fact that squeeze-film damping is minimal for electrode motions
away from the fixed electrode. The procedure uses the frequency-sweep corresponding to the lowest
excitation amplitude available in the dataset; in this case, corresponding to a base acceleration of
a◦ = 0.02 g (RMS). The total damping coefficient ζm is then used as an initial guess for the linear damping
coefficient ζ i

l = ζm. The energy harvester model Equation (9) is integrated numerically for the output
voltage at resonance, and the value of the linear damping coefficient is reduced until the values of the
numerical and experimental RMS output voltage match.

Using this procedure, we found the value of the linear damping coefficient to be ζl = 0.0057. Figure 9
compares the frequency-response curves of the RMS output voltage for base acceleration amplitudes of a◦
= 0.02 g, 0.03 g, 0.035g and 0.04 g (RMS). The curves shown in solid lines were obtained experimentally,
while the curves shown in dotted lines were obtained by numerically integrating Equation (9) for the
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parameters estimated above. The results show good qualitative and quantitative agreement between the
model and experiment for all four excitation levels.
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Figure 9. The frequency-response curves of the RMS output voltage at four base acceleration amplitudes
obtained experimentally (solid lines) and numerically (dotted lines).

Finally, the q-VC curve is found experimentally and predicted using the model (9) at the natural
frequency of the bending mode fb = 94.1 Hz. The experimental voltage across the variable capacitor is
obtained as the difference between the measured supply and load voltages. The charge on the variable
capacitor is obtained by integrating the current measured passing through the load. The constant of
integration is estimated by shifting the experimental q-VC curve along the Q-axis to fit within the q-VC

curve obtained by numerical integration of the model Equation (9). Figure 10 shows the experimental
and numerical q-VC curves for a base acceleration amplitude of a◦ = 0.04 g (RMS). The areas enclosed
by the two curves are close to each other. The experimental results are moved up along the Q-axis by
adding a constant of integration Q◦ = 0.72 C◦Vdc. This value correspond to the charge available on the
variable capacitor at equilibrium (in the absence of motion). The fact that Q◦ < C◦Vdc is an indicator of
the presence and relative magnitude of parasitic capacitance.

The experiment and model predications presented in this section show good agreement indicating
the validity of the model developed in the previous section to describe continuous out-of-plane energy
harvesters. In the next section, a practical implementation of an electrostatic micro-power generator
(MPG) based on this energy harvester is introduced and studied.
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Figure 10. The q-VC curves for the energy harvester prototype at a◦ = 0.04 g (RMS) and R = 1.1 MΩ.

4. MPG Realization

Realization of a practical electrostatic energy harvester requires the substitution of the DC voltage
source with a portable charging source. A charged dielectric embedded within the structure of the
transducer will be used to induce charges on the capacitor electrodes. A permanently-charged dielectric,
an electret [21], constitutes an attractive option to satisfy this requirement since it facilitates sustainable
operation over several years. Ready-made electrets are used here as a low cost solution to provide Vdc
that avoids extra fabricating and charging steps.

An electret film is integrated into the energy harvester prototype introduced in Section 3 to constitute
an electret-MPG prototype. Figure 11a shows an extended 3D schematic of the electret-MPG prototype
where the electret layer is attached to the top surface of the fixed electrode using conductive double-sided
copper tape. The electret layer is fashioned from a negatively-charged PTFE Teflon sheet (Rad Elec Inc.,
Frederick, MD , USA). It has a thickness of 50 µm, and and the surface voltage was measured at Vdc =
−410 V.

Figure 11b shows a picture of the assembled MPG prototype. The MPG prototype is identical to
the energy harvester prototype except that the inertial mass is initially made of a shorter copper block
with m2 = 17.5 gm resulting in an effective mass of m = 20.4 gm. The reduced rotary inertia of the new
mass increases the natural frequency of the torsional mode, so that it exceeds the natural frequency of the
bending mode. FE analysis calculates the natural frequency of the bending mode at fb = 121 Hz and the
natural frequency of the torsional mode at ft = 170 Hz. The test setup of the MPG prototype is identical
to that of the energy harvester shown in Figure 7, except that the external DC power source is replaced
with an electret film.
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(a) (b)

Figure 11. (a) Extended 3D schematic of the electret-MPG prototype and (b) out-of-plane variable
capacitors.

The nominal capacitor gap is initially set equal to g◦1 = 300 µm by inserting shims under the anchors.
The frequency response of the system is obtained by sweeping the frequency of base acceleration while
maintaining the amplitude constant. The frequency is swept up and down over the whole frequency
range of [110, 124] Hz to detect the presence of hysteresis in the system response. Figure 12 shows the
frequency response of the RMS output voltage for different vibration base acceleration amplitudes of
a◦ = 0.15 g, 0.2 g, 0.3 g, 0.4 g and 0.5 g (RMS).

The frequency-response curves in Figure 12 show three distinct regions of behaviour: linear,
nonlinear and impact. Linear response is seen at low acceleration amplitudes (a◦ = 0.15 g) and is
characterized by a frequency-response curve centred around the natural frequency of the bending mode
fb = 116 Hz. Similar to the case of the energy harvester, the natural frequency obtained experimentally
is lower than that obtained by FEA because of unmodeled support compliance.

Nonlinear response is seen at acceleration amplitude of a◦ = 0.2 g where the peak of the
frequency-response curve appears wider than that of linear response due to the dominance of a nonlinear
damping mechanism, squeeze-film, for large motions (near resonance) as the moving plate approaches
the electret layer. Impact response is seen for base acceleration amplitudes a◦ ≥ 0.25 g. The onset of
impact is marked by a ‘knee’, an abrupt change in the curvature of the frequency-response curve.

Defining the MPG bandwidth as the half-power bandwidth for linear response and the distance
between the response knees for nonlinear and impact responses, we observe the following:

• The MPG bandwidth increases as the amplitude of base acceleration increases, and the response
region changes from linear to nonlinear to impact;

• The up-sweep and down-sweep bandwidth are equal for linear and nonlinear responses while the
up-sweep bandwidth is wider than the down-sweep bandwidth for impact response, in agreement
with Soliman et al. [22].

Specifically, Figure 12 shows that the MPG bandwidth increases from 2 Hz under linear response
to 9 Hz under impact and a base acceleration amplitude of a◦ = 0.5 g. These results suggest the use of
impacting electrostatic MPGs as wideband MPGs [23] that can harvest more energy by increasing the
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harvesting bandwidth and, therefore, the fraction of time during which environmental vibrations are
harvested.

Figure 12. Frequency response of the RMS output voltage for inertial mass m2, g◦1 = 300 µm, and base
acceleration amplitudes in the range of a◦ = 0.15–0.5 g (RMS). Frequency up-sweeps are shown in dashed
lines and down-sweeps in solid lines.

To test the effect of variation in the electrostatic field strength on the MPG performance, we repeat the
experiment shown in Figure 12 using the MPG prototype with nominal capacitor gaps of g◦2 = 425 µm
and g◦3 = 750 µm. The results for the three gap distances are summarized in Figures 13–15. The figures
show the MPG output power at the natural frequency of the prototype fb = 116 Hz and bandwidth in
frequency up- and down-sweeps at a constant base acceleration amplitude.

The results show that the MPG output power and bandwidth depend on the interaction between
three factors: the strength of the electrostatic field, squeeze-film damping and impact. A small gap and,
thus, a stronger electrostatic field for a given electret voltage allow the MPG to extract more output power
from lower excitation levels than MPGs with weaker electrostatic fields. This can be seen by comparing
the output power of the MPG at g◦1 to those at g◦2 and g◦3 at low base acceleration amplitudes a◦ ≤ 0.2 g.
The output power is more than 6 µW for g◦1 and less than 10 nW for g◦3 at base acceleration amplitude
of a◦ = 0.2 g. That is because the output power is proportional to the nominal capacitance C◦. Similarly
a smaller gap increases squeeze-film damping, even in the linear region, which increases the mechanical
losses in the MPG. This can be seen in the larger bandwidth of the linear region for g◦1, BW = 2 Hz, than
those for g◦2 and g◦3.
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Figure 13. Output power and bandwidth of the micro-power generator (MPG) prototype as a function of
base acceleration amplitude at g◦1 = 300 µm.
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Figure 15. Output power and bandwidth of the MPG prototype as a function of base acceleration
amplitude at g◦3 = 750 µm.

A smaller gap leads to low impact losses since it means that impact will occur at a lower velocity.
This can be seen in the figures by comparing the up-sweep bandwidth for g◦1, BW = 9 Hz at a◦ = 0.5
g, to that for g◦3, BW = 5.75 Hz at a◦ = 1.5 g. Soliman et al. [23] show that the up-sweep bandwidth is
counter-proportional to impact losses. On the other hand, a larger gap allows for a longer stroke and a
higher peak velocity resulting in higher output power. This can be seen in the value at which the output
power saturates with increasing base acceleration amplitude for the three gap distances. The output
power saturates at 8 µW, 20 µW and 30 µW for g◦1, g◦2 and g◦3, respectively.

We conclude that it is crucial to balance these three factors in the design of out-of-plane electrostatic
MPGs. The proper balance depends on the harvesting environment

• For environments where small amplitude vibrations are available, a small capacitor gap should be
used to increase the strength of the electrostatic field and obtain higher nominal capacitance C◦
while maintaining the response in the linear region, thereby avoiding impact loses and increasing
the efficiency of power extraction from low excitation amplitudes.

• For environments where large amplitude vibrations are available in a narrow frequency band, a large
capacitor gap combined with a strong electrostatic field generated by a large source voltage will lead
to high efficiency energy extraction by maintaining the response near the linear response region while
guaranteeing a larger output power saturation level by allowing for a larger stroke.

• For environments where large amplitude vibrations are available in a wide frequency band, a large
capacitor gap will lead to larger output power and wider MPG bandwidth by operating in the
impact region.

5. Impact Model

Operating the MPG in the impact region creates a wideband MPG with up to 9 Hz in the up-sweep
and 7 Hz in the down-sweep bandwidth. Therefore, it is important to develop an MPG model valid for
the impact region for use in performance prediction and optimization. In this section, a modified system
model is developed and verified by comparison to experimental results.

Manual assembly of the electret on the bottom electrode creates bumps on the electret surface.
To account for this, the electret film position is elevated, thereby reducing the effective gap to gi. Further,
two linear viscous damping coefficients are defined to capture the dissipative processes during the flight
cm and impact ci phases of motion:
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Fd =

{
cm ẋ x < gi
ci ẋ x ≥ gi

(13)

The restoring force Fs is also re-defined to encompass the impact phase of motion as follows:

Fs =

{
k11x + k13x3 x < gi
k2x + (k11 − k2)gi + k13gi

3 x ≥ gi
(14)

where k11 and k13 are the linear and cubic stiffness coefficients of the suspension beams and k2 is the
stiffness coefficient of impact with the electret-covered bottom electrode.

Using Equations (13) and (14), a model is obtained for the MPG in the impact region:

q̇ = − q
RC◦

(
1− x

g◦

)
+

Vdc
R

(15)

mẍ =

 1
2

q2

C◦g◦ − k11x + k13x3 − cm ẋ−mÿ x < gi
1
2

q2

C◦g◦ − k2x− (k11 − k2)gi − k13gi
3 − ci ẋ−mÿ x ≥ gi

(16)

Realization of the impact model requires estimation of the system parameters. The linear k11 and
cubic k13 stiffness coefficients are extracted by fitting a third-order polynomial to the static force-deflection
curve obtained from nonlinear FEA of the MPG with inertial mass m2. The linear stiffness coefficient
is then used in conjunction with the natural frequency of the bending mode obtained from FEA
( fb = 121 Hz) to extract the effecting mass of the MPG (m = 19.5 gm). The linear stiffness coefficient
was then reduced to match the natural frequency of the bending mode to the experimentally-measured
value, fb = 116 Hz, thereby accounting for the compliance in the supports. The damping coefficient of
the free flight phase cm is calculated from ζm obtained from the experiment using Equation (12) and the
definition of the damping ratio:

cm = 2ζm
√

k11m (17)

The effective gap g◦ is obtained by matching the RMS output voltage of the model to the same
experiment at a frequency away from resonance ( f = 110 Hz).

The linear stiffness of the contact spring k2 is found by matching the slope of the experimental
and numerical frequency-response curves of the output voltage during impact at a base acceleration
of a◦ = 0.5 g. The damping coefficient during impact ci is found by matching the response of the
up-sweep during the same experiment. The impact height gi is estimated by matching the left knee in the
frequency-response curve predicted by the model to that obtained from the experiment. The estimated
model parameters are listed in Table 2.

Table 2. Summary of the MPG impact model parameters.

Parameter Value Parameter Value

k11 10,443 N/m k13 7.1 × 109 N/m

k2 8k11 C◦ 8.1 pF

cm 0.337 kg/s ci 78 cm

gi 240 µm g◦ 295 µm
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Figure 16 compares the frequency-response curves obtained from the impact model and the
experiment in frequency up- and down-sweeps of the MPG prototype with inertial mass m2 and gap
g◦1. The figures show good agreement between model predictions and experimental results.
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Figure 16. Experimental (solid lines) and impact model predicted (dashed lines) frequency-response
curves of the RMS output voltage for the MPG prototype with inertial mass m2 and gap g◦1.

6. Improved MPG

We examine the potential to design better MPGs that can capture more kinetic energy from the
environment by testing the effect of stronger electrostatic fields and larger inertial mass. The strength of
the electrostatic field is increased using a high-voltage electret at a similar gap to the previous experiment
to minimize the effects of variation in squeeze-film damping and impact losses on the MPG performance.
The surface voltage of the charged electret film was measured upon receipt from the manufacturer at
−1700 V. At the time of the previous experiment, the surface voltage had degraded and was measured
at −410 V. The surface voltage is known to drop in open air due to charge recombination under the
influence of humidity [21]. For this experiment, we use an electret that was sealed from air until use in
the experiment to preserve the charge within the electret. We also use a tall inertial mass m1 = 29.5 gm
and a short inertial mass m2 = 17.5 gm. The nominal gap after installing the fresh electret is go4 = 275 µm.

Figure 17 shows the frequency response of the RMS output voltage using the fresh electret, the
tall inertial mass m1 and base acceleration amplitudes in the range a◦ = 0.05–0.2 g (RMS). Comparing
Figure 17 to Figure 12, it can be seen that higher source voltage and larger inertial mass increase the
output voltage by an order-of-magnitude for the same input base acceleration. It also results in the impact
region starting at lower excitation levels (≤ 0.1 g) producing a wider MPG bandwidth even for low
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environmental vibration amplitudes. We note that the higher rotary inertia of the tall mass m1 shifts the
natural frequency of the torsional mode ft = 76 Hz below the natural frequency of the bending mode
fb = 86 Hz. This configuration has a detrimental effect on the MPG performance in the impact region.
This can be seen in the initial drop in the output voltage beyond the left “knee” of the frequency response
curve instead of the the gradual increase observed in Figure 12. In this initial region, impact couples
the closely-spaced bending and torsional modes channelling some of the kinetic energy to the torsional
mode, which is less effective in energy harvesting than the bending mode. In fact, the time-history of
the output voltage shows a signal at the forcing frequency Ω modulated by the torsional mode natural
frequency ft.

Figure 17. Frequency response of the RMS output voltage for inertial mass m1 = 29.5 gm and base
acceleration amplitudes in the range a◦ = 0.05–0.2 g (RMS). Frequency up-sweeps are shown in solid
lines and down-sweeps in dashed lines.

Figure 18 shows the output power and MPG bandwidth at the natural frequency of the bending
mode fb = 86 Hz for the fresh electret, inertial mass m1 and base acceleration amplitudes in the range
a◦ = 0.05–0.2 g (RMS). The bandwidth of the MPG increases linearly with the amplitude of base
acceleration in the impact region. On the other hand, the output power drops progressively in the impact
region as higher excitation amplitudes channel more kinetic energy into the inefficient bending mode.
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Figure 18. MPG prototype’s average power and bandwidth at different accelerations for m1.

We note that while increasing the inertial mass allows the MPG to capture more kinetics, it changes
the optimal load resistance as shown in Figures 19 and 20. Figure 19 shows that changing the load
resistance from the nominal value R = 1.1 MΩ increases the output power from less than 100 µW to
more than 900 µW in the range R = 30–37 MΩ. Figure 20 shows that decreasing the inertial mass
to m2 decreases the maximum output power to 130 µW and the optimal load resistance to the range
R = 10–20 MΩ.
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Figure 19. Average output power as a function of the load resistance R for inertial mass m1 and go4.
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Figure 20. Average output power as a function of the load resistance R for inertial mass m2 and go2 (solid
lines) and go3 (dashed lines).

7. Conclusions

The results and analysis presented above demonstrate the feasibility and advantages of
electret-based out-of-plane continuous MPGs. In fact, the improved MPG proves this potential by
realizing almost 1 mW of output power in Figure 19 at a◦ = 0.08 g (RMS) base acceleration amplitude.
In addition, the implementation and fabrication of this PG are simple and use low-cost components.
Table 3 compares the performance of this electrostatic MPG to previously reported electrostatic MPGs.
The results show that the improved prototype generates a power density closer to [24], but at a much
lower center frequency f◦ and excitation level. Further, several engineering enhancements can be easily
introduced to minimize the volume of the device and increase the power density. For example, using
0.2 mm instead of 0.9 mm-thick sheets to make the moving structure will cut the beams length by
more than one third without changing the MPG center frequency and, thus, more than doubling the
power density.

We find that the capacitor gap should be set to match the requirements of the harvesting
environment. On the other hand, increasing the electrostatic field strength by using a high DC voltage
source is always advantageous leading to more sensitive MPGs that can collect energy at lower excitation
levels, larger optimum output power and wider MPG bandwidth. Larger nominal capacitance, and thus
capacitor area, and inertial mass allow for a larger optimum output power; however, they change the
nature of the electromechanical coupling in the MPG and require a search for the optimal load resistance
at a particular configuration.

Table 3. Comparison with previously published work.

ES MPG Source
Size Acceleration f◦ Power Density

(cm3) (g) (Hz) (µW/cm3)

Bartsch et al. [12] External 20.3 N/A 90 0.36

Edamoto et al. [8] Electret 1.22 N/A 21 10.23

Hoffmann et al. [14] External 0.2 13 1330 17.5

Kloub et al. [24] External 0.17 1 1 1740 29.8

This work Electret 36 0.08 86 27.8
1 Packaging thickness is assumed to be 0.4 cm.
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Finally, the use of an electret layer as a DC charging source does not only make the MPG portable
and low cost, but also helps to isolate the two capacitive electrodes during impact. However, since
negatively-charged electrets degrade with exposure to humidity, the implementation of a good sealing is
a must to preserve the electret charge over the lifetime of the MPG.

Author Contributions: M. A. E. Mahmoud, E. M. Abdel-Rahman, R. R. Mansour and E. F. El-Saadany conceived
of and designed the prototypes. M. A. E. Mahmoud performed the experiments and analysed the data. M. A. E.
Mahmoud wrote the paper. E. M. Abdel-Rahman revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications.
Meas. Sci. Technol. 2006, 17, R175.

2. Boland, J.; Chao, Y.H.; Suzuki, Y.; Tai, Y. Micro electret power generator. In Proceedings of the 16th IEEE Annual
International Conference on Micro Electro Mechanical Systems: MEMS 2003, Kyoto, Japan, 19–23 January 2003;
pp. 538–541.

3. Tada, Y. Experimental Characteristics of Electret Generator, Using Polymer Film Electrets. Jpn. J. Appl. Phys.
1992, 31, 846–851.

4. Sterken, T.; Fiorini, P.; Baert, K.; Puers, R.; Borghs, G. An electret-based electrostatic µ-generator. In Proceedings
of Transducers ’03 - the 12th International Conference on Transducers, Solid-State Sensors, Actuators and
Microsystems, Boston, MA, USA, 9–12 June 2003; Volume 2, pp. 1291–1294.

5. Tsutsumino, T.; Suzuki, Y.; Kasagi, N.; Kashiwagi, K.; Morizawa, Y. Micro seismic electret generator for energy
harvesting. In Proceedings of the Sixth International Workshop on Micro and Nanotechnology for Power
Generation and Energy Conversion Applications: PowerMEMS 2006, Berkeley, CA, USA, 29 November–1
December 2006; pp. 279–282.

6. Tsutsumino, T.; Suzuki, Y.; Kasagi, N.; Sakane, Y. Seismic power generator using high-performance polymer
electret. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems: MEMS
2006, Istanbul, Turkey, 22–26 January 2006; pp. 98–101.

7. Tsutsumino, T.; Suzuki, Y.; Kasagi, N. Electromechanical modeling of micro electret generator for energy
harvesting. In Proceedings of Transducers ’07 - the 14th International Conference on Solid-State Sensors,
Actuators and Microsystems, Lyon, France, 10–14 June 2007; pp. 863–866.

8. Edamoto, M.; Suzuki, Y.; Kasagi, N.; Kashiwagi, K.; Morizawa, Y.; Yokoyama, T.; Seki, T.; Oba, M.
Low-Resonant-Frequency Micro Electret Geenrator for Energy Harvesting Application. In Proceedings of
the 22nd IEEE International Conference on Micro Electro Mechanical Systems: MEMS 2009, Sorrento, Italy,
25–29 January 2009; pp. 1059–1062.

9. Suzuki, Y.; Tai, Y.C. Micromachined high-aspect ratio parylene spring and its application to low-frequency
accelerometers. J. Micromech. Microeng. 2006, 15, 1364–1370.

10. Tsurumi, Y.; Suzuki, Y.; Kasagi, N. Non-contact electrostatic micro-bearing using polymer electret.
In Proceedings of the 21st IEEE International Conference on Micro Electro Mechanical Systems: MEMS 2008,
Tucson, AZ, USA, 13–17 January 2008; pp. 511–514.

11. Suzuki, Y.; Edamoto, M.; Kasagi, N.; Kashiwagi, K.; Morizawa, Y.; Yokoyama, T.S.; Oba, M. Micro electret
energy harvesting device with analogue impedance conversion circuit. In Proceedings of 8th International
Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications: Power
MEMS 2008, Sendai, Japan, 9–12 November 2008; pp. 7–10.

12. Bartsch, U.; Ruther, P.; Paul, O. Elektromechanischer Energiewandler basierend auf SOI-Technologie.
Techn. Messen 74 2007, 20, 636–641.

13. Bartsch, U.; Trautmann, A.; Ruther, P.; Gaspar, J.; Paul, O. Electrostatic transducers for micro energy harvesting
based on SOI technology. In Proceedings of Transducers ’07 - the 14th International Conference on Solid-State
Sensors, Actuators and Microsystems, Lyon, France, 10–14 June 2007; pp. 141–144.



Sensors 2017, 17, 877 21 of 21

14. Hoffmann, D.; Folkmer, B.; Manoli, Y. Fabrication, characterization and modelling of electrostatic
micro-generators. J. Micromech. Microeng. 2009, 19, 094001.

15. Mahmoud, M.A.; El-Saadany, E.F.; Mansour, R.R. Planar Electret Based Electrostatic Micro-Generator.
In Proceedings of the Sixth International Workshop on Micro and Nanotechnology for Power Generation and
Energy Conversion Applications: PowerMEMS 2006, Berkeley, CA, USA, 29 November–1 December 2006; pp.
223–226.

16. Tao, K.; Miao, J.; Lye, S.W.; Hu, X. Sandwich-structured two-dimensional MEMS electret power generator for
low-level ambient vibrational energy harvesting. Sens. Actuators A Phys. 2015, 228, 95–103.

17. Tao, K.; Liu, S.; Lye, S.W.; Miao, J.; Hu, X. A three-dimensional electret-based micro power generator for
low-level ambient vibrational energy harvesting. J. Micromech. Microeng. 2014, 24, 065022.

18. Tao, K.; Lye, S.W.; Miao, J.; Tang, L.; Hu, X. Out-of-plane electret-based MEMS energy harvester with the
combined nonlinear effect from electrostatic force and a mechanical elastic stopper. J. Micromech. Microeng.
2015, 25, 104014.

19. Fedder, G.K. Simulation of Microelectromechanical Systems. Ph.D. Thesis, University of California at Berkely,
Berkely, CA, USA, 1994.

20. Williams, C.B.; Yates, R.B. Analysis of a micro-electric generator for microsystems. Sens. Actuators A Phys. 1996,
52, 8–11.

21. Sessler, G. (Ed.) Topics in Applied Physics: Electrets; Springer: Berlin/Heidelberg, Germany, 1987.
22. Soliman, M.S.; Abdel-Rahman, E.M.; El-Saadany, E.F.; Mansour, R.R. A wideband vibration-based energy

harvester. J. Micromech. Microeng. 2008, 18, 115021.
23. Soliman, M.S.; Abdel-Rahman, E.M.; El-Saadany, E.F.; Mansour, R.R. Design Procedure for Wideband

Micropower Generators. J. Microelectromech. Syst. 2009, 18, 1057–7157.
24. Kloub, H.; Hoffmann, D.; Folkmer, B.; Manoli, Y. A Micro Capacitive Vibration Energy Harvester for

Low Power Electronics. In Proceedings of the 9th International Workshop on Micro and Nanotechnology
for Power Generation and Energy Conversion Applications: Power MEMS 2009, Washington, DC, USA,
1–4 December 2009.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic MPG Model
	Model Validation
	MPG Realization 
	Impact Model
	Improved MPG
	Conclusions

