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Abstract
In manifold learning, the intrinsic geometry of the manifold is explored and preserved by identifying the optimal local neigh-
borhood around each observation. It is well known that when a Riemannian manifold is unfolded correctly, the observations 
lying spatially near to the manifold, should remain near on the lower dimension as well. Due to the nonlinear properties of 
manifold around each observation, finding such optimal neighborhood on the manifold is a challenge. Thus, a sub-optimal 
neighborhood may lead to erroneous representation and incorrect inferences. In this paper, we propose a rotation-based affin-
ity metric for accurate graph Laplacian approximation. It exploits the property of aligned tangent spaces of observations in an 
optimal neighborhood to approximate correct affinity between them. Extensive experiments on both synthetic and real world 
datasets have been performed. It is observed that proposed method outperforms existing nonlinear dimensionality reduction 
techniques in low-dimensional representation for synthetic datasets. The results on real world datasets like COVID-19 prove 
that our approach increases the accuracy of classification by enhancing Laplacian regularization.

Keywords Semi-supervised learning · Dimensionality reduction · Heat kernel · Regularization · Laplacian · Vector fields · 
Diffusion map · Tangent space

1 Introduction

A semi-supervised method utilizes unlabeled data for train-
ing along with given labeled data to exploit the hidden 
intrinsic geometrical information. It implicitly assumes that 
the underlying data holds either of the three assumptions: 
smoothness, clustering or manifold [27]. Manifold learning 
methods exploit the manifold assumption. These methods 
attempt to preserve geometric properties such as distances, 
proximity, angles, or local patches [22].

The real-world data gathered from imaging devices, med-
ical science, and business applications usually lie in high 

dimension, and this causes the curse of dimensionality. One 
of the main objectives, in the analysis of such high-dimen-
sional datasets, is to learn their geometrical and topological 
structure. Generally, the data is parameterized as points in 
ℝ

D , the correlation between parameters often suggests the 
manifold assumption that the data points are distributed on a 
very low-dimensional space ℝm embedded on a Riemannian 
manifold ℝD and m ≪ D [2, 5, 6, 30, 33]. Manifold learning 
algorithms transform the high-dimensional data into a low-
dimensional embedding space using existing dimensionality 
reduction methods. Principal component analysis (PCA) [9, 
35, 40, 47], multidimensional scaling (MDS) [13–15, 19], 
linear discriminant analysis (LDA) [3, 7, 20], etc., are some 
popular linear dimensionality reduction algorithms. They 
provide true representation in the case of linear manifold, 
but fail to discover nonlinear or curved structures of the 
input data. In the case of handwritten characters, spoken 
letters and medical images, etc., manifolds do not follow 
linear properties and have nonlinear structure. The intrinsic 
geometry of the nonlinear manifold is explored by identify-
ing the optimal local neighborhood around each observation. 
We assume that the data samples xi ∈ X are drawn from a 
smooth Riemannian manifold M ∈ ℝ

D . If a smooth Rie-
mannian manifold is unfolded correctly, the observations 

 * Prashant Shukla 
 rsi2016502@iiita.ac.in

 Abhishek 
 rsi2016006@iiita.ac.in

 Shekhar Verma 
 sverma@iiita.ac.in

 Manish Kumar 
 manish@iiita.ac.in

1 Department of Information Technology, Indian Institute 
of Information Technology Allahabad, Deoghat, Jhalwa, 
Allahabad, U.P. 211012, India

http://orcid.org/0000-0002-1810-6650
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-020-00947-9&domain=pdf


888 Pattern Analysis and Applications (2021) 24:887–905

1 3

lying spatially near on the manifold, should remain near 
on the lower dimension as well with their tangent spaces 
aligned.

Generally, due to the varying curvature of manifold 
around each observation, finding such optimal neighborhood 
on the manifold, is a challenge. Thus, the affinity calculated 
between these observations on manifold are erroneous as it 
may be affected from noise. On such a manifold, the tangent 
planes on observations are not aligned.

Manifold learning approaches are suitable for exploiting 
the nonlinear structures into a flat low-dimensional embed-
ding space [22]. The aim of these approaches is to identify 
and exploit local linear space. The existing state-of-the-art 
algorithms like isometric feature mapping (ISOMAP) [33], 
local linear embedding (LLE) [29], Laplacian eigenmap 
(LE) [4], local tangent space alignment (LTSA) [36, 45], 
Hilbert–Schmidt independence criterion-regularized LTSA 
(HSIC–LTSA) [46], graph-regularized linear discriminant 
analysis (GRLDA) [16], jerk-based manifold regularization 
[39], robust Laplacian [1] identify and exploit such local 
structures. These methods have been applied on wide variety 
of applications; for instance, face recognition, facial expres-
sion transferring, handwriting identification, 3D body pose 
recovery, medical imaging and many more. An approach for 
face recognition is a two-dimensional neighborhood preserv-
ing projection (2DNPP) [42].

These state-of-the-art manifold learning methods can 
be categorized into distance-preserving methods, angle-
preserving methods and proximity-preserving methods, 
which align local neighborhood for each data point into a 
global coordinate space. A method focuses on one perspec-
tive in order to preserve a single geometric property. For 
instance, Isomap is a distance preserving method; LE, LLE 
and LTSA are proximity-preserving methods, which assume 
that unfolding manifold results into aligned tangent planes of 
all the neighboring observations in the manifold [44]. LTSA 
assumes that the given data is uniformly distributed and data 
in local neighborhood of the manifold, follows linear proper-
ties, i.e., they lie in or close to a linear sub-space.

In LE, diffusion map (DM) [23] and vector diffusion map 
(VDM) [31], the data is represented as a weighted undi-
rected graph. The vertices of graph correspond to the data 
observations, and the weights on edges quantify the affinity 
between them. In a local linear manifold, Euclidean distance 
is used as affinity metric, which can be described as a ker-
nel function of the distance. If the data {xi}ni=1 consists of n 
observations in L2(ℝ3) , then the distance between points xi 
and xj are calculated using Eq. (1)

and affinity of edges is calculated by Eq. (2)

(1)dE(xi, xj) = ||xi − xj||L2(ℝ3),

To call an embedding faithful, we check whether it pre-
serves the local structure of neighborhoods on the manifold, 
i.e., handles distances, angles, and neighborhoods in a com-
prehensive way.

LTSA assumes the local linearity of the manifold. Thus, 
local linear approximations of a manifold are constructed 
as a collection of overlapping approximate tangent spaces 
at every observation. These are, then, globally aligned to 
construct the global coordinate system for the underlying 
nonlinear manifold [45]. Here, the local tangent space is 
used to provide a low-dimensional linear approximation of 
the local geometric structure of the nonlinear manifold. The 
proposed rotation-based regularization method is based on 
the observation that the Riemannian assumption of local lin-
earity of the manifold may not hold in a kNN neighborhood. 
Hence, a dimensionality reduction method, which relies on 
this assumption may yield suboptimal performance. This 
entails that the local neighborhood must be flattened so that 
the Euclidean distance is an accurate measure of affinity. 
Diffusion map assumes that the Euclidean distance between 
observations is approximated by the diffusion distance in 
the original feature space between probability distributions 
centered at those observations [23]. It assumes a nonlinear 
geometry and measures the similarity between two points at 
a specific scale through a diffusion metric.

In this paper, we determine the accurate pairwise affinity 
by aligning the tangent spaces of all the local points with 
respect to the point of interest to exploit the property of 
aligned tangent spaces of observations in an optimal neigh-
borhood. Rotation is used to align the neighbors which are 
deviated from the tangent plane of the point of interest, so 
that they are on the same Euclidean plane. If the points are 
already on the plane, they are unaffected by the rotation. 
This gives an enhanced affinity for Laplacian, which is use-
ful when data is affected from noise and the manifold cur-
vatures are variable.

The contributions of this work are as follows: 

1. In proposed approach, the Riemannian manifold assump-
tion of local linearity of the kNN graph neighborhoods 
around data points is ensured by flattening the manifold 
by rotating the tangent spaces of the neighbors with the 
tangent space of the data point of interest. The pairwise 
Euclidean distance between data points, then, becomes 
an accurate measure of the geodesic distance between 
vertices.

2. The updated affinities based on the pairwise Euclidean 
distances are used in the graph Laplacian-based mani-
fold regularization. This yields higher classification 
accuracy as the modified graph Laplacian, the rotation-

(2)wij = e−d
2
E
(xi,xj)∕2.
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based Laplacian, is able to give a better estimate of 
underlying marginal distribution.

The remainder of this paper is organized as follows: Sect. 2 
defines the problem to be solved in this work. In Sect. 3, 
we propose our rotation-based Laplacian regularization 
approach for manifold learning and regularization. Sec-
tion 4 contains the results obtained using our method and 
its comparison with state-of-the-art methods. Finally, Sect. 5 
concludes our work by highlighting the salient features of 
rotation-based regularization.

2  Problem definition

On a Riemannian manifold, the local linear neighborhood 
assumption allows Euclidean distance as a measure of affin-
ity between neighboring data points. Due to the unknown 
properties of the manifold, the identified neighbors may 
not lie in the locally linear patch around the point of inter-
est. As the extent of the locally linear patch is unknown, 
kNN or � neighborhood is chosen heuristically as the linear 
neighborhood. Euclidean distance is computed and used as 
the affinity measure between data points in the kNN or � 
neighborhood, which is assumed to be linear. In such cases, 
the Euclidean distance between data points in the neighbor-
hood fails to represent the affinity between them accurately. 
This requires either accurate determination of the linear 
region, which is difficult; or, linearization of the kNN or � 
neighborhood.

3  Rotation‑based regularization method

Manifold regularization uses the smoothness assumption 
that a function, f, should change slowly where the marginal 
probability density is high. This requires estimation of the 
marginal probability density. In semi-supervised learn-
ing, the unknown marginal distribution is estimated using 
the given data, especially the ample amount of unlabeled 
data. If the data points on the manifold are represented by a 
graph, the smoothness of the function, f, on the graph can be 
measured in terms of a quadratic form of the graph Lapla-
cian. Specifically, Graph Laplacian can be used to estimate 
the marginal distribution. The data points are the vertices 
of the graph. However, a distance needs to be associated 
between the corresponding vertices. This entails an accu-
rate estimation of the geodesic distance between vertices. 
On the Riemannian manifold, the Euclidean distance is an 
accurate measure of the geodesic distance in a locally lin-
ear region. Thus, the problem of determining the geodesic 
distance between adjacent vertices of the graph reduces to 
finding the locally linear region. If a small region around a 

data point is flattened, the Euclidean distance is an accu-
rate measure of geodesic distance between the vertices. 
This leads to accurate estimation of the graph Laplacian 
and, through it, the underlying marginal distribution. In the 
proposed rotation-based regularization method, the kNN is 
linearized by rotating the tangent planes of data points in 
the neighborhood followed by the semi-supervised learning 
classification using the updated affinities computed between 
tangent space aligned data points.

3.1  Neighborhood linearization through rotation

The proposed linearization method endeavors to flatten the 
local neighborhood around a data point chosen through kNN 
data points. This is achieved by rotating the tangent planes 
of neighboring data points with respect to the tangent plane 
of the point under consideration. A local linear graph of the 
dataset is created by fixing the neighborhood of all the data 
points using kNN. The tangent plane of a point is found 
using local PCA. The tangent planes of all the k neighboring 
points are also found. Once the tangent planes are deter-
mined, the tangent plane of the point of interest is fixed and 
other misaligned tangent planes are rotated to align them 
with the fixed tangent plane of the point under considera-
tion. This flattens the chosen neighborhood and Euclidean 
distance can be used as a measure of affinity between data 
points.

Given n data samples with l labeled and (n − l) unlabeled 
points where (n − l) ≫ l on a smooth Riemannian manifold 
M , i.e., {xi}ni=1 ∈ ℝ

D that actually lie on a much lower-
dimensional space ∈ ℝ

m i.e., m ≪ D . It can be represented 
by

where C is a compact subset of ℝm and f is the data genera-
tion function, i.e.,

where �i are original feature vectors or the lower-dimen-
sional complement information and �i is redundant data or 
noise. The noise may be introduced during various stages 
of data collection and preprocessing and may vary with the 
distance.

A manifold can be approximated with a graph by using a 
smooth function defined on the graph. This depends on the 
affinity matrix W as

where elements of the affinity matrix W are calculated 
using heat kernel wij =

1

C
exp−

dij

�2
 , where dij is the distance 

between points xi and xj , and diagonal matrix D has entries 
as Dii =

∑n

j=1
wij . kNN is used to create the undirected graph 

(3)f ∶ C ⊂ ℝ
m
→ ℝ

D,

(4)xi = f (�i) + �i,

(5)L = D −W,
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over given data points including both labeled and unlabeled 
ones.

Proposition 1 According to manifold learning assumption, 
on a manifold M, the tangent planes of the points xi and xk 
lying on a locally linear region are aligned.

Given a datapoint xi and its neighbor xk ∈ N(xi), the tan-
gent planes of xi and each xk should be aligned.

To find the tangent plane Txi of the point xi , local PCA is 
performed on the set of k nearest neighbors Nk(xi) of point xi.

where V is a weight matrix and Txi contains the principal 
component scores. The m leading eigenvectors correspond 
to an orthogonal basis of Txi.

It is known that on a manifold, geodesic distance is the 
shortest distance between any two data points which is 
assumed to be Euclidean if the data points are lying in a 
local linear region. However, since the extent of the linear 
region around a data point is not known, the geodesic dis-
tance may not be Euclidean in a chosen neighborhood.

To find the correct Euclidean distance between points 
xi and its neighborhood xk , we rotate Txk w.r.t. Txi and align 
them.

where � is the orthogonal rotation matrix calculated using 
Procrustes analysis [28],

where � denotes translation, � denotes rotation, and � denotes 
scaling. In the ideal case of local linear neighborhood, � will 
be a zero matrix, and � and � will be unit matrices. But due 
to nonlinear surface, we optimize the parameters using

This idea is depicted in Fig. 1. To give the optimal rota-
tion �  , eigenvalue decomposition of same centroid matrices 
is calculated.

(6)Txi ≡ Txk .

(7)Txi = Nk(xi) ⋅ V ,

(8)Txi = Nk(xi) ⋅ Vm.

(9)Txi ≡ �Txk ,

(10)�(� ,�, �) =
∑

xk∈Nk(xi)

∥ Txi − ��Txk − � ∥,

(11){� ,�, �} = �(� ,�, �).

(12)

Txi
= Txi −

1

k

∑

xj∈Nk(xi)

Txj

Txk
= Txk −

1

k

∑

xj∈Nk(xk)

Txj ,

where k is the fixed number of neighbors. Putting these val-
ues in Eq. (10)

Let

To minimize �(� ,�, �) , the term P is maximized; if its eigen-
value decomposition is given by ���T , the optimal rotation 
will be

Since finding the affinity between points xi and xk on tan-
gent spaces is not same as affinity on manifold, we recon-
struct the point xk on original space using Eq. (16),

where T ′ is the rotated tangent plane and V is the same 
weight matrix taken in Eq. (7).

We calculate the Euclidean distance between data points 
xi and x′

k
 as d�

ik
=∥ xi − x�

k
∥2
2
.

This distance d′
ik

 is used to calculate the revised affinity 
matrix using

(13)

�(� ,�, �) =
∑

xk∈Nk(xi)

∥ Txi
− ��Txk

∥2

=
∑

xk∈Nk(xi)

T
T

xi
Txi

+ T
T

xk
Txk

− 2��T
T

xi
Txk

.

(14)P =
∑

xk∈Nk(xi)

T
T

xi
Txk

.

(15)� = ��T .

(16)x�
k
= T �

⋅ V−1,

(17)T � = �Txk .

(18)w�
ik
=

1

C
exp−

d�
ik

�2
.

Fig. 1  Alignment of T
x
k
 w.r.t. T

x
i
 by rotation and finding the tangent 

plane �T
x
k
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The revised affinity enforces the function smoothening 
in semi-supervised learning by identifying affinity between 
neighboring data points accurately.

3.2  Laplacian regularized least squares classifier 
(LapRLSC)

Let l labeled data points are given as {xi, yi}li=1 and (n − l) 
unlabeled points are given as {xu}nu=l+1 . The prediction func-
tion is trained using the given labeled data points [6]

where ∥ f ∥2
A
 and ∥ f ∥2

I
 are penalty terms in ambient space 

and intrinsic space, respectively. The unlabeled input data 
is used in prediction function by applying manifold assump-
tion on the graph structure, considering the points in {xu} 
as nodes and the distances between them as weights. The 
intrinsic space regularization term R(f) is calculated using 
[25]

where w′
ik

 is calculated using Eq. (18). Expanding Eq. (20) 
using Eq. (5), we get

where f is [f (x1), f (x2),… , f (xn)]
T . After putting this value 

in Eq. (19), we get

where �l is vector of true labels of the labeled points. 
According to the classic Representer theorem [6],

where �i ’s are representation coefficients and K is a mercer 
kernel. According to this, Eq. (23) can be rewritten as

where � is kernel gram matrix and � is representa-
tion coefficient vector. According to kernel’s property 

(19)

f ∗ = argmin
1

l

l∑

i=1

∥ yi − f (xi) ∥
2 +�A ∥ f ∥2

A
+�I ∥ f ∥2

I
,

(20)R(f ) =
1

2

n∑

i=k=1

(f (xi) − f (xk))
2w�

ik
,

(21)
R(f ) =

n∑

i=1

f (xi)
2

n∑

k=1

w�
ik
−

n∑

i=k=1

w�
ik
f (xi)f (xk)

= �
TD� − �

TW� = �
TL� ,

(22)f ∗ =∥ �l − �l ∥
2 +�A ∥ f ∥2

A
+�I�

TL� ,

(23)f ∗ =

n∑

i=1

�iK(xi, x),

(24)

� =

[
n∑

i=1

�iK(xi, x1),

n∑

i=1

�iK(xi, x2),… ,

n∑

i=1

�iK(xi, xn)

]

= ��,

K(xi, x) = ⟨�(xi),�(x)⟩ = �(xi)
T ,�(x) , where � is kernel 

mapping, we can write the second term of Eq. (19) as

and

Putting this values from Eqs. (24) and (25) in Eq. (22), 
we obtain

The optimum solution, after setting the partial derivative 
�f

��
= 0 is obtained as

3.3  Complexity analysis

Complexity of rLap depends upon the number of data points 
n, their dimension d, number of nearest neighbors k, and 
procrustes analysis. We can calculate the complexity of rLap 
using following steps: 

f =

(
n∑

i=1

�i�(xi)
T

)
= [�(x1),… ,�(xn)]�,

(25)∥ f ∥2
A
= �

T
��.

(26)f (a)∗ =∥ �l −�l� ∥2 +�A�
T
�� + �I�

T
�L��

T .

(27)a∗ =
(
�l�

T
l
+ �A� + �I�L�

)−1
�l�l.
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1. The kNN algorithm requires O(nd + kn) time.1
2. As PCA takes O(d2n + d3) time, and d ≪ n , total time 

complexity would be O(d2n).
3. The upper bound for procrustes analysis is O(d3).

T h u s ,  rLap  i s  b o u n d e d  b y  c o m p l e x i t y 
O(n(d2n + k(d2n + d3))) . As n ≫ k and d, we say that com-
plexity of rLap is O(n2).

4  Experiments and results

In this section, the proposed rotation-based Laplacian regu-
larization technique rLap2 has been compared with existing 
state-of-the-art manifold learning and regularization meth-
ods on various real world and synthetic datasets. For data 
visualization, various 3D synthetic datasets have been pro-
jected on 2D. The performance is evaluated by comparing 
the intrinsic dimensional representations of all the methods. 
Further, real-world classification datasets have been used to 
train the RLSC model using all graph Laplacian variants. 
Their performance has been evaluated by calculating their 
root-mean-square error (RMSE) using Eq. (28)

where ŷi is predicted label.

4.1  Dimensionality reduction

In the following experiments, the proposed algorithm 
rLap has been compared with the existing state-of-the-
art manifold learning approaches including Laplacian, 
DM, LTSA, entropy affinity EA [37], K5 [32], K7 [41] and 
min–max–mean ( MMM ) [43]. The algorithms have been 
applied on five synthetic datasets, namely swiss roll, swiss 
hole, punctured sphere, twin peaks, and elevated swiss roll, 
where the original 2D structure has been embedded in 3D 
space. The performance of proposed method on dimension-
ality reduction exhibits the extent to which the method is 
capable of preserving the local geometrical properties.

All datasets except twin peak dataset has 4000 data 
points. Twin peak data set consists of 7225 data points. 
Number of neighbors (k) is varied to find the best represen-
tation of data in lower-dimensional space. Table 1 shows the 
visualization results.

(28)RMSE =

�∑n

i=1
(ŷi − yi)

2

n
,

Swiss roll The swiss roll data is basically a 2D flat strip 
which is rotated as shown in the first column of Fig. 1 to 
make it a 3D structure. The dataset consists of 4000 points. 
Among all the methods, the results of rLap method gives the 
most accurate 2D representation. Laplacian gives a consid-
erable representation as compared to other methods using 
k = 6 . DM gives grossly inaccurate 2D representation exhib-
iting its incapability of preserving global connectivity and 
hence rotated strip could not be unfolded correctly.

Swiss hole The swiss hole dataset contains a hole in swiss 
roll dataset. The data set consists of 4000 points with a cir-
cular hole. Here, LTSA preserves the maximum intrinsic 
structure of the data. rLap method does not retain the shape 
of hole. However, rLap performs better than other methods, 
as they fail to preserve the shape of strip and give an inac-
curate 2D representation with disconnected data points.

Elevated swiss roll The elevated swiss roll data is also 
a 2D flat strip similar to swiss roll with the varying third 
dimension. The 2D representation using rLap method gives 
a better result than all other methods. This proves that rLap 
holds properties similar to Laplacian, which can be used to 
exploit the intrinsic geometry of the data.

Punctured sphere The surface of a punctured sphere can 
be represented as a 2D flat surface. The best representation 
from rLap method comes at k = 14 . rLap outperformed all 
the other methods except LTSA. The corners represented by 
rLap are smooth.

Twin peaks The twin peaks dataset containing 7225 points 
is originally a 2D flat surface with peaks at the two corners. 
rLap method gives comparable results to DM, which in turn 
remains the best performer.

It is evident from the results that LTSA and DM can-
not preserve distances and angles due to their proximity-
preserving nature. EA completely fails to unfold any dataset 
except punctured sphere. rLap method attempts to preserve 
distances and isometry. For punctured sphere dataset, flat-
tening curved data into flat surface violates the distance pre-
serving criterion, still our method gives comparable results.

4.2  Real‑world datasets

The real-world classification datasets consist of different cat-
egories like image, sound, text and medical datasets. Dur-
ing experimental phase, for all the datasets, we used ‘RBF’ 
kernel of varying kernel width. The optimal results were 
found for kernel width � = 1 . The parameters defined for 
the manifold obtained, are �A and �I that correspond to the 
ambient geometry and intrinsic geometry. While regulariza-
tion, value of �A was varyed between 0.001 and 0.009 and 
�I was varyed between 0.01 and 0.09. For the results cal-
culated using other state-of-the-art methods, we fixed the 
value �A = 0.005 and �I = 0.045 . For each class, the number 
of labeled examples is set to 2, selected randomly across 10 

2 Experimental codes are available at https ://githu b.com/impra shant 
shukl a/rLap.

1 http://www.csd.uwo.ca/cours es/CS984 0a/Lectu re2_knn.pdf.

https://github.com/imprashantshukla/rLap
https://github.com/imprashantshukla/rLap
http://www.csd.uwo.ca/courses/CS9840a/Lecture2_knn.pdf
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rounds of classification. rLap method is executed for RLSC 
and compared with Laplacian (Lap), p-Laplacian(p-Lap) 
[24], higher order Laplacian ( Lm ) [48], ensemble manifold 
regularization EMR-RLS-24G ( EMR24 ) [11], EA , K5 , K7 
and MMM methods.

Isolet dataset Isolet dataset is a collection of English 
alphabet recorded in isolation with 150 people [10]. Each 

letter of alphabet was spoken twice by each speaker. Speak-
ers were divided into five groups having equal members, and 
each group outcome was termed as Isolet1 to Isolet5. Each 
Isolet set has 1560 samples. Each sample is represented by 
617 features. Experiment has been repeated 10 times with 
every time a different set of labels are chosen. Isolet1 has 
been used for training purpose and Isolet5 for testing.

Table 1  Dimensionality reduction: rLap versus other techniques

Dataset
→ Swiss

Roll
Swiss
Hole

Elevated
Swiss
Roll

Punctured
Sphere

Twin
PeakMethod

↓

kNN
value

8 12 10 14 14

Original
data
Plot

rLap

Laplacian
[6]

Diffusion
Map[22]

LTSA[45]

K5[31]

K7[41]

MMM[43]

EA
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USPS handwritten digit dataset USPS dataset contains 
digits (0–9) digitized from handwritten zip codes [18]. Same 
digit has been sampled from different handwritings contain-
ing total 7291 samples. In the experiment, we have applied 
the concept of one-vs-all classification for predicting a digit. 
A total of 4000 images are used for training containing 400 
instances per digit and remaining 3291 images for testing.

MNIST dataset MNIST dataset3 consists of handwritten 
digits having a training set of 60,000 and test set of 10,000 
examples. In this experiment, we have taken all the 70,000 
images, out of which 4000 examples per digit have been 
used for training and rest 30,000 are used for testing.

HASYv2 dataset HASY dataset contains single symbols 
similar to MNIST. It contains 168,233 instances of 369 
classes including Arabic numerals and Latin characters each 
of size 32 × 32 . HASYv2 has much less samples per class 
[34]. The experiment consists of only nine symbols (classes) 
which have minimum 500 samples per class. Each symbol is 
pairwise classified from other one, hence having a 36 binary 
classification problem.

BCI dataset Brain–computer interface (BCI) is an electro-
encephalographic mental imagery dataset [17]. The dataset 
contains 60 hours of EEG BCI recordings spread across 75 
experiments and 13 participants, featuring 60,000 mental 
imagery examples in four different BCI interaction para-
digms with up to 6 EEG BCI interaction states. In our exper-
iment we used HaLT interaction paradigm, which consists 
of the imageries of left and right hands movement, left and 
right leg movement and tongue movement, for a total of six 
mental states to be used for interaction with BCI. All read-
ings of subjectA have been used for pairwise classification, 
hence having a 10 binary classification problem. A total of 

1175 readings have been used for training the data and 1275 
for testing.

COIL-20 dataset COIL-20 dataset consists of 1440 
grayscale images of 20 different everyday objects of size 
128 × 128 [26]. Forty-five instances per image, i.e., 900 
images were taken for training. Remaining 27 instances per 
image, i.e., 540 images were taken for testing.

Cifar-10 dataset: Cifar-10 dataset contains 60,000 color 
images of 10 classes of size 32 × 32 pixels [21]. Every class 
consists of 6000 images. 50,000 images are given for train-
ing and 10,000 images for testing. In this experiment, only 
6000 images are used for training, i.e., 600 images per class 
and total 4000 images are used for testing.

Fashion MNIST dataset Fashion MNIST [38] dataset con-
sists of 70,000 images from 10 different fashion categories. 
All the images are in grayscale and of 28 × 28 pixel size. 
In the experiment, for each of the 10 rounds, total 42,469 
data instances were selected randomly and rest were used 
for testing.

Lego brick dataset Lego bricks dataset contains total 
16 categories of building bricks of different shapes, which 
are manufactured by Lego [12]. There are ≈ 400 images 
for each category. Images are in grayscale and size of each 
image is 200 × 200 pixels.

Figures 2, 3, 4, 5, 6, 7, 8, 9 and 10 show the mean square 
error (RMSE) results for test and unlabeled data of the data-
sets at k = 6 for RLSC.4 The parametric analysis of �A and 
�I is also depicted in the figures.

While tuning �A for a fixed �I , it is observed that RMSE 
is increased gradually with increasing the value of �A for 
MNIST, BCI, Fashion MNIST, and Lego bricks data-
sets, where as RMSE is decreased for ISOLET and USPS 

Fig. 2  ISOLET dataset

4 ET and EU represent RMSE for test and unlabeled data respec-
tively.3 http://yann.lecun .com/exdb/mnist /.

http://yann.lecun.com/exdb/mnist/
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datasets. Change in �A does not affect RMSE for HASY data-
set and for COIL20 dataset also RMSE does not change after 
�A = 0.005 . While tuning �I , RMSE is increased for all the 
datasets except ISOLET and USPS datasets.

Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18 and 19 contain the RMSE values of all the methods 
compared with rLap for k = 6 to k = 20 . For the spoken let-
ter dataset Isolet, rLap outperforms other methods for all the 

NN values. It gives ≈ 80.34% and ≈ 85.99% accuracy for test 
and unlabeled data respectively.

For the handwritten datasets USPS, MNIST and 
HASYv2, test data accuracy is ≈ 97.98% , ≈ 88.58% and 
≈ 96.82% respectively; unlabeled data accuracy is ≈ 98.63% , 
≈ 98.07% and ≈ 96.94% respectively. In case of USPS data-
set rLap performs better than the rest of the methods for 
k = 6 to k = 12 , beyond that it is dominated by MMM and K7 

Table 2  Isolet test data: mean 
error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 24.91 ± 2.72 24.79 ± 2.65 24.82 ± 2.59 24.75 ± 2.59 24.75 ± 2.64
L
m 38.01 ± 5.43 37.18 ± 5.60 36.28 ± 5.34 36.09 ± 5.37 36.05 ± 5.44

p-Lap 45.55 ± 4.00 45.18 ± 4.26 44.35 ± 4.29 44.13 ± 4.60 44.02 ± 4.66
EA 30.07 ± 2.81 29.87 ± 2.56 29.66 ± 2.74 29.48 ± 2.62 29.42 ± 2.64
EMR24 22.75 ± 3.53 22.97 ± 3.41 22.69 ± 3.41 22.59 ± 3.46 22.53 ± 3.45
K
5

24.84 ± 1.72 24.71 ± 1.97 24.59 ± 1.89 24.52 ± 1.83 24.52 ± 1.83
K
7

24.73 ± 1.90 24.61 ± 1.96 24.56 ± 1.92 24.50 ± 1.92 24.47 ± 1.88
MMM 24.74 ± 2.10 24.61 ± 2.07 24.57 ± 2.04 24.51 ± 2.00 24.48 ± 1.97
rLap 21.21 ± 2.82 20.58 ± 2.83 20.63 ± 2.73 19.96 ± 2.60 19.66 ± 2.65

Table 3  Isolet unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 21.81 ± 2.71 21.52 ± 2.72 21.42 ± 2.78 21.34 ± 2.80 21.32 ± 2.83
L
m 38.67 ± 4.35 37.64 ± 4.50 36.50 ± 4.52 36.11 ± 4.55 35.84 ± 4.56

p-Lap 48.14 ± 3.26 47.52 ± 3.42 46.45 ± 3.75 45.94 ± 3.84 45.68 ± 3.94
EA 27.31 ± 3.94 27.02 ± 3.71 26.82 ± 3.83 26.53 ± 3.64 26.42 ± 3.49
EMR24 17.97 ± 3.37 17.76 ± 3.26 17.67 ± 3.17 17.63 ± 3.12 17.62 ± 3.12
K
5

21.01 ± 2.83 20.94 ± 2.89 20.52 ± 2.59 20.37 ± 2.36 20.01 ± 2.48
K
7

21.24 ± 2.61 20.99 ± 2.57 20.57 ± 2.52 20.32 ± 2.48 20.27 ± 2.48
MMM 20.79 ± 2.99 20.63 ± 2.82 20.46 ± 2.90 20.21 ± 2.71 19.94 ± 2.59
rLap 16.62 ± 2.76 15.36 ± 2.73 14.38 ± 2.73 14.11 ± 2.55 14.01 ± 2.77

Fig. 3  USPS dataset
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methods. For MNIST dataset, EA outperforms rLap beyond 
NN =12.

For BCI test data rLap performs better than the rest of the 
methods at k = 6 and k = 12 . For unlabeled data EMR24 out-
performs other methods. For both test and unlabeled data-
sets, the classification accuracy is ≈ 75%.

For object detection datasets Fashion MNIST and Lego 
brick, rLap out performs all the other methods. The achieved 
accuracy for test data is ≈ 93.21% and ≈ 85.52% respectively, 
whereas for unlabeled data it is ≈ 94.07% and ≈ 93.75%, , 
respectively. For the other two object detection datasets 
COIL 20 and Cifar, test data accuracies are ≈ 98.73% and 

Table 4  USPS test data: mean 
error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 2.23 ± 1.24 2.26 ± 1.25 2.62 ± 1.46 2.83 ± 1.64 3.19 ± 1.81
L
m 4.03 ± 1.84 3.52 ± 1.82 3.01 ± 1.37 2.54 ± 1.38 2.41 ± 1.38

p-Lap 10.74 ± 4.41 9.63 ± 4.15 9.38 ± 4.06 8.92 ± 4.12 8.39 ± 4.04
EA 20.17 ± 7.68 20.32 ± 7.88 20.28 ± 7.91 20.48 ± 7.73 20.65 ± 7.97
EMR24 46.91 ± 13.92 47.26 ± 13.59 47.61 ± 14.04 47.92 ± 13.94 48.03 ± 13.79
K
5

2.98 ± 1.61 2.76 ± 1.53 2.69 ± 1.67 2.61 ± 1.58 2.51 ± 1.59
K
7

2.74 ± 1.48 2.46 ± 1.36 2.37 ± 1.30 2.28 ± 1.25 2.21 ± 1.29
MMM 2.71 ± 1.51 2.45 ± 1.34 2.30 ± 1.36 2.21 ± 1.30 2.19 ± 1.29
rLap 2.13 ± 1.13 2.02 ± 1.18 2.17 ± 1.41 2.30 ± 1.37 2.58 ± 1.52

Table 5  USPS unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 1.57 ± 0.72 1.61 ± 0.69 1.72 ± 0.78 1.96 ± 0.90 2.17 ± 1.03
L
m 3.18 ± 0.72 2.93 ± 0.74 2.79 ± 0.82 2.66 ± 0.82 2.53 ± 0.86

p-Lap 9.41 ± 1.80 8.68 ± 1.89 8.97 ± 2.04 9.13 ± 2.09 8.92 ± 2.16
EA 21.72 ± 7.49 21.86 ± 7.32 21.69 ± 7.17 21.80 ± 7.39 21.84 ± 7.38
EMR24 44.61 ± 3.52 44.87 ± 3.78 45.12 ± 3.83 45.04 ± 3.83 45.23 ± 3.96
K
5

1.93 ± 0.78 1.88 ± 0.76 1.79 ± 0.79 1.64 ± 0.79 1.50 ± 0.81
K
7

1.82 ± 0.71 1.71 ± 0.78 1.65 ± 0.78 1.58 ± 0.77 1.42 ± 0.73
MMM 1.83 ± 0.70 1.73 ± 0.72 1.67 ± 0.76 1.56 ± 0.79 1.49 ± 0.73
rLap 1.27 ± 0.58 1.33 ± 0.56 1.58 ± 0.64 1.64 ± 0.75 1.87 ± 0.87

Fig. 4  MNIST dataset
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≈ 75.43% and unlabled data accuracies are ≈ 98.79% and 
≈ 75.71% . The results for COIL20 test data show that rLap 
has minimum RMSE for k = 6 to k = 16 . For unlabeled data 
Lap performs better than rLap beyond NN = 12. In case of 
Cifar unlabeled data, rLap performs better, where as for test 

data p-Lap gives the best results from k = 12 onwards, still 
rLap method gave comparable results with p-Lap.

Table 6  MNIST test data: mean 
error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 28.47 ± 3.93 28.31 ± 4.10 27.94 ± 4.46 27.76 ± 4.68 27.78 ± 4.74
L
m 26.58 ± 3.08 26.23 ± 3.16 25.72 ± 3.39 25.43 ± 3.56 25.34 ± 3.58

p-Lap 38.50 ± 3.79 37.91 ± 3.89 37.15 ± 4.08 36.64 ± 4.26 36.40 ± 4.29
EA 18.26 ± 5.15 18.53 ± 5.28 18.17 ± 5.04 17.96 ± 5.23 17.60 ± 5.01
EMR24 14.31 ± 4.63 14.56 ± 4.72 14.74 ± 4.66 14.90 ± 4.73 15.03 ± 4.78
K
5

23.70 ± 5.81 23.41 ± 5.57 23.05 ± 5.82 22.93 ± 5.53 22.74 ± 5.18
K
7

20.59 ± 5.69 20.09 ± 5.78 19.83 ± 5.81 19.74 ± 5.46 19.58 ± 5.72
MMM 19.00 ± 5.21 18.71 ± 5.15 18.99 ± 5.19 18.61 ± 5.28 18.37 ± 5.03
rLap 11.42 ± 2.62 11.51 ± 2.66 11.88 ± 3.04 12.68 ± 3.34 13.32 ± 3.53

Table 7  MNIST unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 6.41 ± 4.26 6.90 ± 4.57 7.38 ± 4.81 7.71 ± 4.94 8.00 ± 5.05
L
m 2.37 ± 1.15 2.27 ± 1.15 2.16 ± 1.17 2.13 ± 1.22 2.12 ± 1.27

p-Lap 24.84 ± 2.23 23.68 ± 2.59 22.76 ± 3.07 22.32 ± 3.36 22.19 ± 3.36
EA 2.36 ± 1.17 2.57 ± 1.27 2.30 ± 1.23 2.17 ± 1.18 2.06 ± 1.09
EMR24 12.98 ± 3.71 13.14 ± 3.65 13.29 ± 3.78 13.64 ± 3.58 13.89 ± 3.67
K
5

10.57 ± 6.80 10.27 ± 6.28 10.03 ± 6.37 9.68 ± 6.49 9.31 ± 6.16
K
7

7.05 ± 4.67 6.89 ± 4.48 6.73 ± 4.59 6.38 ± 4.36 6.15 ± 4.10
MMM 5.96 ± 3.21 5.61 ± 3.42 5.88 ± 3.47 5.74 ± 3.53 5.46 ± 3.57
rLap 1.93 ± 1.44 2.02 ± 1.50 2.58 ± 1.87 2.93 ± 2.11 3.31 ± 2.36

Fig. 5  HASY dataset
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4.3  Medical image datasets

In case of medical image classification, we find limited num-
ber of labeled datasets. So it is important for a model to 
classify these medical images accurately using semi-super-
vised approach. In our experiment, we have considered five 
benchmark medical image datasets for binary classification.

Mammography images dataset This dataset is taken from 
Mammographic Image Analysis Society (Mini-MIAS)5 to 
predict breast cancer. The dataset consisted of 322 mam-
mography images having 1024 × 1024 dimensions each. The 

Table 8  HASY test data: mean 
error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 8.25 ± 10.47 8.28 ± 10.52 8.39 ± 10.52 8.40 ± 10.54 8.40 ± 10.54
L
m 15.44 ± 9.52 15.37 ± 9.54 15.27 ± 9.53 15.25 ± 9.52 15.24 ± 9.52

p-Lap 31.39 ± 8.13 31.34 ± 8.06 31.35 ± 8.05 31.14 ± 8.21 31.08 ± 8.37
EA 3.27 ± 6.10 3.33 ± 6.06 3.41 ± 6.20 3.49 ± 6.24 3.56 ± 6.28
EMR24 9.96 ± 7.78 10.27 ± 7.91 10.34 ± 7.83 10.43 ± 7.92 10.48 ± 7.98
K
5

7.41 ± 8.76 7.52 ± 8.19 7.68 ± 8.53 7.79 ± 8.81 7.95 ± 8.41
K
7

5.48 ± 7.53 5.63 ± 7.24 5.77 ± 7.34 5.85 ± 7.67 5.92 ± 7.81
MMM 4.67 ± 7.01 4.79 ± 7.27 4.85 ± 7.13 4.97 ± 7.52 5.03 ± 7.68
rLap 3.18 ± 6.09 3.25 ± 6.06 3.47 ± 6.29 3.68 ± 6.51 3.84 ± 6.70

Table 9  HASY unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 8.08 ± 10.53 8.11 ± 10.59 8.22 ± 10.59 8.23 ± 10.60 8.23 ± 10.60
L
m 15.34 ± 9.57 15.28 ± 9.60 15.18 ± 9.59 15.15 ± 9.59 15.14 ± 9.58

p-Lap 31.46 ± 8.18 31.40 ± 8.11 31.42 ± 8.10 31.21 ± 8.26 31.15 ± 8.41
EA 3.12 ± 6.13 3.27 ± 6.04 3.41 ± 6.18 3.58 ± 6.23 3.79 ± 6.31
EMR24 9.85 ± 7.83 9.96 ± 7.92 10.13 ± 7.84 10.39 ± 7.98 10.58 ± 8.06
K
5

7.27 ± 8.87 7.41 ± 8.80 7.56 ± 8.92 7.70 ± 8.95 7.86 ± 8.79
K
7

5.35 ± 7.62 5.46 ± 7.67 5.63 ± 7.74 5.81 ± 7.71 5.89 ± 7.82
MMM 4.53 ± 7.08 4.59 ± 7.01 4.74 ± 7.14 4.85 ± 7.17 4.90 ± 7.18
rLap 3.06 ± 6.15 3.12 ± 6.10 3.33 ± 6.34 3.54 ± 6.56 3.70 ± 6.75

Fig. 6  BCI dataset

5 http://peipa .essex .ac.uk/info/mias.html.

http://peipa.essex.ac.uk/info/mias.html
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dataset was divided into 200 and 122 images for training and 
testing respectively.

Diabetic retinopathy images This dataset is taken from 
Indian Diabetic Retinopathy Image Dataset (IDRiD) Web 
site.6 This abnormality of eyes affects the retina of patients 

by increasing the amount of insulin in their blood. In this 
experiment, a subset containing 516 images was used, where 
each image is of resolution 4288 × 2848 pixels. The training 
set consisted of 344 images and remaining 172 images were 
used for testing.

Table 10  BCI test data: mean 
error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 30.40 ± 2.97 30.36 ± 3.02 30.35 ± 3.02 30.36 ± 3.02 30.36 ± 3.02
L
m 31.17 ± 3.19 31.12 ± 3.19 31.13 ± 3.17 31.13 ± 3.18 31.12 ± 3.19

p-Lap 32.08 ± 3.35 32.04 ± 3.33 32.04 ± 3.32 32.05 ± 3.32 32.04 ± 3.33
EA 29.43 ± 5.01 29.09 ± 5.11 29.23 ± 5.08 29.34 ± 5.12 29.41 ± 5.17
EMR24 24.41 ± 5.87 24.45 ± 5.82 24.51 ± 5.92 24.55 ± 5.89 24.78 ± 5.97
K
5

24.58 ± 4.91 24.57 ± 4.99 24.48 ± 4.97 24.44 ± 4.91 24.44 ± 4.91
K
7

24.57 ± 4.93 24.52 ± 4.87 24.48 ± 4.99 24.43 ± 4.95 24.39 ± 4.93
MMM 24.97 ± 4.89 24.93 ± 4.82 24.90 ± 4.85 24.89 ± 4.84 24.89 ± 4.84
rLap 24.38 ± 5.06 24.82 ± 4.98 24.37 ± 4.97 24.68 ± 4.91 24.82 ± 4.98

Table 11  BCI unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 33.35 ± 4.07 33.33 ± 4.14 33.32 ± 4.15 33.33 ± 4.15 33.33 ± 4.14
L
m 33.58 ± 4.02 33.47 ± 4.11 33.49 ± 4.10 33.47 ± 4.10 33.47 ± 4.11

p-Lap 34.14 ± 4.48 33.89 ± 4.45 33.94 ± 4.49 33.92 ± 4.46 33.89 ± 4.45
EA 33.07 ± 5.95 31.31 ± 5.67 32.31 ± 5.88 32.73 ± 5.71 33.05 ± 5.90
EMR24 25.10 ± 5.21 25.38 ± 5.27 25.57 ± 5.31 25.78 ± 5.34 26.15 ± 5.38
K
5

27.71 ± 6.30 27.70 ± 6.30 27.69 ± 6.28 27.67 ± 6.32 27.67 ± 6.32
K
7

27.68 ± 6.29 27.66 ± 6.27 27.64 ± 6.24 27.59 ± 6.22 27.59 ± 6.22
MMM 27.65 ± 6.02 27.62 ± 6.09 27.61 ± 6.09 27.56 ± 6.10 27.59 ± 6.11
rLap 31.38 ± 5.56 25.58 ± 6.47 27.62 ± 6.18 26.56 ± 6.32 25.58 ± 6.47

Fig. 7  Coil20 dataset

6 https ://idrid .grand -chall enge.org/.

https://idrid.grand-challenge.org/
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Chest X-ray images This dataset contains 338 chest X-ray 
images,7 used to classify data for COVID-19. Though the 
dataset contains the images for SARS (Severe acute respira-
tory syndrome), ARDS (acute respiratory distress syndrome) 

and other classes [8], etc; we have applied the concept of 
one-vs-all classification for predicting COVID-19 only. Out 
of 422 X-ray and CT Scan images of 216 patients, we have 
taken only X-ray images of 194 patients, containing 272 
COVID-19 positive images.

Table 12  Coil20 test data: mean 
error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 2.06 ± 2.14 2.06 ± 2.14 2.06 ± 2.16 2.04 ± 2.16 2.04 ± 2.16
L
m 2.72 ± 2.47 2.72 ± 2.47 2.72 ± 2.47 2.72 ± 2.47 2.72 ± 2.47

p-Lap 3.15 ± 2.92 3.15 ± 2.92 3.15 ± 2.92 3.14 ± 2.93 3.14 ± 2.93
EA 1.65 ± 2.21 1.71 ± 2.24 1.78 ± 2.19 1.85 ± 2.26 1.94 ± 2.23
EMR24 12.47 ± 5.74 12.68 ± 5.77 12.97 ± 5.81 13.08 ± 5.89 13.21 ± 5.94
K
5

2.55 ± 2.71 2.55 ± 2.71 2.55 ± 2.71 2.54 ± 2.70 2.54 ± 2.70
K
7

2.00 ± 2.36 2.00 ± 2.36 1.99 ± 2.34 1.99 ± 2.34 1.99 ± 2.34
MMM 1.94 ± 2.32 1.94 ± 2.32 1.92 ± 2.31 1.92 ± 2.31 1.92 ± 2.31
rLap 1.27 ± 1.85 1.38 ± 1.93 1.62 ± 2.18 1.85 ± 2.36 1.97 ± 2.51

Table 13  Coil20 unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 1.45 ± 1.51 1.45 ± 1.51 1.45 ± 1.51 1.45 ± 1.51 1.45 ± 1.51
L
m 1.89 ± 2.10 1.89 ± 2.10 1.89 ± 2.10 1.88 ± 2.09 1.88 ± 2.09

p-Lap 2.48 ± 2.57 2.48 ± 2.57 2.48 ± 2.57 2.47 ± 2.57 2.47 ± 2.57
EA 1.88 ± 2.41 1.92 ± 2.36 1.95 ± 2.33 1.99 ± 2.21 2.07 ± 2.32
EMR24 11.10 ± 5.00 11.34 ± 5.11 11.51 ± 4.96 11.89 ± 5.18 12.09 ± 5.23
K
5

1.72 ± 2.18 1.72 ± 2.18 1.72 ± 2.18 1.72 ± 2.18 1.71 ± 2.18
K
7

1.61 ± 2.12 1.61 ± 2.12 1.60 ± 2.10 1.60 ± 2.10 1.60 ± 2.10
MMM 1.71 ± 2.13 1.71 ± 2.13 1.71 ± 2.13 1.69 ± 2.11 1.69 ± 2.11
rLap 1.21 ± 1.78 1.45 ± 2.03 1.71 ± 2.59 2.01 ± 2.74 2.23 ± 2.98

Fig. 8  Cifar dataset

7 https ://githu b.com/ieee8 023/covid -chest xray-datas et.

https://github.com/ieee8023/covid-chestxray-dataset
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COVID CT Scan images This dataset contains COVID 
CT Scan images.8 A total of 349 images of 216 patients are 
COVID-positive and 397 images are non-COVID images. 
All the images are of different resolutions, varying from 

minimum 153 × 124 pixels to maximum of 1853 × 1485 
pixels; averaging 491 × 383 pixels. Total 400 images are 
considered in training and remaining 346 for testing.

Table 14  Cifar test data: mean 
error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 24.89 ± 2.35 24.96 ± 2.33 25.03 ± 2.32 25.08 ± 2.28 25.13 ± 2.28
L
m 24.76 ± 2.52 24.74 ± 2.47 24.83 ± 2.48 24.86 ± 2.42 24.91 ± 2.41

p-Lap 25.00 ± 2.55 24.84 ± 2.56 24.65 ± 2.60 24.58 ± 2.64 24.52 ± 2.63
EA 39.34 ± 2.68 39.51 ± 2.59 39.64 ± 2.63 39.78 ± 2.74 39.91 ± 2.79
EMR24 28.33 ± 2.76 28.49 ± 2.50 28.58 ± 2.63 28.71 ± 2.72 28.80 ± 2.76
K
5

31.20 ± 3.05 31.48 ± 3.26 31.62 ± 3.01 31.84 ± 3.29 31.97 ± 3.37
K
7

30.87 ± 2.96 31.08 ± 3.02 31.21 ± 3.10 31.39 ± 2.99 31.48 ± 3.05
MMM 28.69 ± 2.58 28.73 ± 2.38 28.77 ± 2.40 28.80 ± 2.59 28.92 ± 2.64
rLap 24.57 ± 2.41 24.63 ± 2.36 24.73 ± 2.33 24.83 ± 2.32 24.90 ± 2.30

Table 15  Cifar unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 25.97 ± 3.33 25.81 ± 3.24 25.73 ± 3.24 25.73 ± 3.23 25.78 ± 3.19
L
m 26.16 ± 3.42 25.78 ± 3.38 25.53 ± 3.38 25.45 ± 3.39 25.50 ± 3.42

p-Lap 28.91 ± 3.20 28.08 ± 3.16 27.16 ± 3.20 26.50 ± 3.32 26.16 ± 3.39
EA 39.29 ± 3.16 39.21 ± 3.08 39.07 ± 3.29 38.93 ± 3.12 38.85 ± 3.25
EMR24 27.57 ± 3.17 27.49 ± 3.31 27.28 ± 3.27 27.09 ± 3.29 27.04 ± 3.29
K
5

29.68 ± 3.82 29.83 ± 3.60 29.97 ± 3.46 29.94 ± 3.51 29.96 ± 3.51
K
7

29.59 ± 3.79 29.68 ± 3.83 29.82 ± 3.39 29.89 ± 3.65 29.91 ± 3.69
MMM 28.81 ± 3.51 28.97 ± 3.58 28.76 ± 3.47 28.61 ± 3.63 28.61 ± 3.79
rLap 24.74 ± 3.13 24.48 ± 3.08 24.33 ± 3.04 24.29 ± 3.01 24.31 ± 2.98

Fig. 9  Fashion MNIST dataset

8 https ://githu b.com/UCSD-AI4H/COVID -CT.

https://github.com/UCSD-AI4H/COVID-CT
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Alzheimer’s Brain MRI This dataset consists of 6400 Alz-
heimer’s Brain MRI images9 of resolution 176 × 208 pixels 

each. The dataset contains 5121 images for training and 
1279 images for testing. In Alzheimer’s, cognitive impair-
ment can be very mild, mild or moderate. So, the dataset 
has four classes of images namely non demented, very mild 
demented, mild demented and moderate demented. In the 

Table 16  Fashion MNIST test 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 19.19 ± 11.14 19.47 ± 11.28 19.69 ± 11.37 19.78 ± 11.31 19.83 ± 11.68
L
m 19.98 ± 11.16 19.96 ± 11.26 20.36 ± 11.34 20.58 ± 11.53 20.82 ± 11.79

p-Lap 26.35 ± 10.44 26.94 ± 10.32 27.02 ± 10.38 27.40 ± 10.44 27.57 ± 10.49
EA 40.59 ± 4.01 40.73 ± 4.27 40.85 ± 4.18 40.92 ± 4.16 40.89 ± 4.19
EMR24 14.23 ± 4.67 14.52 ± 4.72 14.77 ± 4.84 14.91 ± 4.71 15.03 ± 4.96
K
5

9.21 ± 4.11 9.01 ± 4.26 9.33 ± 4.38 9.61 ± 4.53 9.84 ± 4.00
K
7

8.77 ± 4.06 8.68 ± 4.01 8.75 ± 4.15 8.92 ± 4.28 9.07 ± 4.31
MMM 8.26 ± 4.05 8.19 ± 4.13 8.35 ± 3.92 8.50 ± 4.41 8.97 ± 4.63
rLap 6.91 ± 3.95 6.79 ± 3.90 6.84 ± 3.86 6.97 ± 4.12 7.12 ± 4.04

Table 17  Fashion MNIST 
unlabeled data: mean error 
(± standard deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 18.60 ± 11.32 18.83 ± 11.51 18.99 ± 11.74 19.25 ± 11.68 19.37 ± 11.88
L
m 19.52 ± 11.23 19.73 ± 11.07 19.88 ± 11.57 20.14 ± 11.94 20.31 ± 11.84

p-Lap 25.16 ± 10.51 25.37 ± 10.56 25.42 ± 10.47 25.69 ± 10.60 25.83 ± 10.38
EA 40.58 ± 4.33 40.69 ± 4.35 40.84 ± 4.41 40.87 ± 4.47 40.97 ± 4.36
EMR24 14.21 ± 4.61 14.48 ± 4.56 14.73 ± 4.49 14.80 ± 4.68 14.94 ± 4.50
K
5

7.11 ± 3.81 7.02 ± 3.72 6.94 ± 3.84 7.14 ± 3.78 7.27 ± 3.93
K
7

6.75 ± 3.80 6.63 ± 3.84 6.70 ± 3.72 6.81 ± 3.90 6.96 ± 3.73
MMM 6.41 ± 3.82 6.46 ± 3.80 6.31 ± 3.86 6.57 ± 3.91 6.72 ± 3.73
rLap 5.93 ± 3.82 5.98 ± 3.82 5.79 ± 3.75 6.02 ± 3.93 6.11 ± 3.90

Fig. 10  Lego bricks dataset

9 https ://www.kaggl e.com/touri st55/Alzhe imers -datas et-4-class -of-
image s.

https://www.kaggle.com/tourist55/Alzheimers-dataset-4-class-of-images
https://www.kaggle.com/tourist55/Alzheimers-dataset-4-class-of-images
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experiment non demented and very mild demented images 
are considered as negative and rest as positive.

The images in Fig. 11 show examples of each medical 
image dataset. Results obtained for these datasets for k = 6 
are summarized in Table 20 for test data and in Table 21 for 
unlabeled data. We can conclude that rLap method gives best 
results for all the medical image unlabeled datasets. For test 
datasets, EMR performs better than rLap for Mini-MIAS 

Table 18  Lego bricks test 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 20.00 ± 17.26 20.19 ± 17.29 20.38 ± 17.48 20.53 ± 17.73 20.65 ± 17.62
L
m 28.76 ± 15.50 28.92 ± 15.64 29.04 ± 15.38 29.30 ± 15.79 29.52 ± 15.47

p-Lap 33.26 ± 15.61 33.76 ± 15.70 33.93 ± 15.97 34.18 ± 16.25 34.33 ± 16.19
EA 18.04 ± 12.22 18.28 ± 12.54 18.17 ± 12.70 18.47 ± 13.06 18.81 ± 12.73
EMR24 16.44 ± 8.32 16.59 ± 8.29 16.36 ± 8.37 16.05 ± 8.58 16.14 ± 8.02
K
5

17.45 ± 14.16 17.51 ± 13.89 17.42 ± 14.06 17.64 ± 13.94 17.76 ± 14.67
K
7

16.52 ± 13.34 16.48 ± 13.26 16.42 ± 13.58 16.71 ± 13.60 16.93 ± 13.27
MMM 17.39 ± 12.33 17.52 ± 12.41 17.71 ± 12.73 17.84 ± 12.58 17.97 ± 12.86
rLap 14.67 ± 12.62 14.48 ± 12.84 14.59 ± 12.36 14.68 ± 12.52 14.93 ± 12.19

Table 19  Lego bricks unlabeled 
data: mean error (± standard 
deviation)

Minimum mean error has been highlighted in bold

Methods k = 6 k = 8 k = 12 k = 16 k = 20

Lap 15.61 ± 16.72 15.69 ± 16.88 15.82 ± 16.73 16.13 ± 16.67 16.26 ± 16.78
L
m 31.21 ± 14.77 31.46 ± 14.80 31.58 ± 14.76 31.85 ± 14.82 31.94 ± 14.86

p-Lap 35.69 ± 14.55 35.81 ± 14.79 35.96 ± 14.62 36.13 ± 14.57 36.28 ± 14.69
EA 12.55 ± 9.39 12.68 ± 9.46 12.74 ± 9.57 12.92 ± 9.41 13.03 ± 9.58
EMR24 13.88 ± 6.45 13.79 ± 6.47 13.66 ± 6.53 13.53 ± 6.76 13.38 ± 6.83
K
5

8.73 ± 6.94 8.80 ± 6.78 8.86 ± 6.79 9.03 ± 6.82 9.17 ± 6.73
K
7

8.11 ± 5.96 8.46 ± 5.68 8.67 ± 5.86 8.87 ± 5.70 9.02 ± 5.94
MMM 8.89 ± 6.54 8.97 ± 6.59 9.02 ± 6.48 9.13 ± 6.41 9.24 ± 6.61
rLap 6.86 ± 4.89 6.75 ± 4.93 6.82 ± 4.94 6.93 ± 4.79 7.02 ± 4.85

Fig. 11  Examples of various medical image datasets

Table 20  Medical images test datasets: mean error (± standard deviation)

Minimum mean error has been highlighted in bold

Methods Datasets

Mini-Mias (200, 122) IDRiD (344, 172) COVID-Xray (200, 138) COVID-CT Scan 
(400, 346)

Alzheimer (5121, 1279)

Lap 30.13 ± 4.57 19.57 ± 6.83 26.13 ± 7.02 35.14 ± 9.45 24.98 ± 6.71
L
m 31.54 ± 5.17 18.93 ± 8.35 26.62 ± 7.47 30.03 ± 8.05 24.14 ± 7.38

p-Lap 37.46 ± 8.14 22.59 ± 6.57 33.45 ± 9.25 40.45 ± 7.26 31.70 ± 6.40
EA 30.00 ± 8.37 22.67 ± 9.12 26.48 ± 8.98 31.24 ± 11.62 25.51 ± 10.36
EMR24 23.81 ± 9.03 22.01 ± 9.48 23.17 ± 8.76 30.37 ± 13.50 28.98 ± 11.84
K
5

28.93 ± 8.59 21.31 ± 11.41 30.02 ± 7.23 34.76 ± 12.40 22.67 ± 11.27
K
7

27.87 ± 8.96 20.92 ± 11.53 29.89 ± 6.48 33.65 ± 11.16 22.21 ± 10.87
MMM 28.18 ± 8.04 20.71 ± 10.79 29.15 ± 7.94 33.24 ± 10.10 21.07 ± 9.36
rLap 24.68 ± 6.23 17.83 ± 8.46 22.71 ± 4.37 29.13 ± 9.21 21.17 ± 5.03
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dataset, whereas MMM gives the highest accuracy for Alz-
heimers’ dataset. For COVID-19 and diabetic retinopathy 
rLap performs better than all state-of-the-art methods.

Remarks Based on the experimental results, it is evident 
that the proposed rLap method outperforms the existing 
manifold regularization methods. While the classification 
accuracy remained high for spoken alphabets (Isolet), image 
datasets (fashion MNIST, Lego bricks, and COVID-19 med-
ical images) datasets, moderate enhancement in accuracy 
has been achieved for the unlabeled data of many handwrit-
ten datasets. Performance of the trained model on test data 
shows significant improvement COID20 dataset, inferring 
that the model does not overfit. For manifold learning as 
well, our method better unfolds the synthetic datasets in 2D. 
So it can be summarized that rLap performed better than 
existing state-of-the-art manifold learning and regularization 
methods for most of the datasets.

5  Conclusion

It is known that the extent of locally linear neighborhood on 
a Riemann manifold is difficult to ascertain. In this paper, we 
flatten a heuristically chosen neighborhood by aligning their 
tangent spaces to allow Euclidean distance as a measure of 
pairwise affinity. Extensive experiments on both synthetic 
and real world datasets prove that our proposed method per-
forms well in both manifold learning and regularization. For 
dimensionality reduction, our algorithm gives better repre-
sentation of synthetic datasets over the Laplacian, LTSA, 
DM, EA, K5 , K7 and MMM approaches. The reduced clas-
sification error for RLSC proved that rLap based Euclidean 
distance between similar neighbors by aligning the tangent 
spaces of misaligned neighbors is a good representation of 
affinity. However, the choice of the neighborhood size is 
vital for the success of the alignment-based affinity measure.
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