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Abstract

Background: The integration of data from multiple genome-wide assays is essential for
understanding dynamic spatio-temporal interactions within cells. Such integration, which leads to
a more complete view of cellular processes, offers the opportunity to rationalize better the high
amount of “omics” data freely available in several public databases.

In particular, integration of microarray-derived transcriptome data with other high-throughput
analyses (genomic and mutational analysis, promoter analysis) may allow us to unravel
transcriptional regulatory networks under a variety of physio-pathological situations, such as the
alteration in the cross-talk between signal transduction pathways in transformed cells.

Results: Here we sequentially apply web-based and statistical tools to a case study: the role of
oncogenic activation of different signal transduction pathways in the transcriptional regulation of
genes encoding proteins involved in the cAMP-PKA pathway. To this end, we first re-analyzed
available genome-wide expression data for genes encoding proteins of the downstream branch of
the PKA pathway in normal tissues and human tumor cell lines. Then, in order to identify mutation-
dependent transcriptional signatures, we classified cancer cells as a function of their mutational
state. The results of such procedure were used as a starting point to analyze the structure of PKA
pathway-encoding genes promoters, leading to identification of specific combinations of
transcription factor binding sites, which are neatly consistent with available experimental data
and help to clarify the relation between gene expression, transcriptional factors and oncogenes in
our case study.

Conclusions: Genome-wide, large-scale “omics” experimental technologies give different,
complementary perspectives on the structure and regulatory properties of complex systems.
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Even the relatively simple, integrated workflow presented here offers opportunities not only for
filtering data noise intrinsic in high throughput data, but also to progressively extract novel
information that would have remained hidden otherwise. In fact we have been able to detect a
strong transcriptional repression of genes encoding proteins of cAMP/PKA pathway in cancer cells
of different genetic origins. The basic workflow presented herein may be easily extended by
incorporating other tools and can be applied even by researchers with poor bioinformatics skills.

Background

Integration achieves one of the most important impera-
tives of systems biology, namely it reduces the dimen-
sionality of global data needed to deliver useful
information about the networks active in the system of
interest. The integration of data from different sources
provides an effective means to deal with this issue by
reinforcing bona fide observations and reducing false
negatives. Moreover, because different experimental
technologies provide different insights into a system,
the integration of multiple data types offers the greatest
information about a particular cellular process [1-3]. For
example, gene perturbation experiments (e.g., knockouts
or RNA interference) and microarrays analysis can reveal
relationships between genes that may imply direct
physical interactions or indirect logical interactions.
Indeed, microarray experiments permit us to look at
overall patterns of gene expression in order to under-
stand the architecture of genetic regulatory networks, a
global approach that could ultimately lead to complete
description of the transcription-control mechanisms in a
cell. In contrast, chromatin immunoprecipitation (Chlp)
data can reveal direct protein-DNA interactions or
cofactor associations with bound transcription factors.
Combined together, these technologies can provide a
much more detailed view of a transcriptional regulatory
network than either alone.

Several recent methods have addressed the problem of
heterogeneous data integration and network prediction
by modeling the noise inherent in high-throughput
genomic datasets, especially by using statistical methods,
which can significantly improve specificity and sensitiv-
ity and allow the robust integration of datasets with
heterogeneous properties [4,5]. However, many of these
methods recently developed to implement our ability to
integrate and compare heterogeneous data, are often not
easy to use and/or not freely accessible [6,7]. Taking into
consideration that the development of efficient methods
that facilitate the biological interpretation of these data
is crucial, in the present work we focus on efficient
identification of regulatory mechanisms, and propose an
approach for analysis and interpretation of gene expres-
sion data based on the integration of various types of
related biological information.

The cAMP-PKA signalling pathway is an important
regulator of cell fate that controls the activity of metabolic
enzymes, transcription factors and cytoskeletal proteins
and is strongly associated with the onset of several
endocrine and non-endocrine tumors. A fundamental
characteristic of cAMP is its ability to stimulate cell
proliferation in many cell types while inhibiting in others.
Such ability has been related to the fact that cAMP
regulates the Ras/Raf/ERK pathway, whose role in cancer
onset is well known (about 25% of human cancers have a
Ras mutation). Indeed the cAMP pathway is able to
suppress ERK signaling through its ability to target C-Raf
and conversely, to activate ERK signaling through its
ability to target B-Raf [8]. The underlying inhibitory
mechanism is reasonably well characterized and involves
the uncoupling of Ras signaling to C-Raf. On the other
hand, models to explain ERK activation by cAMP are
incomplete and in addition to B-Raf the involvement of
other proteins has been suggested [9,10]. Many observa-
tions regarding the cAMP ability to inhibit/stimulate
proliferation by interfering with ERKs have been collected
in normal or immortalized cell lines. However, recogniz-
ing the important role of both pathways in the develop-
ment of cancer, is relevant to a more specific analysis of
their crosstalk network also in cancer cells [11-14].

As previously described, the Ras pathway is able to
crosstalk with the cAMP-PKA pathway by some typical
signal transduction mechanisms (i.e. protein-protein
interaction, protein phosphorylation). Moreover,
through its ability to regulate the activity of a large
number of transcription factors [15,16], the Ras pathway
is able to control several transcriptional programs
leading to proliferation, differentiation, metabolism,
cytoskeletal reorganization and immune response. Such
transcriptional programs are the result of ras-specific
effectors stimulation [13,17]. Until now more than ten
distinct functional classes of proteins have been involved
as effectors of the small GTPase Ras, but the best studied
are Raf kinases, type I phosphoinositide (PI) 3-kinases,
Ral-guanine nucleotide exchange factors (Ral-GEFs), the
Rac exchange factor Tiam1, and phospholipase C [18].

Raf and phosphatidylinositol 3-kinase (PI3K) were the
first two identified Ras effectors and the main focus of
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research investigating Ras functions [19,20]. Raf pro-
motes cell proliferation and differentiation through the
MAP kinase (MAPK) pathway [21], at the same time as
PI3K generates anti-apoptotic signalling, directly or
through Akt pathway activation [22,23]. Both signalling
pathways can activate two different signals distinct for
their response timing. Indeed both MAPK and PI3K are
able to activate phosphorylation cascades that lead, as
primary effect, to post-translational modification of
several substrates (membrane targets, cytosolic targets,
cytoskeletal targets and nuclear targets), which rapidly
activate functional processes. Early response to Ras
signalling is quite fast: for instance in resting cells
stimulated with mitogens, Ras-GTP level increases within
2 minutes from stimulation with serum [19]. Raf-1
undergoes transient activation within 2-3 minutes, and
rapidly activates the mitogen-activated protein kinase
(MAPK) cascade whose most downstream component,
ERK, rapidly moves into the nucleus. Here it phosphor-
ylates nuclear proteins, notably transcription factors
[24,25] whose activity can be controlled by regulating
their sub-cellular localization, expression, stability,
ability to bind to other components of transcriptional
complexes and to DNA, and their ability to remodel
chromatin structure [26]. Transcription factors are under
the control of MAPK pathway, including members of the
ETS family (i.e. Ets-1, Ets-2, PU-1), MADS box family
(i.e. MEF2A, MEF2C, Sp1), Zinc Finger family (i.e. GATA-2
and GATA-4), bZip family (i.e. Fra-1, ¢-Jun, JunB, JunD,
ATF-2, c-Fos and CREB), bHLH family (i.e. c-Myc, MITF),
Nuclear Hormone Receptor (i.e. PR, GR and ER) as well as
other transcription factors (i.e, SMAD1, STAT1) and
coregulatory proteins (i.e., CBP, p300) [15,24,25].

Like ERKs, Akt and other targets of PI3K signalling can
phosphorylate and activate transcription factors [27]. Akt
protein can control several transcription factors directly
or indirectly. Direct targets are the forkhead box proteins,
FOXO, and the cell cycle inhibitor, MIZ1, which are both
inhibited upon AKT-mediated phosphorylation. AKT-
dependent regulation of p53, nuclear factor B (NFkB),
c-MYC, activator protein 1 (AP1) and beta-catenin is
indirect [16].

Such an observation led us to re-analyze, by using a
generalized workflow for data recovery and integration,
available data from multiple global assays and several
databases (genomics, transcriptomics, promoter analysis
and literature). In particular we searched for information
for genes encoding proteins of the downstream branch
of the PKA pathway (starting from adenylyl cyclase and
downstream) in tumor cell lines (NCI60 cells) as a
function of mutational activation of different pathways
(notably the Ras and PI3K pathway) in comparison with
the corresponding normal tissues, with the aim to define
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better the connection between these pathways in cancer
cells [28].

Results and discussion

Gene-expression profiling has been applied extensively
in cancer research. As a first step to identify regulatory
mechanisms underlining gene-expression profiles it is
necessary to extract, filter, cross-reference and structure
information from cancer-related data sets [29]. The aim
of this work has been the identification of cancer-specific
specific gene expression signatures in genes encoding
proteins involved in the cAMP-PKA pathway. In parti-
cular we wished to identify, if present, differences
between primary normal tissues and cancer cells and
search for correlation with the pathway mutationally
activated in any given transformed cell line by integrat-
ing an accurate analysis of recovered data from several
databases with the application of different statistical
tests.

Transformation-dependent, transcriptional remodelling
of the PKA pathway encoding genes in 60 human cancer
cell lines (NCI60)

The NCI60 cell collection includes cell lines derived from
colorectal, renal, ovarian, breast, prostate, lung and
central nervous system cancers, as well as leukaemias
and melanomas (Table 1), that are most commonly used
in cancer research and drug screening [30,31]. A good
correlation between transcriptional profiles of the cell
lines and their tumor cancer of origin [31,32] has been
found for 51 out of 59 cell lines. NCI60 transcriptional
profiles are available in public databases.

Since the stabilized cell lines within the NCI60 collection
represent a physiological model to study gene profiles in
cancer cells, with features strongly similar to cancer tissues,

Table I: The cancer cell lines in the NCI160 collection sorted by
tissue of origin

Tumor Type Cell lines

Breast HS578T, MDA-MB23 1, MD-MB435, MCF7, T47,
MDA-N, BT549

CNS SF295, SF359, SNBI19, U251, SF268, SNB75

Colon HCC2998, HCTI 16, HCTI5, SW620, COLO205,
HT29, KMI2

Leukaemia CCRF-CEM, RPMI-8226, HL60, MOLT4, K562, SR

Melanoma SK-MEL2, LOXIMVI, M14, MALME-3M, SK-MEL28,

SK-MELS5, UACC257, UACC62
Lung A549, HOP62, NCI-H23, NCI-H460, EKVX,
NCI-H226, NCI-H322, NCI-H522, HOP92

Ovarian OVCARS5, OVCARS, SKOW3, IGROVI, OVCAR3,
OVCAR4

Prostate PC3, DUI145

Renal 786-0, RXF-393, A498, ACHN, CAKI-1, SNCI2C,
TK10, U031

Unknown ADR-RES

Page 3 of 22

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 12):S1

we reviewed information present in public databases
about the 60 cell lines and 21 normal tissues, in order to
identify transformation-dependent transcriptional signa-
tures for PKA pathway-encoding genes (Table 2).

We identified and gathered the transcriptional profile for
41 genes encoding proteins involved in the PKA pathway
(adenylyl cyclases -ADCY-, phosphodiesterases -PDE-, A-
kinase anchor proteins -AKAP-, cAMP-dependent tran-
scriptional factors -TF-, PKA catalytic subunits -PRKAC-
and PKA regulatory subunits -PRKACR-, Table 3) and
compared expression profiles of cancer cell lines with
those of primary normal tissues, collected from different
datasets (Table 3). To identify differences between
normal and cancer samples, we performed an ANOVA
analysis on the entire data set. As shown in Figure 1,
distributions of expression values of genes encoding
proteins of the cAMP/PKA pathway were statistically
different between normal and transformed cells (p-value
<0.0001), indicating that in transformed cells the PKA
pathway-related genes are differentially expressed as
compared to normal cells. Namely, the box plot
indicates that, overall, the distribution of expression of
values of transformed cells is shifted towards lower
expression values. Dispersion of the distribution in
transformed cells is much reduced compared to that
observed in normal tissues, as if transformation events
superimpose a negative regulation that largely abrogates

Table 2: Gene expression profiling datasets of NCI160 cell lines
and normal tissues analyzed in this study

Reference Tissue of Number of GEO

origin transcriptional Number
profiles

[31] NCI60 cells 60 GSE5949
Breast 0 -

[106] CNS 2 GSE9%6

[107] Colon 4 GSE6731

[108] Blood 4 GSE[402

[106] Lung 2 GSE96
Skin 0 -

[106] Ovary 3 GSE9%6

[106] Prostate 3 GSE9%6

[106] Kidney 3 GSE9%6

Gene expression profiles retrieved from the GEO Database. Dataset A
(60 profiles) is made up of the NCI60 cell lines [31]. Dataset B (I3
profiles) is a subset of transcriptional profiles of a diverse array of
tissues, organs, and cell lines from a normal human physiological state
[106]. Dataset C (4 profiles) encompasses the normal human adult
samples derived from colonoscopic biopsy present in a database
comprising samples of patients with Crohn's disease or ulcerative colitis
[107]. Dataset D (4 profiles) contains normal control samples present in
a database containing transcriptional profiles of peripheral blood
mononuclear cells (PBMC) obtained by juvenile arthritis patients and
healthy controls [108].
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tissue-specific regulation (i.e., the major factor respon-
sible for dispersion of expression in normal tissues, see
next paragraph).

The same data-set was then analyzed through unsuper-
vised hierarchical clustering (as implemented in the
GeneSpring platform) that organizes genes according to
the similarity or dissimilarity in expression profile,
placing the cases with similar expression profiles
together as neighbouring columns in the dendrogram
(Figure 2). Six different classes corresponding to the
main arms of the dendrogram derived from clustering
according to Tissue and cell lines (classes I to III
correspond to the left main branch of dendrogram, IV
to VI to the right branch) were identified. Each cell line is
color-coded at the bottom according to its condition (i.
e., normal, blue, or transformed, red) or the tissue of
origin. Notably, classes II and V contain only trans-
formed cells, while only one transformed cell line
clusters in class VI. In most cases clustering effectively
separates normal and transformed cell lines of the same
histological origin: for instance, normal and transformed
cell lines derived from kidney cluster to class I and III,
hemopoietic normal and transformed cell lines to IV and
I1, colon cancer cells are in class II while normal colon in
class IV, respectively (Table 4). Class I and IV contained
cancer lines of several histological origin, while class II
was enriched for cancer cells from colon and blood, class
III for ovary and kidney and class V for lung, respectively
(Table 4). These results indicate that regulation of the
PKA pathway is tissue-dependent, in keeping with the
pleiotropic and tissue-specific phenotypes regulated by
intracellular cAMP. They also suggest that transformation
transcriptionally remodulates the PKA pathway, so that
in most cases expression profiling of genes encoding
proteins of the cAMP-PKA pathway is quite different in
cancer cells as compared to their normal counterparts.
Interestingly in class IV, which comprises all the colon
and hemopoietic normal samples, we observe strong
expression of few genes (AKAP9-11; PDE4D; PRKCB and
PRKAR2B; CREB1- colon sample- and AKAP9-11; PDE4B
and PDE8A; PRKCB and PRKAR1A; CREB1 and CREM-
hemopoietic sample-) as compared to their transformed
counterparts, in which the same genes appeared poorly
expressed (class II). In human colon carcinoma cells it
has been reported that PRKAR2B overexpression sup-
presses neoplastic cell growth [33], consistently with the
notion that abnormal expression of isoforms of PKA
regulatory subunits may be involved in neoplastic
transformation. Moreover in several models of hemo-
poietic malignancies, it has been shown that induction
of cAMP/PKA pathway stimulates leukemia cell differ-
entiation (event associated to the relapse of the disease)
or lymphoma cells apoptosis [34,35].
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Table 3: PKA related genes identified in all the datasets shown in Table 2 and used in this study

Probeset Unigene Symbol Description

33353_at Hs. 192215 ADCYI Adenylate cyclase | (brain)

34686_at Hs.481545 ADCY2 Adenylate cyclase 2 (brain)

33134_at Hs.467898 ADCY3 Adenylate cyclase 3

39383_at Hs.525401 ADCY6 Adenylate cyclase 6

40585_at Hs.513578 ADCY7 Adenylate cyclase 7

36246_at Hs.414631 ADCY8 Adenylate cyclase 8 (brain)

33800_at Hs.391860 ADCY9 Adenylate cyclase 9

37698_at Hs.463506 AKAPI A kinase (PRKA) anchor protein |

36633_at Hs.462457 AKAPIO A kinase (PRKA) anchor protein 10

34657_at Hs.105105 AKAPI | A kinase (PRKA) anchor protein 11

37680_at Hs.371240 AKAPI2 A kinase (PRKA) anchor protein (gravin) 12
554_at Hs.45921 1| AKAPI3 A kinase (PRKA) anchor protein 13

41075_at Hs.98397 AKAP3 A kinase (PRKA) anchor protein 3

37087_at Hs.97633 AKAP4 A kinase (PRKA) anchor protein 4

32421 _at Hs.532489 AKAPS A kinase (PRKA) anchor protein 5

40747 _at Hs.509083 AKAP6 A kinase (PRKA) anchor protein 6

41703_r_at Hs.486483 AKAP7 A kinase (PRKA) anchor protein 7

35138_at Hs.199029 AKAP8 A kinase (PRKA) anchor protein 8

37886_at Hs.399800 AKAPSL A kinase (PRKA) anchor protein 8-like

36506_at Hs.527348 AKAP9 A kinase (PRKA) anchor protein (yotiao) 9

36297 _at Hs.435267 ATFI Activating transcription factor |

37535_at Hs.516646 CREBI cAMP responsive element binding protein |
32066_g at Hs.200250 CREM cAMP responsive element modulator

35522 at Hs.487129 PDEIOA Phosphodiesterase 10A

36311 _at Hs.416061 PDEIA Phosphodiesterase |A, calmodulin-dependent
38921 _at Hs.530871 PDEIB Phosphodiesterase |B, calmodulin-dependent
32418 at Hs.487897 PDEIC Phosphodiesterase |C, calmodulin-dependent
666_at Hs.89901 PDE4A Phosphodiesterase 4A, cAMP-specific

33705_at Hs.198072 PDE4B Phosphodiesterase 4B, cAMP-specific

38860_at Hs.437211 PDE4C Phosphodiesterase 4C, cAMP-specific

38526_at Hs. 117545 PDE4D Phosphodiesterase 4D, cAMP-specific

37676_at Hs.9333 PDE8SA Phosphodiesterase 8A

37249 _at Hs.78106 PDESB Phosphodiesterase 8B

33709 _at Hs.473927 PDESA Phosphodiesterase 9A

438_at Hs. 194350 PRKACA Protein kinase, cAMP-dependent, catalytic, alpha
36215 at Hs.487325 PRKACB Protein kinase, cAMP-dependent, catalytic, beta
36359_at Hs. 158029 PRKACG Protein kinase, cAMP-dependent, catalytic, gamma
226_at Hs.280342 PRKARIA Protein kinase, cAMP-dependent, regulatory, type |, alpha
1091 _at Hs.550753 PRKARIB Protein kinase, cCAMP-dependent, regulatory, type |, beta
I16_at Hs.517841 PRKAR2A Protein kinase, cAMP-dependent, regulatory, type I, alpha
37221 _at Hs.433068 PRKAR2B Protein kinase, cAMP-dependent, regulatory, type Il, beta

Analysis of mutational status of the NCI60 cell lines

and correlation with tissue-specific PKA pathway

gene regulation

In the previous paragraph we have shown that a different
and a tissue-specific pattern of expression of the PKA
pathway encoding genes between normal and trans-
formed samples does exist. Moreover, we observed that a
similar pattern is common to different tissues, both in
normal and transformed samples. While in normal
tissues such a finding may be justified by a common
histological origin or by the PKA pathway regulating a
common intracellular process (i.e. differentiation, meta-
bolism), in transformed samples, in which the correct
regulation of the PKA pathway is lost, such similar gene
regulation can suggest a transformation or a mutation-
dependent gene regulation.

For this aim, we determined the mutation status of the
NCI-60 panel of human cancer cell lines, identified the
pathway in which such mutations were involved and
correlated the mutation status and pathway altered in
the transformed cells with transcriptional profiling data.
The 60 cell lines were sorted according to mutational
status, using the information provided by Catalogue Of
Somatic Mutations In Cancer (http://www.sanger.ac.uk/
genetics/CGP/cosmic/), and divided into four groups
based on the carried mutation as follows (Table 5):

1) Cell lines carrying mutations able to interfere with the
Ras pathway (i.e., mutations in genes encoding Ras, B-
Raf, ERBB2, PDGFRA, referred to as Ras), 29 cell lines;

2) Cell lines carrying mutations able to interfere with
PI3K-Akt pathway (i.e., mutations in genes encoding
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Statistical analysis of the 41 PKA pathway-encoding
genes expression in normal and transformed
samples. 81 transcriptional profiles from normal tissues and
from the NCI60 cancer cell line collection, were recovered
from the GEO database. After normalization (see Methods),
the expression values of 41 PKA pathway-encoding genes
were used to perform an ANOVA analysis (p-value 0.0001)
to evaluate the statistical significance of the differences
between normal and transformed samples. IQR: Interquartile
Range. Outliers are also shown.

PI3KCA, PTEN and Lkb1, referred to as PI3K), 13 cell
lines.

3) Cell lines carrying no somatic mutations interfering
with the two above pathways (i.e., mutations in genes
encoding CDKN2A, p53, referred to as Other Mutation),
14 cell lines;

4) Cell lines for which the presence of somatic mutations
interfering with the above pathways has not been
searched, referred to as Not Tested), 4 cell lines.

To assess overall data quality and visualize relations and
differences between the aforementioned transformed
and normal samples, we applied dimensional reduction
through principal component analysis (PCA). A three-
dimensional PCA plot of all expression data (accounting
for 91% of variance) is shown in Figure 3A. PC1 (x axis)
effectively separates the normal group from the four
groups of transformed cells. PC2 (y axis) effectively
separates the Ras group from the others, while PC3
(z axis) best separates the Other Mutation group from
the others. Overall, the Ras group appeared to segregate
the most from the other groups.

http://www.biomedcentral.com/1471-2105/10/S12/S1

In Figure 3B, the 41 genes encoding proteins involved in
the PKA pathway were sorted according to their relative
level of expression and color-coded in the graph
according to expression: strong (red, value >1), average
(black, value=1) and low (green, level <1). These three
series were crossed with the groups described above,
namely Normal, Ras, PI3K, Other Mutation and Not
Tested. In Normal tissues, expression of 83% of the genes
was classified as Strong, a value 2-3 fold higher than
those observed in the different transformed groups (27-
41%). Overall, in the transformed groups, expression of
most PKA pathway-encoding genes was classified as
Average or Low, with the exception of the Ras group, in
which only one gene was scored as low.

Expression of PKA pathway-encoding genes was further
classified as follows (Figure 3C): genes with similar level
of expression between normal and at least one trans-
formed group (blue color), genes whose expression level
is different between the normal and transformed groups
(vellow color) and genes with similar expression level
among the different transformed groups (grey color).
Such a classification allowed us to pinpoint genes, such
as ADCY2 and AKAP13 whose expression is strong only
in the Normal group. More interestingly, expression of a
few genes, such as ADCY3 and AKAP8 was strong only in
members of the transformed groups, despite overall
reduction in expression of the PKA pathway-encoding
genes observed in transformed samples.

These results were further confirmed by pair-wise ANOVA
analyses (Figure 3D), in which the distribution of expres-
sion values of genes encoding proteins of the cAMP/PKA
pathway were found to be statistically different between
normal and each group of transformed cells (p-value
between 0.0001 and 0.0003). Notably, the difference in
distribution between the Ras group and the PI3K and Other
Mutation groups was also statistically significant, unlike
the difference with the Not Tested group. This suggests that
cells in this group may be biased for mutations within
genes encoding proteins of the Ras pathway.

To reveal gene expression changes relate to mutation
status of the 60 cell lines, and better interpret the results
of PCA and ANOVA, a hierarchical clustering was
performed. The resulting dendrogram is shown in
Figure 4, in which each cell line is color-coded at the
bottom according to its tissue of origin -row labeled
tissue-, mutated gene -row labeled mutation-, inferred
pathway activated by mutation -row labeled pathway-.
A robust association between the transcriptional profiles
and mutations in the Ras pathway was observed
(indicated as Ras, red color). Two cell lines of the Not
Tested group were interdispersed within the Ras group,
indicating that these two lines are most likely
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Hierarchical clustering of the 41 PKA pathway-encoding genes analyzed in this paper. Two-way (gene, column

and cell line, row) hierarchical clustering (see Methods) of the same profiles analyzed in Figure |. Normalized expression is
colour-coded from green (poor expression) to red (strong expression). The name of each gene is colour-coded according

to family to which it belongs.The 6 main classes described in the text (red lines on the top of the dendrogram and roman

number bottom of the dendrogram) are shown. The distance function is based on Pearson correlation and complete linkage
clustering. Legends for expression, condition, gene family and tissue of origin are shown on the right of the dendrogram.

responsible for the lack of statistical difference between
the Ras and the Not Tested group (see above).
Comparison of the Tissue and Pathway categories
indicated that within the two Ras sub-clusters, some
tissue-specificity is conserved. Indeed, the left cluster,
comprising a total of 18 cell lines, was characterized by 6
colon cancers and 6 leukemias of which 5 on 6 were
mutated in Ras pathway. Similarly the right cluster,
comprising a total of 19 cell lines, was characterized by 8
melanomas and 5 lung cancers of which 7 on 8 were
mutated in Ras pathway for melanoma and 4 on 5 for
lung cancer. The other sub-clusters, comprising all the
remaining cell lines and the other three groups of
mutations and consequently of pathways, were more
dispersed along the clustergram. Together, these results

indicate that transformation events modulate transcrip-
tional regulation of genes encoding proteins of the PKA
pathway and that mutational activation of the Ras
pathway originates a distinguishable signature, in com-
parison with mutational activation of the other genes
studied in this report. Such a distinguishable signature is
particularly noticeable in melanoma cells, in which
strong expression of a gene set encoding a complete
functional PKA pathway module (ADCY3; PDE4B,
PDE4D and PDE8SA; AKAP12; PRKAR1A and PRKAR2B;
PRKACB; CREM) is observed, suggesting a deregulated
cAMP signaling. Moreover, analysis of expression values
for PRKAR1A and PRKAR2B genes indicated the presence
in melanoma cells of a high R1/R2 ratio, that has been
associated to melanocyte proliferation [36].
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Table 4: Correlation between PKA related gene patterns and
tissues

Class Normal Transformed

| Breast 2/8
Lung 1/9
CNS 1/6
Kidney 2/8
Prostate 1/2
Ovary 2/6

Kidney 3/3

I Colon 6/7
Prostate 1/2
Lung 1/9
Hemopoietic 6/7

1l Ovary 3/3 Ovary 4/6
Breast 1/8

Kidney 5/8

v Breast 2/8
Kidney 1/8
CNS 4/6
Colon 4/4
Lung 2/9
Skin 1/8
Hemopoietic 4/4

\'% Breast 3/8
CNS 176
Colon 1/7
Skin 7/8
Lung 4/9

\ CNS 2/2
Prostate

3/3 Lung 2/2 Lung 1/9

Six different classes, corresponding to the main arms of the dendrogram
derived from clustering according to "Tissue and cell line", were
identified. The number on the right of each tissue represents the
number of samples belonging to a class as compared to the total sample
analyzed.

Promoter analysis: finding correlation between oncogenic
pathway, transcriptional profiles and promoter regulation
Genes involved in the same pathway or transcriptionally
co-regulated are likely to share similar promoter features.
To test this hypothesis in our model, the 15 groups
previously established (see Figure 3), containing cor-
egulated genes for each group, were used for promoter
identification and analysis. Using a series of biocomput-
ing procedures and statistical processes (see Methods
and the Figure), we identified Transcription Factor
Binding Sites (TFBSs) conserved within the promoters
(operationally defined as regions spanning 500 nt
upstream and 100 nt downstream from the transcription
start site) of the 41 PKA pathway-encoding genes. Genes
were sorted in the 15 groups indicated in Figure 3B and
3C, and each group separately analyzed. In this first
analysis (Fig. 5A), each TFBS was scored as either absent
or present, regardless of the number of copies present

http://www.biomedcentral.com/1471-2105/10/S12/S1

within a given promoter. This analysis permitted the
identification of 30 TFBSs enriched in the promoters of
the 41 PKA pathway-encoding genes whose frequency of
occurrence i.e., the ratio between the promoters that
contained the specified motif (S) and the 41 promoters
in our collection (T) was compared with the frequency of
occurrence within vertebrate genomes (computed using
the promoter Library Matrix Family of vertebrates that
comprises 260.000 vertebrate promoters). Statistical
analysis indicated that of these 30 TFBSs, 7 were over-
represented (red color) and 9 under-represented (green
color). The remaining showed the same frequency of
occurrence found in the whole vertebrate genome
collection.

A consensus representation for the promoter structure of
each subgroup of coregulated genes was drawn by taking
into account the 30 TFBSs present in at least 70% of the
genes within each subgroup (Figure 5B). Surprisingly,
the vast majority of these consensus promoters (13 out
of 15) showed a common module (upper part, module),
comprising 4 TFBSs: ETSF, MAZF, ZBPF and EGRF, 3 of
which are over-represented in our collection (over-
represented motifs are indicated by an asterisk at the
bottom of the figure). This strongly suggests a functional
implication of these TFBSs in expression of PKA path-
way-encoding genes. Other interesting features indicated
by this analysis include the identification of binding sites
for PAX6 (indicated by red P) and ZF5F and NKXH
(indicated by red Z and N respectively) only in consensus
promoters of some genes within the normal or trans-
formed group, respectively.

Another feature that may be critical in the identification
of enriched elements is the number of copies of a given
TFBS within a promoter. In fact, it has been documented
that the presence of multiple copies of cis-elements in
promoters, particularly when clustered, makes transcrip-
tional activation stronger [31,32]. For this reason, total
number and frequency (number of each TFBS/promoter)
of the 30 TFBSs previously identified, was scored within
each of the 15 subgroups and classified by hierarchical
clustering (Figure 6A and 6B, respectively). Analysis
using both criteria confirmed the results reported in
Figure 5: the presence in promoters of all subgroups of a
TFBS module comprising ETSF, MAZF, ZBPF and EGREF.
Clustering according to Regulation in Figure 6A show
that all promoters of genes characterized by low
expression transformed samples cluster together (class
I). Promoters belonging to genes with strong expression
in the Ras group cluster in a completely independent
arm (lower part of the dendrogram), opposite to where
cluster promoters belonging to genes with strong
expression in the Normal group (class I). Additionally,
clustering by frequency highlighted the specific
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Table 5: NCI160 cell lines with predicted active pathways by mutational analysis

Tumor Type Ras PI3K Other Mutation Not Tested
Breast HS578T, MDA-MB23 1, MD-MB435 MCF7, T47, - MDA-N, BT549
CNS - SF295, SF359, SNBI19, SF268, SNB75 -
U251
Colon HCC2998, HCT116, HCTI5, SW620, COLO205, KMI2 - -
HT29
Leukaemia CCRF-CEM, RPMI-8226, HL60, MOLT4, K562 - - SR
Melanoma SK-MEL2, LOXIMVI, M14, MALME-3M, SK-MEL28, - - -
SK-MELS5, UACC257, UACC62
Lung A549, HOP62, NCI-H23, NCI-H460 - EKVX, NCI-H226, NCI-H322, HOP92
NCI-H522
Ovarian OVCARS5, OVCARS8 SKOWS3, IGROVI OVCAR3, OVCAR4 -
Prostate - PC3, DUI45 - -
Renal - 786-0, RXF-393 A498, ACHN, CAKI-1, SNCI2C, -
TK10, U031
Unknown ADR-RES - - -

The 60 cell lines reorganized in 4 categories, as described in the text, on the basis of the most representative mutation of each cell line:
Cell lines carrying mutations able to interfere with Ras-Raf-MAPK pathway (i.e., mutations in genes encoding Ras, B-Raf, ERBB2, PDGFRA, referred to

as Ras);

Cell lines carrying mutations able to interfere with PI3K-Akt pathway (i.e., mutations in genes encoding PI3KCA, PTEN and Lkbl, referred to as

PI3K);

Cell lines carrying no somatic mutations interfering with the two above pathways (i.e., mutations in genes encoding for CDKN2A, p53, referred to as

Other Mutation);

Cell lines for which the presence of somatic mutations interfering with the two above pathways has not been searched, referred to as Not Tested.

enrichment of EKLF in genes with low expression.
Clustering according to both criteria indicated that
Normal samples clustered in a different way as compared
to transformed samples (upper part of the dendrogram)
and that the PI3K, Other Mutation and Not Tested
samples were more interspersed along the dendrogram
and confirmed that the Ras category showed a different
promoter composition as compared to other categories,
in keeping with the PCA analysis presented in Figure 3.

Data mining for PKA pathway-related gene promoters

As previously described, computational analysis of our
promoter collection, permitted the identification of
some TFBS that are able to characterize in a specific
manner normal and transformed samples. To confirm
some of our computational results, we interrogated
several databases and searched in the literature for
studies on promoter structure of PKA pathway-encoding
genes. Experimental studies, using one or more mole-
cular approaches including EMSA, Chromatin Immuno-
precipitation and transactivation assay, have been found
for 16 PKA pathway-encoding genes: PRKARIA,
PRKAR1B, PRKAR2B, PRKACA, AKAP1, AKAPS8, AKAP9,
AKAP10, AKAP12, ADCYS8, ADCYY9, PDE4B, PDEA4C,
PDE4D, CREB and CREM. This subset of genes was re-
analyzed as described above and the obtained results
were compared with literature data (Table 6). In total, 36
TFBSs have been experimentally identified: 20 of these
(i.e. 55%) have been predicted by our computational
approach and for two genes alone (AKAPY9 and

PRKAKA), none of the experimentally identified sites
was identified by the computational approach that
overall identified a much higher number of sites
compared to those retrieved from literature. The biolo-
gical significance of the presence of the identified TFBS
and of their relationship with oncogenic mutations,
notably in the Ras pathway, is proposed below.

PKA type I regulatory subunit A (PRKAR1A) expression
has been studied in different cellular models by
analyzing its mRNA expression and by using its putative
promoter region. In its promoter, binding sites for
activator protein-1 and 2 (AP-1 and AP-2) and Spl
[37] have been identified. Moreover, a more recent work
showed a direct activity of FOX family (FOXC2, D1 and
D2) transcriptional factors members in the regulation of
PRKAR1A expression both at transcriptional and at post-
transcriptional levels [38,39].

The promoter of PRKAR1B has been identified and
studied in human and mouse: binding sites for Jun and
p53 (human) and Oct-1, Egrl and Pax1l (mouse) have
been found. These binding sites have been experimen-
tally verified by Electrophoretic Mobility Shift Assay,
functional analysis and Northern blot [40,41].

PRKAR2B promoter has been studied in particular in
Sertoli cells (human). Some reports identified binding
sites for Sp1, NF-1, Myc, C/EBPbeta, able to induce the
PRKAR2B promoter, USF1 and USF2. Interestingly,

Page 9 of 22

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 12):S1 http://www.biomedcentral.com/1471-2105/10/S12/S1

PCA mapping (91%)

PC#2 (16.1%) Expression
Groap I Strong

Group

® Normal Average Other Mutation
Ras Low

® PI3K =

® Other Mutation

©® Not Tested

PC#1 (62.6%)

TNRANRNTNANNRNANINN  ANRNURNRNURNRNNNNRNANNY NURDUCNRNNNNNNNNNNNY  NONNCNNNNNCNRNRNNRNNNY
A
Q
(7]

Not Tested

PC#3 (12.3%)

Cc

Gene name|N| P| R[Nt O|N| P[R|Nt{O| N[ P| R[Nt O

ADCY1 -
ADCY2|
ADCY3
ADCY6,
ADCY7,
ADCYS|
ADCY9
AKAP1
AKAP10
AKAP11
AKAP12
AKAP13
AKAP3
AKAP4
AKAP5
AKAP6
AKAP7
AKAPS
AKAPSL,|
AKAP9 =
ATF1
CREBI1
CREM
PDE10A
PDEIA
PDE1B
PDEIC|
PDE4A

PDE4B I

Normal

e < QAR @
(3] N -O0OO o
Expression value (log scale)

=)

o
=)

— 95% CI notched outlier Boxplot
X+ Outliers >1.5and < 31QR
x  Outliers > 3 IQR

X Normal vs PI3K p < 0.0001
Normal vs Ras p =0.0003
Normal vs Other Mutation p < 0.0001
Normal vs Not Tested p < 0.0001
PI3K  vs Ras p =0.0296
PI3K  vs Other Mutation p =1
PI3BK  vs Not Tested p = 0.3586
PDEAC]| Ras vs Other Mutation p = 0.0337
PDE4D) Ras vs Not Tested p = 0.1595
PDESA| Other M vs Not Tested p = 0.3784
PDESB
PDE9A| '& ﬂ;‘"
PRKACA éo
PRKACB éQ A
PRKACG] ,‘@
PRKARIA| [l fox
PRKARI1B|
PRKAR2A
PRKAR2B|
% 8324273941 5 1717 2 1012 58 56 58 49

N
9

—
9

Expression value
N
o

-
I}
1=
s+

o
2]

Figure 3

Identification of differentially regulated genes in normal and transformed samples. (A) Samples were sorted in five
groups according to mutational activation: green, normal; yellow, Ras; red, PI3K; blue, Other Mutation; cyan, Not Tested.
Principal Component Analysis (PCA) performed on 41 PKA pathway-encoding genes for normal samples and the four classes
of mutation-dependent samples. Each sphere represents the comparative averaging of the 41 genes for each pathway identified
by mutational analysis. (B) For each of the 5 groups described in (A), the 41 PKA-encoding genes were clustered, relative to
their level of expression, in three subgroups: Strong (>1, red), Average (=1, black) and Low (<I, green). (C) Gene list
according to expression level and mutational group of the three subgroups previously indicated, divided for each sample.
Color-coding is as follows: blue, common between normal and at least one transformed sample; yellow, specific for normal
samples; grey, specific for transformed samples. Percentage of regulated genes for each subgroup is shown at the bottom. (D)
ANOVA analysis to evaluate the statistical significance of the differences between the five classes of samples described in (A).
The right inset shows p-value of the pair-wise comparisons. Statistically significant differences are indicated in red. IQR:
Interquartile Range. Outliers are also shown.
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Figure 4

Hierarchical clustering of the 41 PKA pathway-encoding genes in transformed samples. Two-way (gene, column
and cell line, row) hierarchical clustering (see Methods) of the profiles from the NCI60 collection only. Normalized expression
is colour-coded from green (poor expression) to red (strong expression). The distance function is based on Pearson
correlation and complete linkage clustering. The name of each gene is colour-coded according to the family to which it
belongs. Legends for expression, condition, gene family and tissue of origin are shown on the right of the dendrogram. The
data have been organized on the basis of the tissue of origin of the cancer (Tissue), the specific oncogenic mutations identified
in each cell line (Mutation), the putative altered pathway by the specific mutations (Pathway) and the gene family.
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TFBS identification by using the enrichment as parameter. (A) The panel shows for each TFBS, recognized as
relevant (present in > 70% of the promoters of 41 PKA pathway-encoding genes) the percentage of promoters in our
collection that contain the motif as compared to Matrix Family Library on vertebrates. This percentage has been calculated by
dividing the total number of promoters containing the motif (S) by the total number of promoters (T). Color-coding scheme
on the right of the panel. (B) Schematic representation of the TFBSs (color-coded as shown on the right of the panel)
identified in the promoters of the |5 subgroups described in the text and in Figure 3. Each cartoon represents the promoter
structure resulting from the average of the TFBS identified in > 70% of the gene promoters for each subgroup. The asterisks on
the bottom of the cartoon indicate the over-represented TFBS, as scored in panel A, for all the 41 PKA pathway-encoding

genes.

overexpression of USF2, but not USF1, led to inhibition
of both cAMP- and C/EBPbeta-mediated induction of
PRKAR2B [42-44].

The promoter of Protein kinase, cAMP-dependent,
catalytic, alpha (PRKACA) has been identified both in
humans and mouse, but little information has been
produced for human promoter. Indeed, one paper
describes the presence of binding sites for USF1 and
USF2 transcription factors [45].

AKAP1, AKAPY and AKAP10 promoters contain binding
sites for c-Myc as shown by computational analysis and
ChIP experiments in several human cell lines [46,47].
Moreover, a single study indicates the presence in the
promoter of AKAP12 of binding sites for Serum
Response Factor transcriptional factors [48] and more
recently for Myc.

ADCY9 promoter contains binding sites for c-Myc as
shown by an experimental approach [49].

Several promoters of genes encoding phosphodiesterase
proteins have been isolated and to some extent studied.
All the studies have been performed on sequences of
human promoters and in particular the PDE4B, PDE4C
(both present in our collection of PKA pathway related
genes), and PDE5A, PDE6A, PDEGB and PDE7A pro-
moters (not present in our gene list) have been better
characterized. In the PDE4B promoter, binding sites for
CREB have been found [50]. In PDE4C promoter,
binding sites for Myc have been found [47]. In the
PDE5SA promoter, binding sites for Jun and AP-2 have
been found [51,52]; in PDE6A and PDE6B promoters,
binding sites for Sp1 [53] and Sp4 [54,55] respectively
and in PDE7A promoter, Ets2 and NFkB1 binding sites
[56].

The cyclic AMP response element (CRE)-binding protein
CREB promoter has been identified in human, mouse
and rat. Analysis done on human promoter, experimen-
tally confirmed, identified binding site for c-Myc [57]
and Sp1 [58]. Further information about such promoter
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Figure 6

Hierarchical clustering of TFBSs present in the promoters of the 41 PKA pathway-encoding genes, according
to total number and frequency. Two-way (TBFS, column and expression subgroup, see Figure 3, row) hierarchical
clustering of the TFBS present within the promoters of the 41 PKA pathway-encoding genes. Clustering was run according to
the total number of TBFS present in each group (panel A) or to the frequency, i.e. the total number of a given TBFS divided by
the number of promoters (panel (B). The color-coding scale is shown at the top of each panel. The distance function is based
on Pearson correlation and complete linkage clustering. The two classes, corresponding to the main arms of the dendrogram,
derived from clustering according to "Condition" are shown on the right of each dendrogram.

has been produced in mouse and rat cells which allowed by Adenylyl Cyclases, activate PKA kinase activity, PKA is
the identification of binding site for NfkB [57]. able to inhibit the pathway, activating by phosphoryla-

tion the Phosphodiesterases, which ultimately induce
An important regulative mechanism of the PKA pathway  hydrolysis of cCAMP switching off the pathway. Moreover
is feedback control. Indeed as well as the cAMP produced  a huge amount of data has been published regarding the
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Table 6: Comparison between computational data and literature data
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GeneName Computational data Literature data

ADCY8 HOXF, ETSF, SORY CREB

ADCY9 ZF5F, SPIF, ZBPF, MAZF, EKLF, EGRF, EBOX, CDEF, WHNF, AHRR, ETSF, c-Myc/EBOX
HESF

AKAPI MYOD, EKLF, MAZF, EGRF, ETSF, HOXF, APIR, EBOX c-Myc/EBOX

AKAP8 SPIF, EKLF, ZBPF, EBOX, ZF5F, HIFF, MAZF, EGRF, ETSF, AHRR, CREB =~ CREB

AKAP9 ZBPF, EGRF, EKLF, ETSF, HOXF, SPIF, MAZF, GLIF, HOMF, NKXH, CREB c-Myc/EBOX

AKAPIO ETSF, SPIF, HESF, EBOX, ZBPF, MAZF, MYBL, MYOD, AP4R, EGRF, CREB, c-Myc/EBOX
MZFI

AKAPI2 EBOX, EGRF, SORY c-Myc/EBOX, SRF/SRFF

CREBI SORY, SPIF, NFKB, ETSF, ZBPF, MYOD, EKLF, AP4R, MZFI, HICF Myc/EBOX, Sp1/SPIF, NFkB/NFKB

CREM ZBPF, EGRF, SPIF, MAZF, EKLF, ETSF, CREB, WHNF, HESF, EBOX, MYBL, CREB
HIFF, AHRR

PDE4B ETSF, SORY, HOXF, ZBPF, HEAT, CREB CREB

PDE4C ZBPF, ETSF, CREB, GLIF, MAZF Myc/EBOX, CREB

PDE4D SORY, HOXF, NKXH, ETSF, CREB, GATA, MYOD CREB

PRKACA  EKLF, ZBPF, EGRF, MZFI, NKXH, ETSF, MAZF, SORY, HOXF USFI/EBOX, USF2/EBOX

PRKARIA ETSF, CREB, ZBPF, EBOX, EGRF, SORY, GATA, MYBL, MYOD, HIFF, SPIF, API/APIF, AP2/AP2F, Spl/SPIF, CREB, FOXC2,
HESF FOXD, FOXD2

PRKARIB EKLF, MAZF, HESF, PLAG, ZBPF, EBOX, EGRF, MYOD, MZFI, AHRR, ETSF, Jun/APIF, p53/P53F, Oct-1/OCTI, Egrl/EGRF
HIFF, SPIF, APIF Pax|/PAXI

PRKAR2B  ZBPF, ZF5F, EGRF, EKLF, MAZF, HESF, SPIF, CREB, EBOX, ETSF, NFIF Spl/SPIF, NF-1/NFIF, Myc/EBOX, CEBPbeta/

CEBP USFI, USF2/EBOX

The table shows the transcriptional factor families identified by computational analysis and the transcriptional factors/transcriptional family identified
by analysis of literature data. The factors identified by both analysis are shown in bold.

ability of PKA to activate specific transcription factors by
phosphorylation: cyclic AMP response element (CRE)-
binding protein CREB, the cAMP response element
modulator (CREM), the activating transcription factor
1 (ATF-1) and a repressor, ICER (inducible cAMP early
repressor) [59] that, to a certain extent, has been shown
to regulate PKA pathway-related genes transcription.
Some of the promoters, already discussed above, have
been shown to have CRE binding sites. Moreover, two
interesting recent publications, have identified and
characterized in different cellular contexts and by several
approaches, through a genome-wide approach, target
genes that are regulated by CREB [60,61]. The authors
have identified and proved by ChiP analysis (PRKAR1A,
PDE7B) the presence of CRE site in PRKAR1A, in PDE7B,
AKAPS8, PDE4C and ADCYS. In the latter case they did
not observe binding by Chip analysis, but another report
has shown that its activation is mediated specifically via
the canonical CRE site [62]. Binding sites for CREB1 have
been found in PDE7A [56], PDE4D [63], CREM [64] and
experimentally confirmed. Moreover analysis of the
promoter of CREB gene showed the presence of several
CRE binding sites [65,66].

Most of AP-1 (i.e. Jun), AP-2 and Spl transcription
factors are involved in growth-related signal transduction
pathways, among which Ras is a main actor, and their
over-expression can have positive or negative effects on
proliferation [67-71]. Indeed Sp family has been shown
to be regulated by post-translational mechanisms by Ras

pathway [72,73] as well as Ets1 and Ets2 [74,75] and
NFkB [76-78].

Egr-1 is an early responsive gene linked to mitogenic
stimulation directly regulated by MAPK pathway [79-82].
Moreover for Myc [83,84], C/EBPbeta [85] and NF-1 [86]
a large amount of data about their correlation with Ras
pathway has been reported. Each of these transcriptional
factors has been associated with several cellular responses
(proliferation, survival, apoptosis) and transformation as
is the case of the PKA pathway as well. Therefore it is
possible that mitogenic signal through Ras and the
regulation of such transcription factors, modulates the
expression of PKA pathway related genes.

An important role, in the activation of the CREB family
transcription factors, is played by stimuli which are able
to induce their phosphorylation and consequently their
activation. In fact as reviewed in [65] not only the
protein kinase A is involved in this function but also
several growth factors (NGF, FGF, 1GF-I, PDGF, EGF),
survival signals and hypoxia that often activate the Ras
pathway, pointing to an essential role of the latter
pathway also in gene transcriptional regulation of PKA
pathway-encoding genes by transcription factors of the
CREB family.

Conclusions
By using a generalized workflow for data recovery and
integration that combines accurate analysis of recovered
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data from several databases with the application of
different statistical tests we have been able to correlate
strong transcriptional repression of genes encoding
proteins of the cAMP/PKA pathway in transformed
samples of different genetic origin (i.e., bearing muta-
tions in different pathways). This finding prompted us to
compute consensus promoters, whose composition was
specifically enriched for different transcription factor
binding sites (TBFS). Comparison of TFBS computation-
ally identified in the consensus promoters with TBFS
experimentally identified by a variety of techniques,
shows a good agreement. Indeed, by lowering the
stringency used in the workflow, some of the TFBS
missed by higher stringency analysis (false negatives)
were recovered, in keeping with the notion that inter-
section of different data sets and/or techniques decreases
both noise and the number of hits.

The workflow we have followed is summarized in
Figure 7 and detailed in Methods section. As the number
of sites hosting curated transcriptional profiles increases,
more and more data to be used as starting point become
available. We used the GEO database to recover data
from the NCIGO cell collection (cancer samples) and
matching normal tissues and to which specific statistical
tests (i.e. ANOVA, Hierarchical clustering) were applied.
By using the COSMIC database, which gives information
about the mutational status of the NCI60 collection, we
could sort the NCI6O cell lines in 4 subgroups with
mutational activation of genes encoding components of
the Ras pathway, of the PI3K pathway, of other pathways
or for which no information was available. Such a
sorting allowed us to uncover an hitherto unrecognized
oncogene-dependent pattern of regulation of 41
genes encoding components of the cAMP/PKA pathway
(Figure 7B and 7C). The transcriptional profiles for
transformed cells within one of the identified subgroups
may then be used as a new query to GEO database (green
arrow), in order to correlate and confirm, i.e. in cancer
tissues, the oncogene-dependent pattern identified.

Deregulation of transcriptional programs, such as that
identified for PKA pathway-encoding genes, may be
considered a direct consequence of a deregulated activity
of transcription factors. The TRANSFAC database was
used with a high stringency threshold, to identify the
regulatory sequence in co-regulated genes with high
confidence, improving the deduced linkages between
transcription factors and the regulated genes. Using this
approach, we demonstrated that in all PKA encoding
genes TFBSs for ETS, MAZ, ZBP and EGR transcription
factors are present (Figure 7D) and that specific subsets
of TFBS are present in the normal and transformed
samples. The number of TFBS identified by computa-
tional analysis was higher than those that could be
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retrieved from literature as experimentally determined.
This observation was to some extent expected because of
limited literature reference availability, complexity to
retrieve data, difficulty to analyze data from several
origins, and the lack of powerful data analysis and
integration tools. Under these less-than-ideal conditions,
a dedicated tool such as the TFBS database, can be
extremely powerful, allowing predictions that are amen-
able to experimental verification, should this be neces-
sary. As discussed above, most of the false-negatives that
failed to be detected by our computational approaches
could be recovered by appropriately lowering the
stringency of analysis.

In Figure 7B transcriptional expression of PKA pathway
encoding genes is color-mapped (geometric mean,
Strong expression, red, Average expression, black and
Low expression green) on a block diagram summarizing
functional interconnections within the PKA pathway
module. A general and balanced co-regulation of both
positive and negative regulators of the cAMP/PKA
pathway is apparent in both normal and transformed
samples. Notably, in normal cells variability in expres-
sion is maximal for genes encoding the catalytic subunit
of PKA. Because of the pleiotropic role of the PKA
pathway (including stimulation of growth and differ-
entiation in many cell types, such as somatotrophs,
thyrocytes, melanocytes, ovarian follicular granulosa
cells, keratinocytes, nervous, muscle and blood cells
and adipocyte and the important role of such pathway in
the regulation of the function of tissues as kidney, ovary,
brain, and prostate), strong expression in normal tissues
is expected [8,87,88]. It should also be remembered that
cross-talk between the PKA pathway and oncogene-
mediated pathways can also take place at post-transcrip-
tional levels. For example, several Authors reported the
ability of oncogenic and viral Ras proteins to either
stimulate [89-91] or inhibit [92-94] ADCY activity in
different cell lines (thyroid, epithelial, kidney, fibro-
blast). Moreover an involvement of MAPK or PI3K
pathways in the regulation of PDE activity has been
reported, suggesting that mitogenic stimulation may
positively regulate PDE4 expression directly [95],
confirming our transcriptional results, or by post-
translational mechanisms in which p42(MAPK)
phosphorylation activity has a relevant role in their
regulation [96]. Another important post-transcriptional
mechanism that links Ras or PI3K pathways to cAMP/
PKA pathway is the positive and negative control of
CREB activity by a phosphorylation [97,98]. Moreover, it
has been reported that cAMP is able to induce prolifera-
tion rather than growth inhibition, in several tumors
where oncogenic activation of B-Raf has been identified
(i.e., melanoma and thyroid cancer) [8]. Nevertheless,
the general and coordinated down-regulation of

Page 15 of 22

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 12):S1

http://www.biomedcentral.com/1471-2105/10/S12/S1

w { Q o
o
8 GEO § COosmIC TRANSFAC g PUBMED
8 transcriptional data| |X mutational data promoter data § literature data
(2] 2 %.
- Transcriptional 8 = — |/ N
=] data = ranscriptiona = 2
o S - Gene list _>| TFBS list
z Normal/NCI60 g profiles 3
) 7
 / =
- GENESPRING; GENESPRING; GENOMATIX; -~ Y
8 Statistical Test Statistical Test Statistical Test Query Search
[
- Transcriptional Specific mutation TFBS Promoter
E profiles profiles identification verified data
5
o ey | . ]
> Data Integration |
\J MODELLING \
B Normal Transformed
ADCY & . Expression ADCY PDE & v
Gz ATP AMP § Strong FCOZE%d| ATP AMP §
ACDY2 ACDY8 - Average ACDY2 ACDY8 -
ACDY3 ACDY9 S ACDY3 ACDY9 =
ACDY6 PDE4A PDESE | N Low ACDY6 ppE4A PDESE |l EX
PDE4B PDESA g PDE4B PDESA g
PKA activation CAMP g' PKA activation g'
38 38
Qg b2
AKAP1 [AKAP7| AKAP10 2 AKAP1 AKAP7 AKAP10 2
AKAP3 |AKAP8 AKAP11 o= AKAP3 AKAP8 AKAPH a=
AKAP4 AKAPSL AKAP12 3 AKAP4 AKAPSL AKAP12 8
AKAP5 AKAP9 AKAP13 AKAP5 AKAP9 AKAP13
AKAP AKAP
ATF1 CREMCREB ATF1CREMCREB1
Cc Transcrlptlonal Transcriptional
o 45 activation o 45 activation
3 4.0 3 4.0
g35 835
< 3.0 < 3.0
o o
® 2.5 T ‘» 2.5
2 2.0 ; ; 2 20
8§15 ] g 15| - l
&0l T = o= L - =>=0
0.5 0.5
> o w ¥ w w ¥ W
6 30 g % F 6 X o0 g S F
Q X o0 ¥ ¥ a X o ¥ ¥
< < r o < < X o
D o o o o
Strong {ISSSES Strong {888—
Low {885—007688 Low  {S858860 {7 {73
Average {I885—0——88 Average 886
C T T T [ T T
R N T T T T A TR T TS N T I sl =) 3
M= ONAELUTrIXO-XSLpo
EEi3elEsERpaRNgREE

Figure 7

Flowchart of our web-based and statistical strategy used to elucidate the relation between PKA encoding
genes transcriptional profiles and oncogenic mutations. (A) Flow chart of our web-based and statistical strategy with
indication of some of the databases (Source) used, the type of data analyzed (Input), the specific program and statistical test
(Tool) used and the result obtained (Output). (B) Graphical representation of the block diagram summarizing functional
interconnections within the PKA pathway module with indication of the expression level (geometric mean) of each gene
belonging to the network -Strong (red), Average (black) and Low (green)- as identified by our analysis both in normal (B, left)
and transformed samples (B, right). (C) Boxplots of the expression of PKA pathway-encoding genes in normal (C, left) and
transformed (C, right) samples, grouped for functional classes (ADCY: adenylyl cyclase; AKAP: A-kinase anchor protein; PDE:
phosphodiesterase; PRKACR: PKA regulatory subunit; PRKAC: PKA catalytic subunit). The represented value is the median.
(D) Schematic representation of the TFBSs (color-coded) identified in the promoters of PKA pathway-encoding genes of
normal and transformed samples. Each cartoon represents the promoter structure resulting from the merge of the TFBS
identified in > 70% of the gene promoters of all normal samples and transformed samples.
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essentially all genes of the pathway in transformed cells
(as compared with normal tissues) suggests that at least
one PKA-mediated function needs to be reduced
substantially in order to express the transformed
phenotype. Although at this stage it is too early to
propose specific hypotheses, it is intriguing to remember
that PKA has been ascribed a role in activating
mitochondrial respiration and decreasing ROS produc-
tion [99,100], thus effectively counteracting mitochon-
dria dysfunction that is found associated with increased
glycolysis (Warburg effect, [101-103]) in many cancer
cells. On the other hand, a reduction in oxidative
phosphorylation that will decrease ATP supply, as
substrate of adenylate cyclase, may result in a decreased
cAMP production without relevant changes in the level
of the enzymes (and possibly therefore of their gene
expression).

It is expected that deeper computational integration of
transcriptional data with other genome-wide findings,
including -but not limited to- proteomics, interactomics
and metabolomics, will allow a better extraction of
hidden information. We propose that such data integra-
tion can be further applied to examine the topology of
biological networks, to provide information on direc-
tionality of interactions, and create wiring diagrams that
better depict the functional outcome of component-
component relationships. Together, these strategies
should facilitate a systems approach to modular biology.

Thus systems biology can be approached by perturbing
the suspected components of a given cellular process,
monitoring the responses, integrating the data and
modeling the biological process in question [104]. By
applying a single “omic” approach, able to sample a
“horizontal” slice (i.e. across all genes or gene products)
of a multidimensional space, the knowledge of a system
can be expanded from a single gene to a network of
genes, which can be regarded as a basic model for the
system. When genes or proteins in this network are
systematically disrupted, responses from other parts of
the network can be recorded and the data obtained can
be incorporated into the basic model. However sampling
a single dimension of a complex space will undoubtedly
provide relevant information, but may not highlight the
major regulatory features. Therefore, a wiring diagram
that depicts the direction of interactions in the network
and the behavior of each of these components can be
constructed to better represent the relationships between
the components [104]. The example shown in Figure 7
illustrates how our current knowledge of a biological
system can be expanded and a model built based on
integrated “omic” information. Ultimately, development
of such computational methods and their recursive
integration with genome-wide and hypothesis-driven
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experimental investigations that also take into account
post-translational and substrate-dependent mechanisms
controlling the cAMP/PKA pathway activity, should
reconcile experiments from different experimental sys-
tems (cell cultures, animal models and human tumor
samples) and contribute to explain at an integrative,
systems level how the cAMP-PKA pathway is affected by
oncogenic processes originated by mutational activation
of signal transduction.

Methods

Data recovery and normalization

Gene expression data of NCI60 cell lines and normal
tissues samples were downloaded from the Gene
Expression Omnibus (GEQO) at the National Center for
Biotechnology Information (NCBI) website (http://
www.ncbi.nlm.nih.gov/geo/) [105]. In particular, gene
expression profiles of NCI60 cell collection (cancer
samples) were recovered from GEO database
(GSE5949, [31]) in which the experimental data were
obtained by using the Affymetrix HG-U95Av2 oligonu-
cleotide array platform. For the analysis only results
obtained by oligonucleotide arrays were considered,
because this platform uses a different method to evaluate
mRNA expression as compared to cDNA array platform.
Therefore, also for normal tissue samples, the data used
for the comparative analysis, were recovered from
transcriptional profiles produced by using U95Av2
oligonucleotide array (GSE96 [106], GSE6731 [107]
and GSE1402 [108]).

A total of 81 transcriptional profiles encompassing
cancer cell lines with nine histological origins and
samples from six normal tissues were recovered. Further
details can be found in the legends of Tables 1 and 2. All
datasets were generated by downloading and processing
CEL files. They were preprocessed using Robust Multi-
chip Average (RMA) [109,110] and then transformed
from log, values to linear scale values, and normalized
per gene to the median value of its level of expression
across 81 samples, as implemented in GeneSpring GX
7.3.1 (Silicon Genetics - http://www.chem.agilent.com/).
The RMA preprocessing algorithm includes background
and quantile normalization steps [109,111]. Although
background correction, as first step analysis, has been
computed separately for each array, all the other
procedures performed by using RMA (normalization
and summarization), have been performed across all the
arrays (RMA is a multiple-array method). Normalization
is necessary so that multiple chips can be compared to
each other, and analyzed together. The normalization
procedure is aimed at making the distributions identical
across arrays. RMA usually gives very accurate normal-
izations. Note that, RMA implemented in GeneSpring
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GX 7.3.1, all the arrays are used and no chip is discarded.
We used RMA analysis as compared to other tools of
analysis, because, as described in several papers
[112,113], it successfully reduces the variance of low
abundance transcripts and better distinguishes differen-
tially expressed transcripts from those that are unchan-
ging, by using controlled datasets in which known
quantities of specific mRNAs have been added to a
common reference pool, [109,110,114].

Transformation-dependent, transcriptional remodeling
of the PKA pathway-encoding genes in 60 human cancer
cell lines (NCI60) and 21 human normal tissues

We identified and gathered the transcriptional profile for
41 genes encoding proteins involved in the PKA pathway
(adenylyl cyclases -ADCY-, phosphodiesterases -PDE-,
A-kinase anchor proteins -AKAP-, cAMP-dependent tran-
scriptional factors -TF-, PKA catalytic subunits -PRKAC- and
PKA regulatory subunits -PRKACR-, Table 3).

In order to identify specific variations in the expression
pattern of the selected PKA pathway-related genes both
in normal and transformed samples, different tools of
analysis were used.

Initially, the PKA pathway related genes expression
profiles, observed in transformed samples as compared
to normal samples, were evaluated by analysis of
variance (ANOVA). Such statistical linear modeling
procedure, that partitions the total variance into parts
corresponding to various sources in the model [115,116]
have been successfully used to analyze microarray data
[117-120]. In order to model and test the hypothesis that
the expression of genes of PKA pathway was different
between normal tissues and transformed cell lines, the
following comparisons were used: Expression of gene;
(where i=i-esimo) of Normal Tissues vs. Transformed cell lines
(Figure 1), and a p-value < 0.05.

The same data-set was then analyzed through unsuper-
vised hierarchical clustering [121] (as implemented in
the GeneSpring platform). Two-way hierarchical cluster-
ing was performed on RMA-generated linear scale
expression levels using the Pearson correlation coeffi-
cient as the measure of similarity and complete linkage
clustering [122]. The results of this process are dendro-
grams, in which short branches connect very similar
elements, and longer branches join elements with
diminishing degrees of similarity. The vectors used
were sample - normal tissues and transformed cells-
and expression of genes of PKA pathway-related genes
and the arms were classified by different variables:
Conditions and Tissues, (Figure 2).
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Analysis of mutational status of the NCI60 cell lines

and correlation with tissue-specific PKA pathway

gene regulation

The 60 cell lines were sorted according to mutational
status, using the information provided by Catalogue Of
Somatic Mutations In Cancer (http://www.sanger.ac.uk/
genetics/CGP/cosmic/) [123]. This database holds
somatic mutation data and other information related
to human cancer cell lines and tissues, and can be
interrogated through a series of web pages to provide a
graphical or tabular view of the data along with various
export options. We could sort the NCI60 cell lines in 4
subgroups presenting mutational activation of genes
encoding components of the Ras pathway, of the PI3K
pathway, of other pathways or for which no information
was available, (Table 5).

In order to identify specific variations in the expression
pattern of the PKA pathway-related genes in these 4
subgroups, different tools of analysis were used.

We applied unsupervised Principal Component Analysis
(PCA) [124,125] to establish the interrelationships
among the samples used in our study. PCA is a statistical
method that can be used to reduce complex data sets
with multiple variables into significantly smaller num-
bers of variables (known as components), which retain
the relevant variance information used to distinguish the
sample groups from another. By visualizing projections
of these components in low-dimensional spaces, we
were able to observe the grouping of samples reflecting
underlying patterns in their gene expression profiles.
PCA on the mean centered and scaling data was used to
model the effects of oncogene-dependent transformation
on the gene expression. The following comparisons were
performed: Expression of gene; of Normal Tissues vs. PI3K
mutation cell lines; vs. Ras mutation cell lines; vs. Not Tested
mutation cell lines; vs. Other Mutation cell lines.

Also in this case, in order to model and test the
hypothesis that the expression of genes of PKA pathway
was different between normal tissues and the four
subgroups previously identified, we applied one-way
ANOVA by using the following comparisons: Expression
of gene; (where i=i-esimo) of Normal Tissues vs. PI3K
mutation cell lines; vs. Ras mutation cell lines; vs. Not
Tested mutation cell lines; vs. Other Mutation cell lines,
(Figure 3D), and a p-value < 0.05.

The data-set of 41 genes was then analyzed through
unsupervised hierarchical clustering (Pearson correlation
coefficient and complete linkage clustering). The vectors
used were sample - oncogene-dependent transformed
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cells - and expression of genes of PKA pathway-related
genes. The results of this process are dendrograms, in
which the arms were classified by different variables:
Tissue, mutation and Pathway (Figure 4).

Computational analysis of promoters of differentially
regulated PKA pathway-encoding genes and identification
of transcriptional factor binding sites

In order to identify Transcriptional Factor Binding Sites
(TFBS) present in promoters of co-regulated genes, the
41 PKA pathway-encoding genes were sorted, relative to
their level of expression, in three groups: Strong (>1),
Average (=1) and Low (<1), where 1 is the expression
value calculated by RMA. Each groups was identified in
each sample group, i.e., Normal Tissues, cell lines
carrying mutation(s) in Ras pathway-encoding genes,
cell lines carrying mutation(s) in PI3K pathway-encod-
ing genes, cell lines carrying mutation(s) in other
pathways, cell lines Not Tested for mutation, thus
generating 15 subgroups. A TFBS was called present
only when present in more than 70 % of promoters
within each group.

Proximal promoter regions - defined as 500 nt upstream
and 100 nt downstream from the transcription start site
(TSS), automatically assigned to genes on the basis of 5
cap-site databases integrated into promoter identifica-
tion program - were identified using Eldorado (gems
launcher, Genomatix [126]) and the Genomatix Promo-
ter Database.

TFBS in the promoter regions were identified by using
Modellnspector and the Genomatix Promoter Database,
comprising a total of 519 matrices from 154 families
(Matrix Family Library, on Vertebrates, Version 7.1, June
2008). The Matrix Family Library is based on 260,000
human, mouse, and rat promoter sequences, with an
average length of 650bp. Analysis on the 41 PKA
pathway-encoding genes was performed with a threshold
of 1.0 for the core similarity -that is reached only when
the highest conserved bases of a matrix match exactly in
the sequence- and a value of 0.85 for the Optimized
matrix threshold [127]. Optimized matrix threshold is
the optimized value defined in a way that a minimum
number of matches is found in non-regulatory test
sequences. This value, when is higher than 0.80, permits
the reduction of false positive matches.

The total number and frequency (i.e., the ratio between
the total number of TBFS and the number of promoters
present within each subgroup) of each TFBS within each
subgroup were calculated. The frequency of each TFBS
called present in each of the 15 subgroups of PKA
pathway-encoding genes was compared with the
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frequency of the same TFBS within the Matrix Family
Library on Vertebrates. TFBS enrichment was scored
based on p-value generated by hypergeometric distribu-
tion and calculated with the 2-tailed Fisher's exact test,
implemented through the use of a 2 x 2 contingency
table (Figure 5).

In order to identify differences between the 15 groups a
two-way hierarchical clustering (by using as vectors
sample and TFBS) was applied by using the total number
values and the frequency values of each TFBS identified
in > 70% of the promoters in each group. The total
number value was transformed in the log, and used in
the hierarchical clustering by using the Pearson correla-
tion coefficient as the measure of similarity and
complete linkage clustering (Figure 6).

Promoter data mining

To identify known transcription factor binding sites in
the promoter sequences of PKA pathway-encoding genes,
the annotated promoter and associated information
have been retrieved from Transcriptional Regulatory
Element Database (TRED) [128] (http://rulai.cshl.edu/
cgi-bin/TRED/tred.cgi?process=home) and from NCBI
(http://www.ncbi.nlm.nih.gov/). Both web sites are
freely accessible. The results have been shown in the
Table 6.
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