
 International Journal of 

Molecular Sciences

Article

LED-Induced Microglial Activation and Rise in Caspase3
Suggest a Reorganization in the Retina

Boglárka Balogh 1,2,3, Gergely Szarka 1,2,3, Ádám J. Tengölics 1,2,3, Gyula Hoffmann 1,2,3, Béla Völgyi 1,2,3,4

and Tamás Kovács-Öller 1,2,3,4,*

����������
�������

Citation: Balogh, B.; Szarka, G.;

Tengölics, Á.J.; Hoffmann, G.; Völgyi,

B.; Kovács-Öller, T. LED-Induced

Microglial Activation and Rise in

Caspase3 Suggest a Reorganization in

the Retina. Int. J. Mol. Sci. 2021, 22,

10418. https://doi.org/10.3390/

ijms221910418

Academic Editor:

Arturo Ortín-Martínez

Received: 6 August 2021

Accepted: 23 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
boglarka.balogh311@gmail.com (B.B.); gergely.sz@gmail.com (G.S.); tengo.adam2@gmail.com (Á.J.T.);
hgyula@gamma.ttk.pte.hu (G.H.); volgyi01@gamma.ttk.pte.hu (B.V.)

2 Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0),
Hungarian Academy of Sciences, 1051 Budapest, Hungary

3 Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
4 Medical School, University of Pécs, 7624 Pécs, Hungary
* Correspondence: kovacstx@gmail.com

Abstract: Vision is our primary sense as the human eye is the gateway for more than 65% of
information reaching the human brain. Today’s increased exposure to different wavelengths and
intensities of light from light emitting diode (LED) sources could induce retinal degeneration and
accompanying neuronal cell death. Damage induced by chronic phototoxic reactions occurring in
the retina accumulates over years and it has been suggested as being responsible for the etiology of
many debilitating ocular conditions. In this work, we examined how LED stimulation affects vision
by monitoring changes in the expression of death and survival factors as well as microglial activation
in LED-induced damage (LID) of the retinal tissue. We found an LED-exposure-induced increase in
the mRNA levels of major apoptosis-related markers BAX, Bcl-2, and Caspase-3 and accompanying
widespread microglial and Caspase-3 activation. Everyday LED light exposure was accounted for
in all the described changes in the retinal tissue of mice in this study, indicating that overuse of
non-filtered direct LED light can have detrimental effects on the human retina as well.
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1. Introduction

When Thomas Edison invented the first light bulb in 1879, the effects of light pollution
were unknown, but nowadays people almost never experience total darkness. We are
continuously exposed to artificial illumination, which in recent decades has become ever
increasing due to recent developments in the light emitting diode (LED) industry [1,2]. As
our modern society has become accustomed to the constant presence of bright light, the
harmful effects of these unnatural light sources have been underestimated for the most
part. Although it is known how light affects our day-and-night rhythm [3], its direct effects
on the retinal tissue and corresponding functional and pathological changes have mostly
been ignored. Vision is our dominant sense since more than two-thirds of the surrounding
information is perceived and preprocessed by the retina. Therefore, our goal in this study
is to fill this gap and explore how excess artificial light, coming from LEDs, could lead to
retinal degeneration and increase the chance of retinal diseases.

Thanks to evolution, the human retina has fully adapted to natural light, but might not
be ready for modern lighting solutions and the extensive use of LED screens. Compared to
natural light, the light from LEDs is not homogenous in wavelength intensities and thus
overrepresents lower wavelengths, less common in natural light (Figure S1).

The retina is formed by a complex network of neurons supported by glial elements
in order to detect and process the information arising from the different light sources.
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Neurons and glia are in a fragile codependent relationship. As light passes through the
layers of the retina it has the ability to affect all retinal cell types, possibly by photochemical
damage, also referred to as phototoxic damage. The resulting toxic, chemically reactive
molecules, such as reactive oxygen species (ROS), are the hallmarks of this adverse effect.
The process occurs through light absorption of chromophores that leads to energy transfer,
which in turn either chemically transforms or interacts with other molecules, resulting
in secondary changes of both interacting molecules. Alternatively, this excitation energy
can be propagated and transferred to further partners. The high-intensity blue spike in
LEDs (400–440 nm) contains high-energy photons that eventually reach the retina, before
which they must have traveled through multiple refractive tissue layers [1]. Before it
reaches the photoreceptors (PRs), the site of phototransduction, this light will have to go
through the layers and cells of the retina that has a cc. 150 µm thickness in total. These
cells include the neuronal cell types, the ganglion cells (GCs), amacrine cells (ACs), bipolar
cells (BCs), horizontal cells (HCs), and the PRs, as well as the glial cells, microglia (MG),
Müller cells (MCs), and astrocytes (ACs). MGs are the most important intrinsic immune
cells throughout the whole central nervous system [4,5], thus in the retina itself [6].

Although there have been many publications involving high-intensity light damage in
the retina [7–9], and the effects of artificial light on the circadian rhythms [10–14], everyday
intensities of artificial light levels (500–2000 lux, [15]) are rarely studied [15,16]. The long-
term effects have no related literature at all. However, we have data regarding that; the
intensity of the light has an obvious impact on the action potential frequencies of the RGCs
and thus on visual coding [17].

The key proteins involved in retinal apoptosis, which have also been established in
order to study widespread damage in the retina, are BAX, Bcl-2, and Casp3 [18–21] but
some milder and earlier effects of degeneration can be detected by microglial activation in
the retina [22,23], taking into account that this cell type acts as the primary immune cells in
the retina, indicating any kind of harmful event [24].

Our work helps us to understand how our modern lifestyle can partake in vision-
debilitating diseases, such as age-related macular degeneration (AMD), which has been
shown to have a higher incidence rate in advanced countries [25,26], where the use of
modern LED technologies is also more widespread [27,28].

2. Results
2.1. Changes in the Expression of Cell Death Factors Show Possible Retinal Reorganization

In order to determine whether LED exposure has detrimental effects on the mouse
retina, we compared the aforementioned three well-known markers (Bax, Bcl-2, and Casp3)
involved in cell death signaling between the LED-exposed and our control retinas. We
saw a substantial increase in the expression of all three of these markers. Our results show
that the levels of Bax and Bcl-2 statistically significantly increased in LED-treated animals
(6.89-fold, and 6.14-fold). The Casp3 mRNA level increase (10.20-fold) did not appear to be
statistically significantly different, due to the large variation between samples (Figure 1).

2.2. Microglia Activation in the Superficial Layer

As a result of LED treatment and the primary inflammatory processes, microglia
activation significantly increased based on our cell counts (n = 845 cells in 7 retinas) in
the superficial layer of the retina. In addition, we observed that not only did the number
of activated microglia increase with LED light treatment, but we also noted a significant
increase in the total number of microglia (Figure 2).

In the LED-treated animals, a 6.4-fold (from 5 to 32 in avg.) increase was observed in
the number of activated MGs, accompanied by a rise in total MG count (from 55 to 72 in
avg.) (n = 845 cells in 7 retinas) in the deeper layers of the retina (INL to ONL) (Figure 3).
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Figure 1. Bax, Bcl-2, and Casp3 gene expression in the retina of control and LED-treated mice. (a) Histograms show the relative 

mRNA expression of Bax, Bcl-2, and Casp3 as measured in control (normalized to 1) and LED-treated mice (n = 8, 4 control, 4 LED 

+). (* p = 0.05; pCasp3 = 0.1). (b) The main players of apoptosis. Casp3 is the link between intrinsic and extrinsic pathways, while Bcl-2 

has a role in survival. 
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Figure 1. Bax, Bcl-2, and Casp3 gene expression in the retina of control and LED-treated mice. (a) Histograms show the
relative mRNA expression of Bax, Bcl-2, and Casp3 as measured in control (normalized to 1) and LED-treated mice (n = 8,
4 control, 4 LED +). (* p = 0.05; pCasp3 = 0.1). (b) The main players of apoptosis. Casp3 is the link between intrinsic and
extrinsic pathways, while Bcl-2 has a role in survival.
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Figure 2. Microglia activation in the superficial layer (inner retina GCL). Panel (a) shows the ganglion cell layer of control
and LED retinas labeled SMI32 (GC marker), Iba1 (MG marker), and Casp3 (Casp3+ cells). The colors shown are the same
as the colors above the images. In the second column, only Iba1-labeled microglia are shown in white. In panel (b) the
histogram shows the number of non-activated, activated, and total microglia counted in the SL (* p = 0.05; ** p = 0.01).
(c) Shows high-magnification confocal microscopic images scanned with a 63× objective of activated MGs (left) and
non-activated MGs (right).
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Figure 3. Microglia activation in the deeper parts of the retina. Panel (a) of the figure shows the outer or “deep” layer of
control and LED retinas, labeled with SMI32 (neuron marker), Iba1 (microglia marker), and Casp3 (Casp3 + cells) scanned
with a 20× objective (pictured). The colors shown are the same as the colors above the images. In the second column,
only Iba1-labeled microglia are shown in white. In (b) the histogram shows the number of inactivated, activated, and
total microglia counted in the retinal ganglion cell layer and inner fibrous layer (* p = 0.05; ** p = 0.01). (c) Shows confocal
microscopic images scanned with a 63× objective of activated MGs (left) and non-activated MGs (right).

2.3. Rise in Casp3 Activation as a Result of LED Treatment

To gain a more detailed picture of the changes occurring in the retina due to LED
treatment, we performed immunohistochemical experiments for Casp3 expression. Based
on our results, we observed that in the superficial layer mainly neuronal cells (mostly GCs)
became Casp3 positive, while in the deep layer MGs showed Casp3 positivity. After cell
counting (n = 189 cells in 7 mice), we can also see a significant increase in the total number
of Casp3+ cells in both the superficial and deep layers; however, the degree of activation
was lower in the superficial layer (Figure 4) compared to the deep layer (Figure 5).
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Figure 4. Casp3 activation in the superficial layer. Panel (a) shows the ganglion cell layer of control and LED retinas labeled
SMI32 (GC marker), Iba1 (MG marker), and Casp3 (Casp3+ cells) scanned with a 20× objective in a confocal microscope.
The colors shown are the same as the colors above the images. In the second column, only Casp3-labeled cells are shown
in white. In panel (b) the histogram shows the number of Casp3-activated cells in the SL (* p = 0.05). Panel (c) shows
high-magnification confocal microscopic images scanned with 63× objective of Casp3+ areas in MG.
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a confocal microscope. The colors shown are the same as the colors above the images. In the second column, only
Casp3-activated cells are shown in white. In panel (b) the histogram shows the number of activated cells counted in
the DL (** p = 0.01). Panel (c) shows high-magnification confocal microscopic images scanned with a 63× objective. The
triple-labeled and only Casp3-activated cells are visible from the LED retinas.

3. Discussion
3.1. Possible Effects of LED Light in the Retina

Based on the relatively sparse information available on the effects of light sources,
such as LED illumination, it can be seen that light damage can manifest varied effects in the
retina [29]. Most studies link phototoxic damage to the photoreceptors and retinal pigment
epithelium (RPE), where lipofuscin-containing phototoxic compounds tend to accumulate.
Marie and colleagues have shown that the cone inner segments can sustain phototoxic
damage due to visible violet light (~430 nm) exciting porphyrin compounds [30]. Taking
this hypothesis into account, we studied LED exposure effects on the whole retinal unit.
Since the inner retina is central in signal processing and output, it is crucial to determine
whether inner retinal cells and connections can also be affected the same way. Thus, we
identified the key players in retinal damage and possible reorganization and tested how
their expressional patterns change in mice due to exposure to LED light equivalent to the
amount an average office worker is exposed to in their everyday life. However, in our
experimental setup the LED+ retinas were compared to a low level of fluorescent light,
not containing a high-intensity blue pattern; it is still clear that all the key players tested
showed a major increase in the LED+ retinas, thus suggesting a reorganization.

3.2. The Activation of BAX, Bcl-2, and Casp3 Shows Possible Reorganization in the Retina

One of the main goals of this study was to compare the expression levels of some of
the central proteins involved in apoptosis and cellular survival after a normal level of LED
light exposure. We detected a major increase in the expression of two key pro-apoptotic
proteins, BAX and Casp3. BAX is involved in the death-signal transmission towards the
mitochondria, while activated Casp3 is a major executioner protein merging apoptotic
signals from the extrinsic and intrinsic apoptotic pathways [31]. Our results show that the
levels of Bax and Bcl-2 increased statistically significantly in LED-treated animals, while
the levels of Casp3 showed an indicative increase that was not statistically significant due
to the high variance between the samples (Figure 1). In comparison, however, based on
the immunohistological experiments performed to identify Casp3-expressing cells, we
saw a statistically significant increase in overall Casp3 expression. We showed (Figure 5)
that Casp3 expression increases in GCs in the superficial retinal layer and microglia in
the deeper retinal layer, and based on these results, it can be concluded that the apoptotic
change is likely to be balanced by the anti-apoptotic effect of Bcl-2 production. However,
it should be noted that this procedure is not sufficient to detect actual cell death, but it is
a good indicator of the trends, as the microglial activation is often associated with Casp3
activation without the adverse effects of actual cell death. This comes from their ability to
escape the Casp3 effector function [32,33]. When we compare the general picture gained
from the qPCR results, where we saw a statistically insignificant increase in Casp3 levels,
we can see that the number of Casp3-expressing cells indeed shows a significant increase
that is more prominent in the deep layer of the retina.

3.3. Microglial Activation as a Hallmark of Retinal Inflammation

Microglia in the retina are specialized macrophages responsible for immune function
and they are part of the three retinal glial cell types together with astrocytes and Müller
cells; from previous reports we can see that microglia activation state, based on morpho-
logical features, is a precise and early detection method to determine retinal damage [24].
Therefore, we used the microglia, the primary, intrinsic immune cells in the retina, as
sensors for retinal integrity. Any loss of integrity can be detected by microglial activation.
The change to arise from activated morphology is well-visible on the cells after treatment,
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as their somata become enlarged and the primary protrusions are thickened, while some
more activated forms show even more amoeboid-like morphologies [34,35].

Our results show microglial activation both superficially and in the deep layer of
microglia. The morphological activation is also coupled with Casp3 activation in the case
of microglia.

Interestingly the rise in the number of activated microglial cells is combined with a small
surge in the number of microglia. This could come from either the infiltrating macrophages
or the division of intrinsic microglia, as they both express microglia/macrophage-specific
calcium-binding protein (IBA1). Studying the morphological features of the IBA1+ cells,
we could not identify infiltrating monocytes/macrophages, thus leading to the conclusion
that the rise in IBA1+ cells is due to the division of the retina’s local microglial populations,
resulting in a significant increase in the total number of microglia (Figures 2 and 3).

3.4. How to Avoid Retinal Damage Caused by LEDs?

The effects shown by us here should be taken as a warning sign and they warrant
further research to be performed. It is likely that in the future the LED technologies will
flourish even further, leading to an even greater increase in LED use, which the vertebrate
eye is not likely to withstand without damage to its integrity. Our results indicate that
filtering high-energy blue light could reduce potential harm in the retina, which can be
conducted using filtering spectacles when exposed to LED lights for prolonged periods of
time [36]; alternatively, LED manufacturers should consider producing LEDs with different
spectral features and make further efforts to avoid eye damage in the long term.

4. Materials and Methods
4.1. Animals and Preparation

Animal handling, housing, and experimental procedures were reviewed and approved
by the ethical committee of the University of Pécs (BA02/2000-6/2006). All animals were
treated in accordance with the ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research. All efforts were made to minimize pain and discomfort during the
experiments. Mice were deeply anesthetized with the inhalation of Forane (4%, 0.2 mL/L)
and then sacrificed using cervical dislocation. Eyes of mice (Mus musculus, C57BL/6J,
1–12 months, n = 10 animals, all males) were immediately removed after termination.
Eyeballs were cut at the ora serrata, and lens and vitreous body were removed. Retinas
were fixed in 4% PFA in 1× PBS at room temperature for 15 min (for details, see: [37]).

4.2. LED Treatment

The LED treatment of mice was performed with an LED box that is basically a ring
of 4 chip on board (COB) LEDs (22 mm, 3 W, neutral white, ~4500 K) in parallel with the
box’s wall, surrounding the transparent cage with a warm-light LED bulb (Tungsram E27,
8 W, ~3000 K) hanging over the cage. The summated, measured intensity of the LED light
was 1000 lux (see the wavelength-intensity profile in Figure S1) in the center of the cage,
which is equivalent to a brightly lit office [38,39]. The animals were held under this light
for 7 days, 14 h a day, and provided with food and water ad libitum with a cage change on
the third day.

4.3. Quantitative PCR Analysis

One of the retinae of LED+ and control mice (n = 4/4) was fast-frozen in nuclease-free
1.5 mL tubes by liquid nitrogen immersion and stored at −80 ◦C until processed with
RNasol RT [40]. The resulting RNA (normalized to 1 µg) was reverse transcribed with
oligo-dT primer to cDNA with RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher,
Waltham, MA, USA), using a MiniPCR (miniPCRbio, Cambridge, MA, USA) with the
following steps: 10 min, 25 ◦C; 60 min, 42 ◦C; 10 min, 70 ◦C. The resulting cDNA was then
stored at −20 ◦C until use [41].
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We used 20 nanograms of the resulting cDNA in each of the wells, in triplicates
for each sample, to perform the expression analysis for BAX, Bcl-2, and Casp3, with
the use of RPL13a endogenous control (see the primers in Table 1) with an SYBR-green
master mix [42].

Table 1. Primers.

Primer Name Sequence

BAX forward 5′ GGT CTT CTT CCG GGT GGC AG 3′

BAX reverse 5′ CTT CCC AGC CAC CCT GGT CTT G 3′

Bcl-2 forward 5′ ACC TGA ACC GGC ATC TGC AC 3′

Bcl-2 reverse 5′ CTT GTG GCC CAG GTA TGC ACC 3′

Casp3 forward 5′ CGG GGA GCT TGG AAC GGT ACG 3′

Casp3 reverse 5′ TCC CAG AGT CCA CTG ACT TGC T 3′

RPL13 forward 5′ CCA GAG GTT TTG GGG TCA GAA 3′

RPL13 reverse 5′ GCA GTT GCA GAC AAA CTG GAG G 3′

We used the following protocol in a BioRad CFX Connect (BioRad, Hercules, CA,
USA [41]) for the amplification and detection of fluorescent intensities in the samples:
5 min, 95 ◦C; 20 s at 93 ◦C; 20 s, 54 ◦C; 30 s at 72 ◦C; 39× repeat, 2 min at 72 ◦C. A melt
curve analysis was performed afterward. The ∆CTs were analyzed with CFX Connect
software and MS Excel.

4.4. Immunohistochemistry and Microscopy

Following a thorough washing of the fixed eyecups in PBS, the retinas were isolated.
Blocking was performed with bovine serum albumin 5%, Triton X-100 0.5%, and Na-azide
0.05% in PBS (BTA) on the bottom of a 24-well plate. Primary antibodies were used as
indicated in Table 2. After washing (×3) with PBS, secondary antibodies were added
(Table 2). Retinas were mounted with VectaShield (Vector Labs., Burlingame, CA, USA),
using nr.1 cover slides, and inspected using a Zeiss LSM 710 confocal laser-scanning
microscope (Plan Apochromat 20× and 63× objectives; NA: 1.4; Carl Zeiss Inc., Jena,
Germany) with normalized laser power and filter settings. We made 1.5 and 0.5 µm thin
optical sections with the 20× and 63× objectives (details in [43]).

Table 2. Antibodies.

Primary Antibodies Secondary Antibodies, Dyes

Name Dilution Source Code Name Dilution Source Code

ms-SMI32 1:1000 Calbiochem NE1023 anti-ms-Alexa488 1:1000 Invitrogen A11017
gp-Iba1 1:2000 SySy 234004 anti-gp-Alexa647 1:1000 Invitrogen A21450

rb-Caspase-3 1:1000 NovusBio AF835 anti-rb-Cy3 1:500 Jackson 715-165-150

4.5. Measurement of Microglial Activation

All measurements were performed using FIJI (NIH, Bethesda, MD, USA [44]). First,
we performed two z-merges from the 5-5 stacks (3.75 µm) for the superficial and deep
regions of MGs using only mid-central retinal scans. Cells were manually grouped one
by one according to their morphologies into activated and non-activated, using the “Cell-
counter” plugin in FIJI, according to the morphological classifications of Lawson and
colleagues and others [34,35,45]. Only cells with the whole visible area were included; we
omitted the ones on the edges.

4.6. Statistical Analyses

One-way ANOVA analyses were performed using the Origin18 (Origin, Version 2018b,
OriginLab Corporation, Northampton, MA, USA). Normal distribution was previously
confirmed through statistical analysis.
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