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Abstract: Investigating the stability and evaluating the quality of the CH3NH3PbI3 perovskite
structures is quite critical both to the design and fabrication of high-performance perovskite devices
and to fundamental studies of the photophysics of the excitons. In particular, it is known that,
under ambient conditions, CH3NH3PbI3 degrades producing some PbI2. We show here that low
temperature Photoluminescence (PL) spectroscopy is a powerful tool to detect PbI2 traces in hybrid
perovskite layers and single crystals. Because PL spectroscopy is a signal detection method on
a black background, small PbI2 traces can be detected, when other methods currently used at room
temperature fail. Our study highlights the extremely high stability of the single crystals compared
to the thin layers and defects and grain boundaries are thought to play an important role in the
degradation mechanism.
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1. Introduction

The easy synthesis by low-cost technologies of layered hybrid organic-inorganic perovskites
appeared has been known for less than 30 years, and it has become more and more attractive in the
optoelectronics field [1–10]. A scientific breakthrough was achieved in the photovoltaic domain in 2009
with the 3D hybrid perovskite CH3NH3PbI3, thanks to several remarkable properties such as ambipolar
transport properties, electron-hole diffusion lengths exceeding 1 micrometer [11,12], high mobilities,
large spectral absorption from the near-infrared range [13], and efficient charge separation [14,15].
Huge and rapid progress has been made in a short period of time since 2012 [16–27], leading to
the recent record of 22.1% for the power conversion efficiency [28]. Despite this runaway success,
some critical points remain, such as the environmental problem of the lead use [29,30], the poor
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photostability [31] and the sensitivity to atmospheric moisture [32–40]. These points have absolutely
to be addressed to promote the use of hybrid perovskites in optoelectronic devices, such as solar cells,
at a large scale.

It is now established that the problem of the aging of the solar cells is largely due to the aging of
the CH3NH3PbI3 (called MAPI hereafter) layer itself [21]. The degradation of the MAPI perovskite
due to moisture has been particularly studied recently [32,36–40]. Niu and coworkers have proposed
a mechanism for the degradation of MAPI, in which the final products of the degradation are PbI2

and I2 [36].
Figure 1 shows a photograph of a 800 nm-thick MAPI layer deposited by spin-coating on

a quartz substrate. Just after the deposition, the sample appears grey, but only 4 days later it appears
completely yellow due to the apparition of PbI2 inside the layer [34]. On the contrary, Figure 2 shows
the photography of a millimeter sized MAPI crystal aged six months, and no trace of PbI2 can be
detected by the naked eye. Nevertheless, it is very important to check if traces of PbI2 exist in this
crystal or not, even if these traces are very small, because it is usually believed that hydrates are
harmful to the transport properties, as insulating layers are probably formed at the frontier between
grain boundaries [38].
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destroying or changing the nature of the sample, is to use low temperature PL spectroscopy, which 
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Figure 2. Photography of a millimeter sized MAPI crystal, 6 months after its growth.

Characterization means currently used to detect the presence of PbI2 are absorption spectroscopy
and X-diffraction analysis performed at room temperature [31,32,34–37]. Recently, other methods have
been proposed: ellipsometry [38] and in situ electrical resistance measurement [39]. We propose here
the use of photoluminescence (PL) spectroscopy at low temperature as a powerful tool to detect the
presence of PbI2 traces and to finely characterize the aging of MAPI layers and crystals using this
technique. In the particular case of MAPI crystals, X-diffraction and absorption spectroscopies are
inadequate to detect small PbI2 traces, so the only way to efficiently manage to this goal, without
destroying or changing the nature of the sample, is to use low temperature PL spectroscopy, which is
an in situ characterization method.
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2. Results and Discussion

2.1. Optical Properties of Thin Layers

Figure 3 shows the absorption front of the 800 nm thick MAPI layer and its photoluminescence
(PL) spectrum at room temperature just after the deposition at time t = 0 day. The layer presents a
PL spectrum centered at 1.64 eV. The absorption and PL spectra are quite coherent with the spectra
commonly seen in the literature [21].
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Figure 3. Absorption spectrum (blue curve) and photoluminescence spectrum (black curve) of
a 800 nm thick MAPI layer at room temperature, taken just after the deposition by spin-coating
(t = 0 day). The excitation wavelength is 3.815 eV (325 nm, HeCd laser). The inset exhibits the molecular
structure of CH3NH3PbI3 (MAPI).

Figure 4a shows the evolution of the absorption front of the MAPI thin layer at room temperature
after 4 days: the absorption front disappears when the perovskite degrades. After 4 days, a feature
around 2.5 eV appears in the absorption spectrum, corresponding to the presence of PbI2. In a
correlated way, two new features appear in the PL spectrum at low temperature shown in Figure 4b:
a broad PL signal between 1.9 eV and 2.2 eV and a narrow PL peaks around 2.4 eV. These features are
quite similar to the PL spectra obtained at 15 K of 60 µm PbI2 layers produced by the spray pyrolysis
technique [41]. We have deposited a 200 nm thick PbI2 layer by spin-coating on a quartz substrate, and
registered its PL spectrum at 10 K (excitation wavelength at 325 nm, HeCd laser). Figure 4c shows
the PL spectrum of the PbI2 layer in the 2.3–2.6 eV range, superimposed to the MAPI PL spectrum at
t = 4 days. Clearly, the PL peak at 2.4 eV is characteristic of the PbI2 luminescence and can be taken as
the signature of PbI2 presence.
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Figure 4. Absorption at room temperature (a); and (b) PL spectra at low temperature 10 K (excitation
at 3.815 eV for the PL) of a 800 nm thick MAPI layer, at t = 0 day (blue line) and t = 4 days (black line).
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This experimental method of detection of PbI2 traces could be also used to determine rapidly and
easily if some PbI2 clusters remain after a two-step deposition method, such as the one developed
by Wu et al. [35], for example. It can also outline the influence of the precursors: for example, here
we study the influence of the texture of the PbI2 which is used to prepare the CH3NH3PbI3 layers.
Let us compare the MAPI sample prepared PbI2, in forms of grains, and the MAPI* sample prepared
with powdered PbI2 (same deposition method with the same parameters and same thickness for the
two samples). Figure 4b shows the PL spectrum of these two samples just after the deposition
(t = 0 day). It can be seen that we can detect PbI2 traces in MAPI* sample and no PbI2 traces in the
MAPI sample, showing that the choice of the PbI2 origin and conditioning is important to obtain
PbI2-free samples at t = 0 day. In the following samples presented in this paper, we will use grains of
PbI2 for the preparation. Moreover, observing the Figure 5 exhibiting the photography of the MAPI*
sample, it has to be pointed out that there is no evidence, looking with naked eyes, of the presence of
PbI2 traces in the sample.
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In order to apply this method of using the PL spectroscopy at low temperature to detect traces of
PbI2, we also studied the aging of MAPI thin layers, protected from atmosphere moisture or ambient
light, as a great number of papers consider the important role of these two parameters. Firstly, we
protect the MAPI layer with a 200 nm thick polymethylmetacrylate (PMMA) layer deposited by
spin-coating over the 800 nm thick MAPI layer: the deposition parameters of the 4% wt PMMA
solution in toluene are 1000 rpm for 40 s, annealed at 95 ˝C for 20 min. The PMMA protected sample
will be called MAPI-PMMA. Figure 6a,b show the photographs of the MAPI-PMMA layer at t = 0 day
and t = 7 days respectively: the sample doesn’t appear yellow, even after 7 days. To check if there
are some PbI2 traces, we have performed the PL spectrum at low temperature: in Figure 6c, no PbI2

PL signal can be detected, so that we can affirm that no PbI2 formation has occurred in this sample
after 7 days. We have done the experiment up to 30 days and no PbI2 traces have been detected. As a
consequence, we can conclude the coating of the perovskite with a 200 nm PMMA layer is efficient to
protect from the degradation of the sample due to the atmospheric moisture. We have also protected
an identical MAPI layer with a 300 nm thick Spiro-OMeTAD layer, which is a Hole Transport Layer
commonly used in hybrid perovskite solar cells. After 17 days of aging in ambient atmosphere, we can
conclude that no PbI2 luminescence has been detected.
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time; when the degradation level is small, the PbI2 amount generated is also small and very divided, 
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as sincere; at high degradation rates this is probably not accurate any longer, and some intrinsic error 
might exist, however the result still display a good approximation. We read synthetically that PMMA 

Figure 6. Photographs at (a) t = 0 day; (b) t = 7 days of a 800 nm thick MAPI layer overcoated with
a 200 nm thick PMMA layer (called MAPI-PMMA); (c) PL spectra (excitation at 3.815 eV) in the
2.3–2.6 eV range for MAPI-PMMA at t = 0 day and MAPI-PMMA at t = 7 days, MAPI t = 4 days
is recalled here. The PL spectra have been normalized so that the maximum PL at 1.64 eV is 1
(I1.64 eV = 1).

Secondly, we tried to evaluate the role of light exposition. For this, we studied the degradation of
unprotected samples in the ambient light, or in the dark: we thus prepared a 800 nm thick MAPI layer
on a quartz substrate, and cut the sample in two pieces, respectively stored in a dark box (MAPI’-dark),
and in a transparent box (MAPI’). It can be seen in Figure 7 that after 4 days, the sample stored in the
black box has not aged (no PbI2 detected), at the difference of the sample stored in the transparent box.

As the above PL spectra in Figures 6c and 7c have been normalized (I1.64 eV = 1), the ratio of the
PL intensity at 2.4 eV and the PL intensity at 1.64 eV: I2.4 eV/I1.64 eV, is directly related to the quantity
of the degraded hybrid perovskite. Figure 8 shows the values of this ratio for each considered sample.
On this kind of diagram, one can read easily the evolution of the degradation of the MAPI layers
over time; when the degradation level is small, the PbI2 amount generated is also small and very
divided, and therefore the reabsorption (by PbI2) can be neglected and the measurements can be
considered as sincere; at high degradation rates this is probably not accurate any longer, and some
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intrinsic error might exist, however the result still display a good approximation. We read synthetically
that PMMA and Spiro-OMeTAD layers are able to protect the MAPI layer and that the mechanism
which is involved in the degradation of MAPI and the appearance of PbI2 is activated by light.
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Figure 7. Photographs of (a) a 800 nm thick MAPI layer stored in a dark box at t = 4 days;
(b) a 800 thick MAPI layer stored in a transparent box, at t = 5 days; (c) PL spectra (excitation at
3.815 eV) in the 2.3–2.6 eV range for MAPI layer in the dark box at t = 4 days (MAPI’-dark), MAPI
layer in the transparent box (MAPI’) at t = 5 days. The PL spectra have been normalized so that the
maximum PL at 1.64 eV is 1 (I1.64 eV = 1).
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2.2. Optical Properties and Stability of Millimeter Sized Crystals

Figure 9a shows the optical microscopy image of a millimeter sized MAPI crystal, taken 6 months
after its growth. No precautions were taken for the storage of this sample during these 6 months: the
sample has been stored in a transparent box, and left under ambient conditions. Although the growth
of this crystal has been done in solution for a long time, and despite the absence of precautions for
the storage, no PbI2 traces are detectable by naked eye. Figure 9b shows the PL spectrum at room
temperature of the millimeter sized crystal shown in Figure 9a, under different excitation conditions:
a continuous excitation at 3.815 eV (325 nm) obtained with a HeCd laser and a quasi-continuous
excitation at 3.1 eV (400 nm) with a doubled-frequency pulsed Ti-Sa laser. For both considered
excitation conditions, the emission of the crystal was recorded centered at the same wavelength than
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the one of the previously studied MAPI thin layers. In order to check if PbI2 traces can be detected in
this monocrystal, the PL spectrum has been done at low temperature: in Figure 10, some extremely
small traces of PbI2 can be detected. In a crystal, it is difficult to extract quantitative data because some
reabsorption of the PbI2 luminescence can occur, but at least, we can affirm that small PbI2 traces are
present in the sample.
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Figure 9. (a) Microscopy image of a millimeter sized MAPI crystal; (b) PL spectrum at room temperature
of this MAPI crystal, taken six months after its growth, under continuous excitation at Eexc = 3.815 eV
(λexc = 325 nm, HeCd laser) (red line) and quasi-continuous excitation at Eexc = 3.1 eV (λexc = 400 nm)
with a 80 MHz doubled-frequency pulsed Ti-Sa laser (black line).
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Figure 10. PL spectrum of the millimeter sized MAPI crystal at 10 K, taken six months after its
growth under quasi-continuous excitation at 3.1 eV (400 nm) with a 80 MHz doubled-frequency pulsed
Ti-Sa laser.

Such small PbI2 traces could not be observed by X-diffraction. These traces couldn’t be either
detected from the absorption spectrum. Indeed, from Figures 3 and 4a, the order of magnitude of the
MAPI absorption coefficient is evaluated in the 2.4 eV range: 3750 cm´1, that is to say that the optical
density for a crystal having a thickness of 2 mm will be 750, making impossible to detect weak signals
coming from PbI2 absorption. The low temperature PL is therefore here the only mean to detect these
weak PbI2 traces.

PL spectroscopy is a powerful tool to detect weak signals because it is a signal detection method
requiring a black background: in the range of wavelengths where the sample shows no emission,
the emission signal is strictly zero, as a consequence, if a small emission signal exists for certain
wavelengths, it will be possible to increase the detector sensitivity in order to detect the emission
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signal. It is quite impossible to do that in an absorption experiment: in the range of wavelengths where
the sample shows no absorption, the incident light is completely transmitted, so a high signal arrives
in the detector. If a small absorption exists at a certain wavelength, the incident light will be nearly
completely transmitted, as a consequence it will be impossible to play with the detector sensitivity to
detect the very weak absorption signal among the large transmitted signal. It is the reason why PL
spectroscopy is much more sensitive than absorption spectroscopy to detect weak signals in solids.
Additionally, the low temperature PL spectroscopy can be performed in situ, in the cryostat. In fact,
in order to optimize the solar cells performances, advanced optical studies are necessary: for example,
it is crucial to understand the nature and the dynamics of the relaxation mechanisms involved in the
trapping of excitons on defects, it is also important to study some behaviors of the free excitons, such
as their diffusion length. To perform these studies, time-resolved PL experiments at low temperature
are necessary [42,43]. In this case, the method we propose here allows to check, in a simple way and in
situ, the presence of PbI2 traces.

3. Discussion on MAPI Degradation Mechanisms

The experiments performed on MAPI thin layers showed that PMMA and Spiro-OMeTAD layers
are both able to protect the MAPI layer and that the mechanism which is involved in the degradation
of MAPI and the appearance of PbI2 is activated by light. As we have demonstrated in the case of 2D
hybrid perovskite [44], the primary process in perovskite degradation is the (minor) evolution of the
photogenerated charge transfer excited state “Pb+ . . . I˝” in the material, generating I2 which goes off.
The fate of the transient very unstable “Pb+” species is not clear, but it is likely that it reacts in air with
the strongest easily diffusing oxidizing reagent, that is oxygen. ROS species (O2

´, HO2
´ . . . ) can then

be formed, which in turn oxidize iodides, and in the end generate hydroxide ions. These hydroxide
ions deprotonate the ammoniums (likely a slower process in the solid matrix), and the low boiling
methylamine also goes off. In the end, only PbI2 is left. In equations, the picture can be summarized as
(overall stoichiometry only in the circled global Schemes 1 and 2):
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This mechanism is consistent with the work of Haque and co-workers who argued that under
illumination, photoexcited electrons would react with molecular oxygen to form superoxide (O2

´)
that would subsequently decompose the perovskite [45]. On the other hand, Christians et al. [37] have
convincingly demonstrated that formation of a perovskite hydrate in moist air occurred, and that this
was linked to the fast photodegradation of the material afterwards. In that case, the water present in
the structure might well be the reducing agent, which would trigger an alternative mechanism, a little
slower and producing dihydrogen instead of water.

Lastly, it should be noticed that the PMMA covered MAPI layer is slowly photodegraded, since
PMMA completely protects from moisture, but not from oxygen; in addition, nobody has never
reported the production of hydrogen gas, which tends to suggest that the second mechanism would be
a minor one. Finally, the two mechanisms can exist concomitantly and present synergy. Even if water
is not the active agent in the degradation process, it might well help the diffusion of both oxygen and
hydroxide ions to accelerate the overall process.

From the experiments on MAPI crystals, the highlight is the extremely high stability of the crystals
compared to the thin layers. In a crystal, an intimate contact with water is much more difficult than in
a thin layer (the insertion of water would probably provoke a crystal breakdown). On the other hand,
Figure 11 shows a Scanning Electron Microscopy (SEM) image of a MAPI thin layer, showing the large
surface that can be in contact with water and above all the great number of grain boundaries.
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Figure 11. Scanning Electron Microscopy (SEM) image of an 800 thick MAPI thin layer deposited by
spin-coating on a quartz substrate.

As our millimeter crystals are single crystals presenting a low density of defects and likely have
no grain boundaries, we conclude that these defects and grain boundaries play an important role
in the degradation mechanism and that growing very high quality perovskite films in solar cells is
therefore necessary to avoid degradation. This finding is quite coherent with recent interpretations.
In their studies about degradation mechanisms of MAPI in thin layers and crystals, Leguy et al. [38]
suggested a high degree of penetration of water molecules into MAPI thin films, arising probably
from the diffusion of water molecules along the grain boundaries. Lu et al. [39] have studied MAPI
thin layers deposited by two different methods, one of this method producing higher quality thin
layers: they observe a more important interaction with moisture in the layers containing more defects,
providing in their opinion more active sites for the adsorption of water molecules.
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4. Materials and Methods

4.1. Preparation of Perovskite Precursors

First of all, methylammonium iodide CH3NH3I (called MAI hereafter) is synthetized by reacting
CH3NH2 (30 mL, 2 M in methanol, Sigma Aldrich, St. Louis, MO, USA) and aqueous solution of
iodic acid (HI, 34.4 mL 57% in water, Sigma Aldrich) in a 250 mL round-bottom flask, stirred at 0 ˝C
for 4 h. The precipitate is recovered after evaporation at 60 ˝C for 1 h. Then the MAI is dissolved
in ethanol and recrystallized three times from diethyl ether. The final product is dried at 60 ˝C in
vacuum oven for 24 h. To prepare the perovskite CH3NH3 PbI3 (MAPI), the synthesized CH3NH3I
(0.5 g) and lead iodide (PbI2, 1.47 g of grains from Sigma Aldrich 99.99% for all the samples except for
the sample called MAPI*, for which powdered Sigma-Aldrich 99.99% PbI2 was used) are mixed in
γ-butyrolactone (4.47 mL, Sigma Aldrich reagent plus > 99%) (stoichiometric amounts) and stirred at
60 ˝C for 12 h. The obtained solution is homogeneous with high transparency in the visible region,
and remains totally clear when it is stored during a long time (more than one month), that is to say
that no PbI2 is formed inside the solution.

4.2. Deposition of Perovskite Layer

UV quartz slides (from Neyco, Vanves, France) are used for deposition. They are cleaned
sequentially with acetone, ethanol and propanol in an ultrasonic bath (15 min for each step). Finally the
slides are immerded in 1 M KOH in ethanol for 15 min. Then the slides are rinsed with distilled water
and dried by a nitrogen gas flow. MAPI films are deposited on these quartz substrates by spin-coating,
adjusting the acceleration and duration of the acceleration to obtain the desired thickness. After the
deposition, the samples are annealed at 120 ˝C for 10 min. We focus the paper on layers of thickness
800 nm as the thickness of the MAPI layers in the solar cells is typically several hundred of nm. These
layers are obtained with spin-coater parameters of 2000 rpm for 10 s, the thickness has been checked
by AFM measurements.

4.3. Preparation of Millimeter Sized Crystals

On the basis of articles recently published [46–49], we have grown millimeter sized MAPI crystals.
Methylammonium iodide (0.78 g, 5 mmol) and lead iodide (2.30 g, 5 mmol) were dissolved in GBL
(5 mL) at 60 ˝C. The yellow solution (2 mL) was placed in a vial and heated at 120 ˝C during one to
four hours depending on the desired crystal size. The solution could be heated in a hot plate as well as
an oil bath.

5. Conclusions

Investigating the stability and evaluating the quality of the perovskite structures is quite critical
both for the design and fabrication of high-performance perovskite devices and for fundamental
studies of the photophysics of the excitons. We have shown that low temperature PL spectroscopy is
a powerful tool to detect PbI2 traces in hybrid perovskite layers and crystals. Because PL spectroscopy
is a signal detection method on a black background, small PbI2 traces can be detected, when other
methods, currently used at room temperature, fail. Additionally, in the context of advanced optical
studies of the excitons, PL spectroscopy allows to check in situ the presence of PbI2 in samples in
a very simple way. In particular, this method is quite convenient for the study of the crystal aging and
quality, as X-diffraction and absorption spectroscopies are inadequate to detect the presence of PbI2

traces in this case.
This method has been applied to study MAPI thin layers and single crystals. The processes

involved in the degradation likely involve dioxygen, or water, but more likely the two together, with
mutual enhancement, the water helping oxygen, the strongest oxidant, to reach reactive zones localized
on defects. Our study highlights the extremely high stability of the single crystals compared to the
thin layers. So defects and grain boundaries are thought to play an important role in the degradation
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mechanism. As a consequence, growing very high quality perovskite films in solar cells is quite
necessary to avoid degradation and increase the resistance to moisture.
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