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1  | INTRODUC TION

Haloragaceae (Saxifragales) is a dicotyledonous, cosmopolitan fam-
ily that includes eight genera and approximately 138 species (Moody 
& Les, 2007). Life forms vary widely in this family, which presents 
both terrestrial (small trees, shrubs, subshrubs, and annuals) and 
aquatic or semiaquatic genera (Moody & Les, 2010). Myriophyllum 

L. is a cosmopolitan aquatic angiosperm genus in Haloragaceae with 
ca. 68 species (as defined by APG II 2003). Some Myriophyllum spe-
cies are highly invasive in several countries due to rapid asexual re-
production and strong competitiveness in aquatic systems (Moody 
& Les, 2010). In addition, reliable morphological identification of 
Myriophyllum is particularly difficult in the field when reproduc-
tive structures are lacking, as is common among many aquatic taxa 
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Abstract
Myriophyllum, among the most species-rich genera of aquatic angiosperms with ca. 
68 species, is an extensively distributed hydrophyte lineage in the cosmopolitan fam-
ily Haloragaceae. The chloroplast (cp) genome is useful in the study of genetic evo-
lution, phylogenetic analysis, and molecular dating of controversial taxa. Here, we 
sequenced and assembled the whole chloroplast genome of Myriophyllum spicatum L. 
and compared it to other species in the order Saxifragales. The complete chloroplast 
genome sequence of M. spicatum is 158,858 bp long and displays a quadripartite 
structure with two inverted repeats (IR) separating the large single copy (LSC) region 
from the small single copy (SSC) region. Based on sequence identification and the 
phylogenetic analysis, a 4-kb phylogenetically informative inversion between trnE-
trnC in Myriophyllum was determined, and we have placed this inversion on a lineage 
specific to Myriophyllum and its close relatives. The divergence time estimation sug-
gested that the trnE-trnC inversion possibly occurred between the upper Cretaceous 
(72.54 MYA) and middle Eocene (47.28 MYA) before the divergence of Myriophyllum 
from its most recent common ancestor. The unique 4-kb inversion might be caused by 
an occurrence of nonrandom recombination associated with climate changes around 
the K-Pg boundary, making it interesting for future evolutionary investigations.
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(Cronk & Fennessy, 2001; Moody & Les, 2010; Sculthorpe, 1967). 
The genetic relationships also do not readily facilitate identification 
as previously published molecular phylogenies are lacking (Moody 
& Les, 2010). Commonly used markers for determining phyloge-
netic relationships include the nuclear-encoded internal transcribed 
spacer (nrITS) and numerous chloroplast DNA markers (Moody 
& Les, 2007, 2010; Thum, Zuellig, Johnson, Moody, & Vossbrinck, 
2011). Therefore, it is necessary to select more appropriate phyloge-
netically informative regions.

The sequencing of whole chloroplast genomes (cp genome), 
which are haploid and maternally inherited, have the potential to sig-
nificantly advance our ability to resolve evolutionary relationships 
in complex plant lineages, such as Myriophyllum (Doorduin et al., 
2011; Philippe & Roure, 2011). The plant cp genome is generally 
conserved in content and structure. It is usually composed of two 
copies of inverted repeats (IR) that separate a large single copy re-
gion (LSC) from a small single copy region (SSC). Highly conserved 
genes (100–120) have been retained in the cp genome, including 
those for photosynthesis, self-reproduction, transcription of chloro-
plast expression-related genes, and some unknown genes (Wicke, 
Schneeweiss, Depamphilis, Müller, & Quandt, 2011). Despite being 
much more conservative than the nuclear and mitochondrial ge-
nomes, the cp genome still varies in size, contraction and expansion 
of IRs, and structure (Daniell, Lin, Yu, & Chang, 2016). Moreover, 
many mutation events in the cp genome have been detected includ-
ing indels, substitutions, and inversions (Chumley et al., 2006).

These evolutionary hotspots can provide useful information 
to elucidate the phylogenetic relationships of taxonomically un-
resolved plant taxa. Kim, Choi, and Jansen (2005) confirmed the 
Barnadesioideae as the most basal lineage in the Asteraceae by 
using a 22-kb DNA inversion. The close relationship between the 
Poaceae and Joinvilleaceae was clarified by treating three DNA 
inversions composed of a nested set as a phylogenetic character 
(Doyle, Davis, Soreng, Garvin, & Anderson, 1992). Some variations 
in the cp genome, like gene loss and transfer, have been used to de-
termine the evolutionary history of some plant species. For example, 
the extreme loss of ndh genes observed in Najas flexilis was used to 
illustrate a modified character associated with photosynthetic effi-
ciency (Peredo, King, & Les, 2013).

In this study, we sequenced the complete cp genome of 
M. spicatum (Figure 1). The cp genome was then compared with 
previously published cp genomes from related species, allowing 
the identification of a noteworthy inversion. Phylogenetic anal-
yses were then performed on Saxifragales spp. to determine the 
point at which the inversion in the cp genome of Myriophyllum oc-
curred. Finally, we evaluated the sequence divergence between 
Myriophyllum and other clades in Haloragaceae. We investigated 
potentially useful plastid regions for future molecular phyloge-
netic analyses in Saxifragales with observation on the variation of 
chloroplasts at different molecular markers (exon, intron, and in-
tergenic regions). These data provide insight into the evolutionary 
history of this cosmopolitan family and, in the future, will facilitate 
the identification of Myriophyllum spp.

2  | MATERIAL S AND METHODS

2.1 | Plant materials and DNA extraction

The taxa sampled in this study are shown in Table 1. All specimens 
were deposited in Wuhan Botanical Garden, Chinese Academy of 
Sciences in China. The total DNA of all samples were isolated from 
the fresh leaves according to the mCTAB method (Li, Wang, Yu, & 
Wang, 2013).

2.2 | Chloroplast genome sequencing, mapping, and 
annotation for M. spicatum

The whole cp genome of M. spicatum was sequenced. The DNA se-
quencing library of M. spicatum was prepared following the method 
described by Dong, Xu, Cheng, Lin, and Zhou (2013) and Dong, Xu, 
Cheng, and Zhou (2013), and fragments were amplified using uni-
versal primers. Specific primers were designed for regions, such as 
poly-A tails, that were insufficiently amplified using the universal 
primers. The inverted repeat regions (IRs) of the cpDNA were not 
amplified separately; instead, primers were designed to amplify the 
regions spanning the junctions of LSC/IRA, LSC/IRB, SSC/IRA, and 
SSC/IRB. Using these primers, we covered the entire cp genome of 
M. spicatum with PCR products ranging in size from 500 bp to 5 kb. 
The overlapping regions of each pair of adjacent PCR fragments ex-
ceeded 150 bp. The standard PCR amplification reactions were per-
formed at 94°C for 4 min followed by 35 cycles of 30s denaturation 

F I G U R E  1   The Myriophyllum spicatum L. (Haloragaceae, 
Myriophyllum), a perennial submerged aquatic plant widely 
distributed in Europe, Asia, and north Africa
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at 94°C, 30s annealing at 55°C, 1.5 min extension at 72°C, and a 
final extension of 72°C for 10 min. PCR products were electro-
phoresed on a 1.0% agarose gel and purified with gel extraction kit 
(Omega Bio-Tek). The amplified DNA fragments were further sent 
to Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) for 
Sanger sequencing in both the forward and reverse directions ac-
cording to their standard protocols on an ABI 3730xl DNA Analyzer. 
All fragments were sequenced 2–10 times (6-fold coverage of the M. 
spicatum cp genome on average). The chloroplast DNA sequences 
were manually assembled by using of the program Sequencher 
v4.1.4 (Gene Codes Corporation, USA). Since automated assem-
bly methods cannot distinguish two IRs, we input the reads as two 
groups and obtained two large contigs, with each contig including 
one IR and its adjacent partial large and small single copy (LSC and 
SSC) regions. Then, the two large contigs were manually assembled 
into the complete circular genome sequence.

The cp genome of M. spicatum was annotated using the online 
program Dual Organellar Genome Annotator (DOGMA; Wyman, 
Jansen, & Boore, 2004). All tRNA genes were further verified by 
the corresponding structures predicted by tRNAscan-SE 1.3.1 
(Schattner, Brooks, & Lowe, 2005). The graphical map of the circular 
plastome was drawn by GenomeVx (Conant & Wolfe, 2008).

The frequency of codon usage in exon sequences of all pro-
tein-coding genes of the cp genome of M. spicatum was calculated by 
using of MEGA 6 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013) 
and yn00 in PAML 4 (Yang, 2007). REPuter (Kurtz et al., 2001) was 
used to identify and locate forward, palindrome, reverse, and com-
plement sequences that were ≥30 bp and had a sequence identity 
≥90%. Simple sequence repeats (SSRs) were identified with MISA 
(http://pgrc.ipk-gater sleben.de/misa/; Thiel et al., 2003). Detection 
criteria were constrained to perfect repeat motifs of 1–6 bp and a 
minimum repeat number of 8, 4, 4, 3, 3, and 3, for mono-, di-, tri-, 
tetra-, penta-, and hexa-nucleotide repeats, respectively. Geneious 

v8.0.2 (http://www.Genei ous.com; Kearse et al., 2012) was used to 
perform the mapping of the location and size of repeated elements 
and SSRs in the M. spicatum cp genome.

2.3 | Comparative genomic analysis

To determine structural variation of the cp genome, the newly se-
quenced cp genome of M. spicatum was compared with the cp ge-
nome of four other Saxifragales species: Liquidambar formosana 
[KC588388], Paeonia obovata [KJ206533], Penthorum chinense 
[JX436155], and Sedum sarmentosum [JX427551]. Mauve software 
2.3.1 was used to determine the structural variation (Darling, Mau, 
Blattner, & Perna, 2004), and the cp genome of Nicotiana tabacum 
[NC_001879] was used as a reference.

To identify the presence of large structural variation (>1 kb) 
within the M. spicatum plastome, breaks of synteny were searched 
among plastomes of M. spicatum, L. formosana, P. obovata, P. chin-
ense, and S. sarmentosum as well as two outgroup taxa, Vitis vinifera 
[NC_007957] and N. tabacum [NC_001879]. The mVISTA pro-
gram in Shuffle-LAGAN mode (Frazer, Pachter, Poliakov, Rubin, & 
Dubchak, 2004) was used to perform the sequential comparison 
of the cp genomes with the sequence annotation information of 
M. spicatum.

2.4 | Identification of the inversion by PCR 
screening and sequencing in Myriophyllum and close 
relative Gonocarpus

To determine the origin of the inversion observed in M. spica-
tum, its presence/absence was surveyed by PCR with primer 
pairs diagnostic in Myriophyllum (M. spicatum, M. alterniflorum, M. 

TA B L E  1   Taxa used for cp DNA sequencing and PCR diagnosis of the inversion

No. Family Species Locality Used for

1 Haloragidaceae Gonocarpus micranthus Thunb. Shanwei, Guangdong, China cp DNA sequencing

2 Haloragidaceae Myriophyllum alterniflorum DC. UK PCR diagnosis

3 Haloragidaceae Myriophyllum aquaticum (Vell.) Verdc. Zhenjiang, Jiangsu, China PCR diagnosis

4 Haloragidaceae Myriophyllum dicoccum F. Muell. Shanwei, Guangdong, China PCR diagnosis

5 Haloragidaceae Myriophyllum heterophyllum Michx. USA PCR diagnosis

6 Haloragidaceae Myriophyllum lophatum Orchard Australia PCR diagnosis

7 Haloragidaceae Myriophyllum oguraense Miki Liangzi Lake, Ezhou, Hubei, China PCR diagnosis

8 Haloragidaceae Myriophyllum quitense Kunth USA PCR diagnosis

9 Haloragidaceae Myriophyllum sibiricum Kom. Ice land PCR diagnosis

10 Haloragidaceae Myriophyllum spicatum L. Germany PCR diagnosis

11 Haloragidaceae Myriophyllum tenellum Bigelow USA PCR diagnosis

12 Haloragidaceae Myriophyllum ussuriense Maxim. Wuhan Botanical Gardon, Wuhan, Hubei, China PCR diagnosis

13 Haloragidaceae Myriophyllum variifolium Hook.f. Australia PCR diagnosis

14 Haloragidaceae Myriophyllum verrucosum Lindl. Australia PCR diagnosis

15 Haloragidaceae Myriophyllum verticillatum L. Fuyuan, Heilongjiang, China PCR diagnosis

http://pgrc.ipk-gatersleben.de/misa/
http://www.Geneious.com
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aquaticum, M. dicoccum, M. heterophyllum, M. lophatum, M. ogu-
raense, M. quitense, M. sibiricum, M. tenellum, M. ussuriense, M. 
variifolium, M. verrucosum, M. verticillatum), and Gonocarpus (G. 
micranthus; listed in Table 1). The primer pairs were designed in 
either conserved rpoB and trnE or trnC and trnT protein-coding se-
quences, which are flanking the inversion endpoints, to allow for 
the assessment of the presence or absence of the inversion. The 
primer pairs used were: rpoB-F (5′-CTTCCGTCAAGCCCTGATC-3′) 
and trnE-R (5′- AATCCCCGCTGCCTCCTT-3′) as well as 
trnC-F (5′-CGGATTTGAACTGGGGAAAA-3′) and trnT-R 
(5′-CGGATTTGAACCGATGACTTAC-3′). Each 50 μl reaction con-
tained 2.5 mM MgCl2, 0.2 mM deoxynucleoside triphosphate, 
0.25 mM primers, 2.5 units of Taq polymerase, and 2–5 ng of DNA. 
The standard PCR amplification reactions were performed at 94°C 
for 2 min followed by 35 cycles of 1 min denaturation at 94°C, 
1 min annealing at 55°C, 2 min extension at 72°C, and a final exten-
sion of 72°C for 7 min. PCR-amplified DNA was purified using the 
QIAquick PCR purification kit and then checked on 2% agarose gels 
after staining with ethidium bromide. The purified products were se-
quenced by Sangon Biotech (Shanghai, China). Sequence assemblies 
and alignments followed the abovementioned methods.

2.5 | Phylogenetic analysis

The rpoB-trnE and trnC-trnT inversion regions and molecular markers 
(ITS, trnK, and matK) used in a previous study (Moody & Les, 2010) 
were used for a phylogenetic analysis. Because the rpoB-trnE and 
trnC-trnT loci are absent in L. formosana, P. obovata, P. chinense, and 
S. sarmentosum, the rpoB-trnC and trnE-trnT loci were used for these 
species because of high homology. Alignments were performed 
using MAFFT version 7. 0 (Katoh & Standley, 2013) with default pa-
rameters. Three combined datasets were created: (a) rpoB-trnE and 
trnC-trnT; (b) ITS, matK, and trnK; and (c) ITS, matK, trnK, rpoB-trnE, 
and trnC-trnT. An incongruence length difference (ILD) test between 
the nrITS and cpDNA was performed in PAUP v4.0b10 (Swofford, 
2002) with 100 replicates, and this test indicated significant differ-
ences between data partitions (p < .01).

Maximum likelihood (ML), conducted using RAxML 7.0.3 
(Stamatakis, 2006), and Bayesian inference (BI), conducted using 
MrBayes 3.1.2 (Huelsenbeck & Ronquist, 2001), were used to con-
duct the phylogenetic analyses. For ML analyses, values of all pa-
rameters were calculated by RAxML. Nonparametric ML bootstrap 
analyses included 1,000 pseudoreplicates. For BI analyses, two 
simultaneous runs were conducted, each consisting of four chains. 
In total, chains were run for 5,000,000 generations, with trees 
sampled every 1,000 generations. The first 25% of sampled gen-
erations were discarded as burn-in, and the remaining trees were 
used to calculate majority-rule consensus trees and posterior prob-
abilities for nodes. Akaike information criterion (AIC) via Modeltest 
v3.7 (Posada & Crandall, 1998) was used to determine the most 
appropriate model of nucleotide evolution, supporting the use of 
GTR + I+G.

2.6 | Molecular dating

Molecular dating analyses were run in BEAST package v1.7.5 
(Drummond & Rambaut, 2007) using the combined ITS, matK, 
trnK, rpoB-trnE, and trnC-trnT matrix. The analysis followed the 
dating strategies in Chen et al. (Chen et al., 2014). The GTR + I + G 
model was selected as the best fit for the data by Mrmodeltest 
v2.3 (Nylander, 2004). A relaxed clock (uncorrelated lognormal) 
was selected as preliminary likelihood-ratio test (LRT; Huelsenbeck 
& Rannala, 1997) rejected the strict molecular clock hypothe-
sis for our data (p < .01). A Yule speciation model was used as a 
prior on the tree. We chose two reliable calibration points to con-
strain divergence times based on fossil taxa as follows: the extinct 
Tarahumara sophiae, representing the oldest known macrofossil 
record for Haloragaceae from the Maastrichtian–Campanian pe-
riod (70.0 Ma) in northern Mexico (Hernandez-Castillo & Cevallos-
Ferriz, 1999); one Altingiaceae species, Microaltingia apocarpelata 
(Zhou, Crepet, & Nixon, 2001), considered one of the oldest fos-
sils of Saxifragales represented by macrofossils from the Upper 
Cretaceous (ca. 90 Ma) in New Jersey (USA). We defined 90.0 Ma 
as the lower boundary for the root age, and the crown group age 
of Haloragaceae was 70.0 Ma. Six independent Bayesian Markov 
chain Monte Carlo (MCMC) chains were run for 100 million genera-
tions on each, sampling every 10,000 generations. Tracer v1.5 was 
used to check the effective sample size (ESS) scores for all relevant 
estimated parameters to ensure values above 250. LogCombiner 
v1.7.5 was used to combine trees from these six runs and removed 
25% generations as burn-in. A maximum clade credibility tree with 
median ages and 95% highest posterior density (HPD) intervals was 
constructed using TreeAnnotator v1.7.5.

3  | RESULTS

3.1 | General characteristics of the M. spicatum cp 
genome

The complete cp genome of M. spicatum (GenBank accession num-
ber: MK250869) contains 158,858 bp with a quadripartite structure, 
and two IRs (25,813 bp) separated by an SSC (18,814 bp) and an LSC 
(88,418 bp) region (Figure 2). The IR extends from rps19 through a por-
tion of ycf1 and contains 18 duplicated genes with one or two introns. 
The genome contains 113 unique genes including 30 tRNA genes, four 
rRNA genes, and 79 protein-coding genes (Table 2). Genes involved in 
photosynthesis and transcription and translation were the two domi-
nant families. There were six genes coding the subunits of ATP synthase 
and 11 genes associated with the subunits of NADH dehydrogenase. 
The genome consists of 58% coding regions and 42% noncoding re-
gions, including both intergenic spacers and introns. A total of 26,316 
codons represent the coding capacity of 79 protein-coding genes in 
the genome. The frequency of codon usage was calculated based on 
the sequences of protein-coding genes and tRNA genes, which are 
summarized in Table 3. Codon usage frequency demonstrated that 

info:ddbj-embl-genbank/MK250869
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F I G U R E  2   The whole assembly of the chloroplast genome of M. spicatum. The inverted repeats (IRa, IRb) were indicated in thick black 
lines on inner cycle which separate the genome into the large (LSC) and small (SSC) single copy regions. The genes drawn outside of the 
circle are transcribed counterclockwise, while those inside are clockwise. Gene boxes are colored by functional group as shown in the key. 
The red arrows denote the location of the 4-kb inversion
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leucine is the most common amino acid with 2,812 codons (10.69%), 
while cysteine is the least common with 299 codons (1.14%).

3.2 | Repeat analysis

A total of 38 repeats were found including 21 direct (forward) re-
peats, 15 inverted (palindrome) repeats, one reverse repeat, and one 
complement repeat (Table S1). The longest repeat is a 51-bp inverted 
repeat between the rbcL and accD. Most of the repeats are distrib-
uted within the intergenic spacer regions, the intron sequences, 
and ycf1 and ycf2. Cp microsatellites (cpSSRs) are potentially use-
ful markers for detection of polymorphisms (Provan, Powell, & 
Hollingsworth, 2001); therefore, the distribution of SSRs was also 
analyzed, and 260 SSRs were identified in total. Among the identi-
fied SSRs, 177 mononucleotide SSRs (68.08%), 66 dinucleotide SSRs 
(25.38%), seven trinucleotide SSRs (2.70%), and 10 tetranucleotide 
SSRs (3.84%) were recognized. Most homopolymers are constituted 
by A/T sequences (98.87%). Of the dipolymers, 75.76% were con-
stituted by multiple A and T bases. One hundred and fifty-nine of 
the SSR loci were found in the intergenic regions, 35 were located 
in introns, and the other 66 SSRs were located in genes (Table S2). 
The locations of repeat sequences and SSRs are shown in Figure 3.

3.3 | Comparison of genome organization in 
Saxifragales

To understand the structural characteristics in the cp genomes of 
M. spicatum, L. formosana, P. obovata, P. chinense, and S. sarmento-
sum, and broadly, Saxifragales, the size, gene content, and organi-
zation of the cp genomes were sampled for comparative analysis. 
The characters of the genomes from the abovementioned species 
are listed in Table S3. As expected, there were considerable dif-
ferences in terms of genome size, GC content, extent of IR, gene 
content, and gene order. The coding region in M. spicatum was the 
largest (92,088 bp) among the five Saxifragales species investi-
gated. The GC content of the LSC region, SSC region, and IRs of M. 
spicatum was the lowest. To understand the structural character-
istics in the cp genome of M. spicatum, the comparative sequence 
alignment of the cp genome sequences of the five Saxifragales 
species was performed with the new annotation of M. spicatum 
as a reference (Figure 4). This showed general conservativeness 
among the five species but with some highly varied regions, in-
cluding ycf1, rps16, ndhA, and accD, occurring as the most diver-
gent coding genes.

The exact borders between the IR regions and the two single 
copy regions (LSC and SSC) were also compared to investigate the 
contraction or expansion of the IR regions (Figure 5). We found that 
the IR/SSC boundary regions were slightly varied. The genes mark-
ing the beginning and end of the IR were only partially duplicated. 
Specifically, 2–110 bp of rps19 (except for in P. chinense, which was 
entirely located in the LSC) and 1,065–1,164 bp of ycf1. The rps19 

TA B L E  2   Genes present in Myriophyllum spicatum chloroplast 
genome

Category Group of genes Genes

Photosynthesis- 
related genes 
(47)

Rubisco (1) rbcL

Photosystem I (5) psaA, psaB, psaC, psaI, psaJ

Assembly/stability 
of photosystem 
I (2)

ycf3**,ycf4

Photosystem II 
(15)

psbA,psbB,psbC,psbD,psbE,
psbF,psbH,psbI,psbJ,psbK,
psbL,psbM,psbN,psbT,psbZ

ATP synthase (6) atpA, atpB, atpE, atpF*, 
atpH, atpI

cytochrome b/f 
compelx (6)

petA, petB*, petD*, petG, 
petL, petN

cytochrome c 
synthesis (1)

ccsA

NADPH 
dehydrogenase 
(11)

ndhA*, ndhB*(x2), ndhC, 
ndhD, ndhE, ndhF,ndhG, 
ndhH, ndhI, ndhJ, ndhK

Transcription 
and 
translation-
related genes 
(59)

transcription (4) rpoA, rpoB, rpoC1*, rpoC2

ribosomal proteins 
(20)

rps2, rps3, rps4, rps7(x2), 
rps8, rps11, rps12*(x2), 
rps14,rps15, rps16*, rps18, 
rps19,rpl2*(x2), rpl14, 
rpl16*, rpl20, rpl23(x2), 
rpl32, rpl33,rpl36

translation 
initiation factor 
(1)

infA

ribosomal RNA (4) rrn5(x2), rrn4.5(x2), 
rrn16(x2), rrn23(x2)

transfer RNA (30) trnA-UGC*(x2), trnC-
GCA, trnD-GUC, 
trnE-UUC, trnF-GAA,,trnG-
UCC,trnG-GCC*, 
trnH-GUG, trnI-CAU(x2), 
trnI-GAU*(x2),trnK-
UUU*, trnL-CAA(x2), 
trnL-UAA*, trnL-UAG, 
trnfM-CAUI,trnM-CAU, 
trnN-GUU(x2), trnP-UGG, 
trnQ-UUG,trnR-ACG(x2), 
trnR-UCU, trnS-GCU, 
trnS-GGA, trnS-UGA, 
trnT-GGU,trnT-UGU, 
trnV-GAC(x2), trnV-UAC*, 
trnW-CCA, trnY-GUA

Other genes (6) RNA processing (1) matK

carbon 
metabolism (1)

cemA

fatty acid 
synthesis (1)

accD

proteolysis (1) clpP**

conserved genes 
with unknown 
functions (2)

ycf1, ycf2(x2), ycf15(x2)

Note: One and two superscript asterisks indicate one- and two-intron-
containing genes, respectively. Genes located in the IR region are 
indicated by (x2) after the gene name.
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pseudogene occurred at the end of IRa and the ycf1 pseudogene oc-
curred at the end of IRb. The ndhF gene shares some nucleotides 
with the ycf1 pseudogene (35 bp in M. spicatum, 1 bp in P. obovata, 
and 29 bp in P. chinense). Neither gene loss nor intron loss were 

detected in the cp genome of M. spicatum. ycf15 is identified as a 
pseudogene in the cp genome of M. spicatum because of the pres-
ence of a premature stop codon, which is different from the other 
four Saxifragales species.

TA B L E  3   Codon usage in Myriophyllum spicatum chloroplast genome

Codon Amino acid Count RSCU tRNA Codon Amino acid Count RSCU tRNA

UUU(F) Phe (F) 988 1.31  UCU(S) Ser (S) 564 1.68  

UUC(F) Phe (F) 524 0.69 trnF-GAA UCC(S) Ser (S) 304 0.90 trnS-GGA

UUA(L) Leu (L) 870 1.86 trnL-UAA UCA(S) Ser (S) 409 1.22 trnS-UGA

UUG(L) Leu (L) 560 1.19 trnL-CAA UCG(S) Ser (S) 198 0.59  

CUU(L) Leu (L) 593 1.27  CCU(P) Pro (P) 424 1.58  

CUC(L) Leu (L) 199 0.42  CCC(P) Pro (P) 202 0.75 trnP-UGG

CUA(L) Leu (L) 394 0.84 trnL-UAG CCA(P) Pro (P) 315 1.17  

CUG(L) Leu (L) 196 0.42  CCG(P) Pro (P) 135 0.50  

AUU(I) I le (I) 1,103 1.45  ACU(T) Thr (T) 542 1.61  

AUC(I) I le (I) 418 0.55 trnI-GAU ACC(T) Thr (T) 243 0.72 trnT-GGU

AUA(I) I le (I) 748 1.12 trnI-CAU ACA(T) Thr (T) 407 1.21 trnT-UGU

AUG(M) Met (M) 590 0.88 trnM-CAU ACG(T) Thr (T) 156 0.46  

GUU(V) Val (V) 520 1.48  GCU(A) Ala (A) 637 1.82  

GUC(V) Val (V) 175 0.50 trnV-GAC GCC(A) Ala (A) 230 0.66  

GUA(V) Val (V) 525 1.49 trnV-UAC GCA(A) Ala (A) 401 1.15 trnA-UGC

GUG(V) Val (V) 186 0.53  GCG(A) Ala (A) 129 0.37  

UAU(Y) Try (Y) 785 1.62  UGU(C) Cys (C) 227 1.52  

UAC(Y) Try (Y) 185 0.38 trnY-GUA UGC(C) Cys (C) 72 0.48  

UAA(*) Stop 49 0.27  UGA(*) Stop 15 0.06 trnS-GCU

UAG(*) Stop 21 0.12  UGG(W) Trp (W) 460 1.94 trnC-GCA

CAU(H) His (H) 471 1.52  CGU(R) Arg (R) 340 1.48  

CAC(H) His (H) 150 0.48  CGC(R) Arg (R) 99 0.43 trnW-CCA

CAA(Q) Gln (Q) 712 1.51 trnH-GUG CGA(R) Arg (R) 354 1.54 trnR-ACG

CAG(Q) Gln (Q) 231 0.49 trnQ-UUG CGG(R) Arg (R) 129 0.56  

AAU(N) Asn (N) 968 1.52  AGU(S) Ser (S) 446 1.33  

AAC(N) Asn (N) 305 0.48  AGC(S) Ser (S) 95 0.28  

AAA(K) Lys (K) 1,080 1.51 trnN-GUU AGA(R) Arg (R) 500 2.76 trnR-UCU

AAG(K) Lys (K) 350 0.49 trnK-UUU AGG(R) Arg (R) 154 0.85  

GAU(D) Asp (D) 887 1.63  GGU(G) Gly (G) 595 1.32  

GAC(D) Asp (D) 201 0.37  GGC(G) Gly (G) 168 0.37 trnG-GCC

GAA(E) Glu (E) 1,007 1.50 trnD-GUC GGA(G) Gly (G) 716 1.59 trnG-UCC

GAG(E) Glu (E) 338 0.50 trnE-UUC GGG(G) Gly (G) 321 0.71  

Note: Excluding pseudogenes.

F I G U R E  3   Distribution of repeat sequences and SSRs in M. spicatum chloroplast genome. GC content is shown

Myriophyllum spicatum

LSC IRb SSC IRa
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3.4 | Occurrence of the unique lineage-
specific inversion

A 4-kb inverted fragment in the LSC between rpoB-trnT was found 
in M. spicatum after comparison with the four other taxa from 
Saxifragales (Figure 6). One end point of the inversion is located 
between the rpoB and trnE and ~300 bp upstream to trnE. The 
other end point is located between the trnC-UUC and trnT-GGU, 
~1,000 bp downstream to trnC. The break points do not disrupt 
any genes. The trnE-trnC inversion contained four tRNA genes 
(trnE, trnY, trnD, and trnC) and two protein-coding genes (psbM and 
petN). To verify the presence of the inversion in Myriophyllum, we 
investigated 13 other Myriophyllum species (M. alterniflorum, M. 
aquaticum, M. dicoccum, M. heterophyllum, M. lophatum, M. ogu-
raense, M. quitense, M. sibiricum, M. tenellum, M. ussuriense, M. vari-
ifolium, M. verrucosum, M. verticillatum) as well as G. micranthus in 

Haloragaceae, which is a species in a closely related genus. PCR 
amplification guided by four designed primers confirmed the pres-
ence the 4-kb inversion among all of these species. Moreover, L. 
formosana, P. obovata, P. chinense, and S. sarmentosum lacked this 
4-kb inversion.

The phylogenetic relationships among 15 Haloragaceae spe-
cies and four outgroup species (L. formosana, P. obovata, P. chin-
ense, and S. sarmentosum) were investigated using three combined 
datasets (Figure 7). Two highly supported with strong bootstrap 
value (100%) monophyletic groups were identified within the 14 
Myriophyllum species (Figure 6). Gonocarpus micranthus clustered 
into Myriophyllum, indicating that additional detailed analyses are 
needed including more species of Myriophyllum, Gonocarpus, and 
other closely related genera. The results also showed that P. chin-
ense was more closely related to Haloragaceae rather than other 
outgroup species. Our results are congruent with the previous 

F I G U R E  4   Comparison of five Saxifragales chloroplast genome. The top gray arrows and thick black lines show genes with their 
orientation. The inversion was indicated by thick red line. The y-axis represents the percent identity within 50%–100%. The x-axis 
represents the coordinate in the cp genome. Genome regions are color-coded as protein-coding (exon), intron, and conserved noncoding 
sequences (CNS)
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phylogenetic analysis among families of Saxifragales (Dong, Xu, 
Cheng, Lin, et al., 2013; Dong, Xu, Cheng, & Zhou, 2013; Jian 
et al., 2008; Moody & Les, 2010). The 4-kb inversion originated 
after the split of Haloragaceae and Penthoraceae but before the 
divergence of Myriophyllum and Gonocarpus; the 4-kb inversion 

was identified in all of the included Myriophyllum species and the 
Gonocarpus taxa. Bayesian analysis in BEAST and molecular dating 
(Figure 8b) further suggested that the trnE-trnC inversion might 
have occurred between upper Cretaceous (72.54 MYA) and mid-
dle Eocene (47.28 MYA).

F I G U R E  5   Comparison of the borders of LSC, IR, SSC, and LSC regions among five Saxifragales genomes. The adjacent border genes are 
indicated by boxes with gene names and bps above or below the main line
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F I G U R E  6   Linearized maps comparison of the plastid genomes of five Saxifragales plants. Syntenic blocks are shown above and gene 
maps are shown below. Unique regions are boxed in yellow, and the inversion events occurred in M. spicatum are marked with short red line
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4  | DISCUSSION

In this study, the complete cp genome of M. spicatum was as-
sembled, and it possesses the typical angiosperm quadripartite 
structure with two short inverted repeat regions separated by two 
single copy regions. The length of the IR regions of M. spicatum 
is similar to that of other Saxifragales species, and the genome 
size of the cp genome of the Saxifragales species investigated here 
only varied slightly, ranging from 152,698 to 160,410 bp. These 
results suggest that genomic length variation can be found in 

the LSC and SSC boundary regions, as reported for other species 
(Zhao et al., 2018). Only the ycf1 pseudogene was detected across 
the SSC/IRa border in the five Saxifragales species, which might 
be caused by a duplication of the normally single copy gene ycf1. 
No stop codons were detected in the coding sequence of ycf1; 
thus, we hypothesize that the expansion of the IR was caused by 
a duplication of ycf1, which occurred in the common ancestor of 
these species in Saxifragales.

Based upon the alignment of the plastomes from five Saxifragales 
species, the gene contents were almost identical. Most variations 

F I G U R E  7   Inferred phylogenetic trees of 15 taxa of Haloragidaceae and related families basing on maximum (ML) and Bayesian inference 
(BI) analyses of different combined datasets. (a) rpoB-trnE+trnC-trnT. (b) ITS+trnK+matK. (c) ITS+trnK+matK+rpoB-trnE+trnC-trnT. The ML 
bootstrap values (below) and Bayesian posterior probability (above) are given for each branch. The 4-kb inversion rearrangement event was 
mapped onto the branches with red arrow
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F I G U R E  8   (a) Illustration of the suggested flip-flop recombination event in Haloragidaceae resulting in a 4-kb inversion. The ribbons 
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Gray colored bars at nodes indicate the 95% credibility intervals of age estimates. The numbers near the nodes refer to the node age. Red 
asterisks highlight the 4-kb inversion rearrangement event
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were detected in intergenic regions yet are also highly variable in 
coding regions such as ycf1, rps16, ndhA, and accD. These highly vari-
able regions may be useful as specific DNA barcodes for species-level 
identification, as well as provide genetic markers for resolving rela-
tionships among Saxifragales. Over 260 SSRs were identified in this 
study, which could be candidates for future inferences on population 
genetics and help to trace the origin of invasive populations (Provan 
et al., 2001). Moreover, these SSR markers could be used for genetic 
diversity studies on closely related species in Haloragaceae.

Normally, plastomic rearrangements in flowering plants are rare 
(Mower et al., 2018). Most photosynthetic angiosperms have a highly 
conserved plastome organization, except a small number of groups 
among major lineages, especially the Campanulaceae, Fabaceae, and 
Geraniaceae, which exhibit remarkable and extensive rearrangements 
(Jansen & Ruhlman, 2012; Mower & Vickrey, 2018)). In this article, a 
4-kb inversion was identified in all Myriophyllum species sampled and 
therefore likely provides an informative marker that highlights an ad-
ditional synapomorphy supporting the monophyly of Myriophyllum. 
Moreover, the activity of repetitive elements has often been consid-
ered to be associated with plastome rearrangement and recombination 
(Lu et al., 2017; Weng, Blazier, Govindu, & Jansen, 2013). Regarding 
the trnE-trnC inversion in Myriophyllum, a flip-flop recombination event 
might have contributed to its occurrence (Figure 8a). This detectable 
rearrangement of sequences has occurred during the evolution of 
Myriophyllum, possibly playing an important role in the maintenance of 
the structural stability of the chloroplast genome (Palmer & Thompson, 
1982; Wolfe, Li, & Sharp, 1987).

The 4-kb inversion was detected in G. micranthus, a species 
in a genus closely related to Myriophyllum (Chen et al., 2014). 
Our results are congruent with the previous phylogenetic anal-
ysis among families of Saxifragales (Jian et al., 2008; Moody & 
Les, 2010; Dong, Xu, Cheng, Lin, et al., 2013; Dong, Xu, Cheng, 
& Zhou, 2013). The 4-kb inversion was identified in all of the in-
cluded Myriophyllum species and the Gonocarpus taxa; thus, the 
4-kb inversion might originate after the split of Haloragaceae 
and Penthoraceae but before the divergence of Myriophyllum and 
Gonocarpus. The molecular dating calibrated by fossil records indi-
cated that Myriophyllum and Gonocarpus separated approximately 
47 MYA, and the Myriophyllum-Gonocarpus clade diverged approx-
imately 72 MYA in Saxifragales. Based on historical biogeography 
analysis of Haloragaceae (Chen et al., 2014), our study indicated 
that this 4-kb inversion was likely shared by a majority of clades 
in Haloragaceae (including almost three quarters of the species in 
Haloragaceae) before the earliest diversification of this family. A 
clustering of angiosperm paleopolyploidizations occurred around 
the Cretaceous–Paleogene (K–Pg) extinction event about 66 
million years ago based on dated genome data (Vanneste, Baele, 
Maere, & Yves, 2014). Thus, we speculate that the 4-kb inversion 
might be caused by an occurrence of nonrandom recombination 
associated with climate changes around the K–Pg boundary (Kaiho 
et al., 2016; Vellekoop et al., 2015). Additional whole chloroplast 
genome sequences from species in Haloragaceae should be ob-
tained to construct larger phylogenetic trees to further test this 

presumption. In addition, more functional investigations are also 
needed to provide a more comprehensive understanding of diver-
gence history and the influence of climate change on the novel 
4-kb inversion.
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