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Abstract 
Background.  Glioma, the most prevalent primary brain tumor, poses challenges in prognosis, particularly in the 
high-grade subclass, despite advanced treatments. The recent shift in tumor classification underscores the cru-
cial role of isocitrate dehydrogenase (IDH) mutation status in the clinical care of glioma patients. However, con-
ventional methods for determining IDH status, including biopsy, have limitations. Exploring the use of machine 
learning (ML) on magnetic resonance imaging to predict IDH mutation status shows promise but encounters chal-
lenges in generalizability and translation into clinical practice because most studies either use single institution 
or homogeneous datasets for model training and validation. Our study aims to bridge this gap by using multi-
institution data for model validation.
Methods.  This retrospective study utilizes data from large, annotated datasets for internal (377 cases from Yale 
New Haven Hospitals) and external validation (207 cases from facilities outside Yale New Haven Health). The 6-step 
research process includes image acquisition, semi-automated tumor segmentation, feature extraction, model 
building with feature selection, internal validation, and external validation. An extreme gradient boosting ML 
model predicted the IDH mutation status, confirmed by immunohistochemistry.
Results:  The ML model demonstrated high performance, with an Area under the Curve (AUC), Accuracy, 
Sensitivity, and Specificity in internal validation of 0.862, 0.865, 0.885, and 0.713, and external validation of 0.835, 
0.851, 0.850, and 0.847.
Conclusions.  The ML model, built on a heterogeneous dataset, provided robust results in external validation for 
the prediction task, emphasizing its potential clinical utility. Future research should explore expanding its applica-
bility and validation in diverse global healthcare settings.

Key Points

• Machine learning model predicts IDH mutation in gliomas with a high AUC of 0.862

• Promising results in external validation with area under the curve of 0.835.

• Based on heterogeneous data, the model shows potential clinical utility.

Enhancing clinical decision-making: An externally 
validated machine learning model for predicting 
isocitrate dehydrogenase mutation in gliomas using 
radiomics from presurgical magnetic resonance imaging  

© The Author(s) 2024. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of 
Neuro-Oncology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and 
translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on 
the article page on our site—for further information please contact journals.permissions@oup.com.

https://orcid.org/0000-0001-6098-6746
https://orcid.org/0000-0003-2581-1793
https://orcid.org/0000-0002-0380-4552
https://orcid.org/0000-0002-4877-8271
mailto:mariam.aboian@gmail.com
mailto:mariam.aboian@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/


 2 Lost et al.: IDH prediction in gliomas: Machine learning model

Glioma is the most common primary malignant central 
nervous system (CNS) tumor, with 6 cases of gliomas diag-
nosed per 100 000 people every year in the United States.1,2 
Despite advanced treatments combining temozolomide 
with specialized radiotherapy, the prognosis of high-grade 
gliomas remains limited, with median survival spanning 
only 10 to 17 months.3,4 Over the past decade, the World 
Health Organization (WHO) Classification of Tumors of 
the CNS experienced a paradigm shift away from spe-
cific histologic alterations towards molecular diagnosis 
of glioma, further reinforced by the recent 2021 classifica-
tion.5 This recent WHO classification recognizes isocitrate 
dehydrogenase (IDH) mutation status as a pivotal marker 
for glioma classification, therapeutic decision-making, and 
prognosis6–8; hence, it categorizes gliomas into IDH mu-
tant and IDH wild type, which serves as a foundation for 
determination of their grade.5 IDH wild-type gliomas have 
an aggressive and infiltrative appearance on MR imaging 
with evidence of blood-brain barrier breakdown and they 
demonstrate very low overall survival.9,10 Conversely, IDH 
mutant glioma patients typically have a more favorable 
prognosis characterized by significantly improved survival 
than those with wild-type gliomas (31 vs. 15 months)11,12 
and demonstrate heterogeneous imaging characteristics 
on MRI, such as altering contrast enhancement intensity 
and tumor necrosis.

In the field of neuro-oncology, imaging plays a cru-
cial role in determining the location of the tumor, de-
fining tumor borders, and providing key information for 
establishing the diagnosis. Nonetheless, the gold standard 
for the definitive diagnosis of gliomas occurs via a stere-
otactic biopsy or tumor resection, followed by histopath-
ological analysis and molecular profiling. This approach, 
however, has its drawbacks, including the risks of com-
plications, high costs, and potential misclassification due 
to the spatial heterogeneity of gliomas leading to sam-
pling bias.13–15 In addition, the necessity for a biopsy of the 
tumor limits the availability of neoadjuvant therapy trials 
to patients, which can potentially influence treatment out-
comes. Recent studies suggest that targeted therapy of 
IDH mutated gliomas is gaining interest and might be an 
increasingly important staple of glioma treatment in the fu-
ture.16 Some studies have also reported that the reliability 
of IDH mutation testing through pathology is challenged 
by technical limitations.17–19

Considering the pitfalls of conventional methods for de-
termining the IDH mutation status, magnetic resonance 

imaging (MRI) emerges as a valuable tool in this context 
by offering a noninvasive technique for the preoperative 
evaluation of IDH mutation, aiding in directing targeted 
biopsies, opening consideration for neoadjuvant therapy, 
screening for potential genetic mutations, and tailoring 
treatment strategies.20 However, IDH mutation status 
lacks a distinct radiological imaging profile.21 IDH mutant 
gliomas might exhibit characteristics like T2-FLAIR mis-
match sign,22 reduced enhancement, lower blood flow 
on perfusion-weighted images, increased mean diffusion 
values, smaller sizes, and a tendency to occur in the frontal 
lobe.23 Despite these trends, the sensitivity and specificity 
for identification of IDH mutation by MRI ranges from 56% 
to 100% and from 51% to 100%, respectively.24 In cases 
with a positive T2-FLAIR mismatch sign, the specificity has 
been reported to be 100%. Hence, there is a growing need 
for sensitive and specific techniques to accurately predict 
IDH mutation status in gliomas through MRI.

Recent advances in machine learning (ML) show prom-
ising results in several tasks such as tumor segmenta-
tion,25 predicting overall survival,26 differentiating gliomas 
from other CNS malignancies such as metastases27 and 
lymphomas,28 as well as classifying glioma grades29 and 
molecular subtypes.15,30 While much of the literature in 
neuro-oncology that applies ML techniques demonstrates 
high area under the curve (AUC) values within internal 
datasets, the application of these models to external vali-
dation sets remains limited.15

A significant concern in current research is the reliance 
on small, meticulously selected (“cherry-picked”) datasets 
without artifacts and well-curated imaging sequences, 
which poses challenges in applying these findings to the 
more diverse and complex data encountered in everyday 
clinical practice. A recent systematic review of ML algo-
rithms for identification of IDH mutation by MRI demon-
strated AUC and accuracy of 0.88 and 85% in internal 
validation and 0.86 and 87% in very limited external valida-
tion data sets, reporting studies with incomplete data and 
high bias.15 Recognizing these limitations, our study aims 
to bridge this gap.

By employing a large, annotated dataset encompassing 
external validation and heterogeneous data reflective of 
routine clinical scenarios, we aim to set a new standard for 
the clinical application of ML in neuro-oncology. Given the 
pivotal role of IDH in both clinical management and prog-
nosis of glioma patients, our approach not only aligns with 
the current academic focus on noninvasive IDH prediction 

Importance of the Study

In contrast to prior studies demonstrating promising 
results in IDH mutation prediction, this research ad-
dresses a critical gap in their translational applicability. 
Earlier investigations often relied on meticulously cur-
ated datasets, limiting generalizability to routine clin-
ical scenarios. Furthermore, the absence of robust 
external validation undermines the confidence in the 
broader utility of these models. Our study stands out by 

employing a large, heterogeneous dataset reflective of 
real-world clinical practice, ensuring a more inclusive 
representation. The success of the ML model validated 
both internally and externally, accentuates its potential 
for clinical implementation. By mitigating the limitations 
of past studies, our research lays a foundation for a 
more widely applicable and clinically relevant tool for 
predicting IDH mutation status in gliomas.
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but also contributes valuable insights into the real-world 
applicability of ML in clinical settings. Furthermore, our 
findings, grounded in a comprehensive and practical 
dataset, promise to provide a more relatable and transfer-
able benchmark for comparison with ongoing academic ef-
forts in this rapidly evolving field.

Methods

Study Design

This retrospective study was conducted in alignment 
with the Helsinki Declaration and approved in November 
2021 by the Yale New Haven Hospital (YNHH) Institutional 
Review Board at our institute (IRB protocol ID 2000029055).

Figure 1 shows the overall workflow of our approach, 
which includes 6 parts: (1) image acquisition; (2) tumor 
segmentation; (3) feature extraction; (4) model building 
and feature selection; (5) internal validation (including 
model retraining); and (6) external validation. We used the 
Checklist for Evaluation of Radiomic Research (CLEAR), 
which can be found in Supplementary Material Appendix 
1.31

Subjects

Patients were categorized based on the location where 
their imaging scans were performed. Specifically, those 
who underwent imaging at YNHH were assigned as such 
and utilized for training and as an internal validation 

dataset. In contrast, patients whose imaging was con-
ducted at national hospitals outside of YNHH were categor-
ized under the “outside facility” (OSF) group and reserved 
for external validation, effectively serving as our testing co-
hort. This stratification strategy was critical in ensuring the 
robustness and generalizability of our predictive model, as 
it allowed for the evaluation of the model’s performance in 
diverse clinical settings.

A total of 1031 patients (652 YNHH and 379 OSF) with 
available imaging and pathological data from January 
2012 to December 2019 were initially collected in our 
glioma database, with clinical information collected from 
our hospital’s radiation oncology registry. The necessary 
MRI and pathology data were extracted from the hospital’s 
electronic medical records.

To develop an ML pipeline to specifically predict IDH mu-
tation status in glioma, patients were selected based on the 
following criteria: [I] grades 2–4 diffuse glioma according to 
the 2021 WHO classification criteria with histopathologic-
ally confirmed IDH mutation status, and [2] availability of 
conventional pretreatment MRI scans consisting at least of 
both contrasts enhanced T1 weighted imaging (T1pc) and 
T2 fluid-attenuated inversion recovery (FLAIR). Patients 
were excluded according to the following criteria: [I] ab-
sence of IDH mutation status (n = 252), [II] absence of T1pc 
or T2 FLAIR (n = 89), and [III] WHO grade 1 tumor (n = 20) or 
absence of information about tumor grade (n = 93).

Figure 2 illustrates the flow diagram of the study 
population.

Finally, data from 584 patients (219 females and 365 males; 
age range 5–95) met the inclusion criteria. The cohort was 
split into 377 cases from YNHH used for model training, and 

Step 1: Image acquisition

YNHH

VOI segmentation from 3 ROIs

T2 FLAIR: whole-
tumor

Model was trained on all extracted
features using imaging from the

YNHH cohort

Random Forest Classifier

T1pc: tumor core with (1) enhancing
portion and (2) necrotic portion

OSF

Step 3: Feature extraction

Feature from 3 ROIs

First-order
statistics:

18 x 3

Shape-
based:
14 x 3

GLRLM:
16 x 3

GLSZM:
16 x 3

GLDM:
14 x 3

GLCM:
22 x 3

Total 2364 features

Step 5: Internal validation
on selected optimal features

Step 2: Tumor segmentation
Step 4: Model building and

feature selection
Step 6: External validation
on selected optimal features

YNHH

OSF

Area under the curve

Accuracy

Sensitivity

Specificity

Area under the curve

Accuracy

Sensitivity

Specificity

Figure 1. Proposed pipeline for IDH mutation status prediction. A graphical illustration of the overall pipeline which includes 6 parts: (1) image 
acquisition; (2) tumor segmentation; (3) feature extraction; (4) model building and feature selection; (5) internal validation (including model re-
training); and (6) external validation. Abbreviations: YNHH, Yale New Haven Hospital; OSF, outside facility; VOI, volume of interest; ROI, region of 
interest; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matriX; GLDM, gray-level 
dependence matrix; T1pc, T1 post-contrast enhancement; FLAIR, fluid-attenuated inversion recovery.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae157#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae157#supplementary-data
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207 cases under the OSF group for external validation of the 
prediction pipeline. The clinical characteristics of the selected 
patients from YNHH and OSF are summarized in Table 1.

Imaging Data Protocol

The incorporation of data from both YNHH-affiliated hos-
pitals and external facilities introduces a diversity of imaging 
protocols within the ML pipeline. The predominant imaging 
protocol involves the utilization of 3T imaging systems from 
Siemens Vervio (Siemens Healthineers AG). Specifically, 
for FLAIR imaging, the parameters include TE (Echo Time) 
ranging from 82 to 112 milliseconds, TR (Repetition Time) 
set at 9000 milliseconds, Inversion Time of 2500 millisec-
onds, and a slice thickness of 4–5 mm. T1-weighted im-
ages were acquired using 2 different pulse sequences: Post 
Gadolinium Gradient Echo (GRE) with TE ranging from 2.48 

to 3.09 milliseconds, TR between 1600 and 1900 millisec-
onds, Inversion Time set at 900 milliseconds, and a slice 
thickness of 0.9–1 mm. Post Gadolinium Spin Echo (PGSE) 
with TE varying from 2.48 to 9.3 milliseconds, TR spanning 
277 to 5000 milliseconds, Inversion Time set at 900 millisec-
onds, and a slice thickness ranging from 1 to 5 mm. Notably, 
gadolinium-based contrast agents were administered for 
the T1-weighted images. DICOM metadata extraction was 
facilitated through the application programming interface of 
the PACS provider (Visage 7 by Visage Inc.).

Tumor Segmentation

For accurate tumor delineation, we employed a U-Net Deep 
Learning segmentation tool, integrated into our local PACS 
System.32 The UNETR was trained using volumetric patches 
of size 128 × 128 × 64 with a spacing of 1.5  × 1.5  × 2 cm3 

Patients retrieved from radiation oncology
registry with extracted pathological and imaging

information: 652 YNHH, 379 OSF

Confirmed IDH mutation status available:
487 YNHH, 292 OSF

T1pc and T2 FLAIR available:
446 YNHH, 244 OSF

Presence of WHO grade 2-4 tumor:
377 YNHH, 207 OSF

 584 eligible patients for this study

207 patients with
imaging from OSF

377 patients with
Imaging from YNNH

Absence of IDH
mutation status:

165 YNHH, 87 OSF

Absence of T1pc or
T2 FLAIR:

41 YNHH, 48 OSF

WHO grade 1 tumor/
absence of tumor
grade information:
69 YNHH, 37 OSF
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Figure 2. Patient selection workflow. Patient information was retrieved from the radiation oncology registry and screened for imaging and 
pathological information in the hospital’s electronic medical records. Abbreviations: YNHH, Yale New Haven Hospital; OSF, outside facility; 
IDH, isocitrate dehydrogenase; T1pc, contrast-enhanced T1 weighted imaging; FLAIR, fluid-attenuated inversion recovery; WHO, World Health 
Organization.
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using trilinear interpolation with sampling of the patches. The 
z-direction was resampled from 1 to 2, compared to a con-
ventional Convolutional Neural Network, which resulted in 
a batch size of 128 × 128 × 64. The UNETR tool automatically 
segments glioma tumors on FLAIR imaging, using a combi-
nation of T1pc and FLAIR sequences as inputs. The segmenta-
tion process identified 3 key volumes of interest (VOI): whole 
tumor portion (including peritumoral edema) on FLAIR, 
tumor core (encompassing necrotic and enhancing portions), 
and exclusively necrotic tumor portion. These segmented 
VOIs were subsequently mapped onto the T1pc sequences.

Manual adjustments were made by a neuroradiologist to 
the segmented VOIs to ensure precision, particularly in chal-
lenging cases with complex tumor morphology. As part of 
our inclusion criteria, FLAIR segmentation with peritumoral 
edema was present in all the cases; however, core and ne-
crotic segmentation on T1pc were present in 487 (83.4%) and 
432 (74.0%) cases, respectively. This segmentation method-
ology aligns with the latest advancements in glioma MRI 
analysis, ensuring high fidelity in tumor delineation crucial 
for subsequent feature extraction.

Feature Extraction

Radiomic features were preprocessed and extracted using 
an open-source Python tool Pyradiomics (version 3.0.1).33 

These features encompassed 3 primary categories: (1) 
volume and shape, (2) intensity, and (3) texture. To further 
enhance the feature set, advanced image processing tech-
niques were employed. Retrieval performance with the in-
clusion of 8 high- and low-pass wavelet filters for each of 
these feature classes was applied to the original images to 
generate transform-domain images. The following original 
Pyradiomics features were extracted from each of the 3 
VOI, if present: 18 first-order statistics, 14 shape-based fea-
tures, 22 gray-level co-occurrence matrices, 16 gray-level 
run length matrices, 16 gray-level size zone matrices, and 
14 gray-level dependence matrices. Finally, 2364 features 
were extracted from the MR imaging of each patient.

ML Pipeline

Our ML approach aims to reliably predict IDH mutation 
from the extracted radiomic features of MR Images. Our 
binary prediction pipeline involves an extreme gradient 
boosting (XGBoost) algorithm for model training.34 In 
the preprocessing phase, categorical features are con-
verted, and numerical features are normalized using 
MinMaxScaler from the scikit library. Additionally, correl-
ated features were removed using a custom preprocessing 
transformer. The resulting features are used in our 
XGBoost pipeline.

Table 1. Clinical Characteristics of All Included Patients (N = 584)

Variable YNHH
(n = 377)

OSF
(n = 207)

P-value

Age (years), mean ± SD 58.3 ± 17.5 58.8 ± 15.5 .722a

Sex, n (%) .982b

Female 142 (37.7) 77 (37.2)

Male 235 (62.3) 130 (62.8)

IDH mutation status, n (%) .653b

Mutated 43 (11.4) 27 (13.0)

Wild-type 334 (88.6) 180 (87.0)

Tumor enhancing status, n (%) .059b

Enhancing 323 (85.7) 164 (79.2)

Non-enhancing 54 (14.3) 43 (20.8)

WHO tumor grade, n (%) .589b

Grade 2 29 (7.7) 21 (10.1)

Grade 3 43 (11.4) 24 (11.6)

Grade 4 305 (80.9) 162 (78.3)

Imaging sequences, n (%)

FLAIR, PGSE, GRE 279 (74.0) 91 (44.0)

FLAIR, PGSE 30 (8.0) 94 (45.4)

FLAIR, GRE 68 (18.0) 22 (10.6)

a: Assessed using an independent samples t-test.
b: Analyzed using chi-squared tests.
Abbreviations: YNHH, Yale New Haven Hospital; OSF, outside facility; IDH, isocitrate dehydrogenase; WHO, World Health Organization; FLAIR, 
fluid-attenuated inversion recovery; PGSE, pulsed gradient spin echo contrast-enhanced T1 weighted imaging; GRE, gradient echo contrast-
enhanced T1 weighted imaging.
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To address the heterogeneous nature of our data, we 
handle class imbalance using SMOTE (Synthetic Minority 
Over-sampling Technique), a widely used oversampling 
technique. The pipeline comprises a 5-fold cross-validation 
with 10 iterations, ensuring robust model evaluation. The 
reproducibility seed is set to 123 to ensure consistent re-
sults across runs. During the model training process, we 
employ Randomized SearchCV for hyperparameter tuning. 
The features used for prediction are then ranked by their 
median importance for binary classification. The best 25 
features are visualized in an elbow plot, where diminishing 
returns are observed to find the optimal number of features 
for this model. The Pearson Coefficient is then analyzed for 
the optimal number of features. The resulting features are 
then used to re-train the XGBoost model.

The re-trained model is then used for external valida-
tion. The data used for external validation from outside 
hospitals is preprocessed in the same way as the training 
cohort. Lastly, the pipeline the performance metrics mean 
AUC, accuracy, sensitivity, and specificity with their re-
spective 95% confidence interval (CI) for each of the 3 steps 
(Internal validation, internal validation after feature selec-
tion, and external validation).

IDH Mutation Assessment

The IDH mutation status was retrieved from our institution’s 
internal electronic medical record pathology reports. Tumor 
samples were biopsied from a region in the brain that had 
been confirmed through imaging at YNHH. Specimens with 
a minimum of 50% of tumor cells in a microdissection target 
were accepted for analysis. The initial determination of IDH 
mutation status for all samples involved the utilization of 
immunohistochemistry (IHC), employing a specific clinically 
validated antibody (DIA-H09; Dianova GmbH, Hamburg, 
Germany) targeting the IDH1 R132H mutation.35 For cases 
in which IDH1 R132H mutation was not detected via IHC, 
and patients were younger at the time of diagnosis, bidirec-
tional Sanger sequencing was performed using the BigDye 
Terminator Kit on ABI3130/3730 (Applied Biosystems).

Statistical Analysis

Data for this study were organized and recorded in a 
Microsoft Excel spreadsheet (Version 16.81), utilizing a 
combination of descriptive statistics and tabulated pres-
entations. Statistical analyses were performed to derive 
insights from the collected patient data, employing both 
the student’s t-test for comparing means and the chi-
square test for assessing associations between catego-
rical variables. Statistical significance was determined by 
P-values < .05. Analysis was conducted using GraphPad 
Prism software (Version 10.0.03, GraphPad Software, LLC).

Results

Clinical Characteristics of Patients

The study evaluated the clinical characteristics of 584 pa-
tients (Table 1), divided into 2 cohorts: training and internal 

validation YNNH group with 377 patients (37.7% females 
and 62.3% males) and external validation OSF group with 
207 patients (37.2% females and 62.8% males). The mean 
age for the YNHH cohort was 58.3 ± 17.46 years, while for 
the OSF cohort, it was 58.78 ± 15.45 years. IDH mutation 
status revealed 43 (11.4%) and 334 (88.6%) patients of the 
YNHH group with IDH mutant (IDHmut) and IDH wild type 
(IDHwt) gliomas, respectively. Similarly, the OSF group 
comprised 27 (13.0%) and 180 (87.0%) patients with IDHmut 
and IDHwt gliomas, respectively. The majority of the pa-
tients in the YNHH group (n = 323, 85.7%) and OSF group 
(n = 164, 79.2%) had an enhancing tumor on T1pc. In terms 
of imaging sequences, most patients (n = 279, 74.0%) in 
the YNHH cohort had FLAIR, PGSE, and GRE sequences, 
whereas this combination was less common in the OSF 
group (n = 91, 44.0%). The FLAIR and PGSE combination 
were available for 30 (8.0% of YNHH group) 94 (45.4% of 
OSF group) patients, and the FLAIR and GRE combination 
for 68 (18.0% of YNHH group), and 22 (10.6% of OSF group) 
of patients.

There were no statistically significant differences 
in terms of clinical factors such as age (P = .722), sex 
(P = .982), IDH mutation status (P = .653), tumor enhancing 
status (P = 0.059), WHO tumor grade (P = 0.589) between 
the 2 groups.

Feature Selection

After extracting 2364 radiomic features from the im-
aging sequences, we employed an elbow plot analysis 
to determine the optimal number of features. This anal-
ysis revealed that the model’s predictive performance, as 
measured by the AUC, reached an optimal point at 8 fea-
tures, where the inclusion of additional features resulted in 
negative or diminishing returns (Figure 3).

Further examination of these 8 features using the 
Pearson correlation coefficient analysis demonstrated 
varying degrees of correlation with the outcome vari-
able, with some features showing stronger associations 
than others (Figure 4). The 8 features selected through this 
process consist of 7 textures and 1 intensity feature. The de-
tailed characteristics and implications of these 8 radiomic 
features are thoroughly documented in Supplementary 
Appendix 2.

Performance of the Classification Model

Table 2 shows the classification results of the different 
combinations of sequences used in the model. We com-
pared different runs using the available segmentation 
sequences. The combined approach of “Whole_Flair + Core 
+ Necrotic” sequences showed notable performance met-
rics across various validation phases and achieved the 
highest overall performance in external validation (Table 2). 
Therefore, this combination will be the focus of our anal-
ysis. In the training phase, the model achieved an accuracy 
(ACC) of 0.885 and a sensitivity (SEN) of 0.926, indicating 
high efficacy in correctly identifying positive cases. The 
specificity (SPEC), however, was relatively lower at 0.562, 
suggesting a moderate rate of correctly identifying nega-
tive cases. The AUC was 0.846, with a 95% CI (0.827, 0.865), 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae157#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae157#supplementary-data
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reflecting strong model performance. During the internal 
validation phase, there was a slight decrease in ACC to 
0.865 and in SEN to 0.885, but an increase in SPEC to 0.713, 
indicating improved identification of negative cases. The 

AUC remained high at 0.862, with a 95% CI (0.842, 0.881). 
In the external validation phase, the model’s performance 
metrics further evolved, with the ACC slightly decreasing 
to 0.851 and SEN to 0.850. However, SPEC saw a significant 
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improvement to 0.847, aligning more closely with the SEN. 
The AUC was 0.835, within a broader 95% CI (0.698, 0.978). 
Also, the F1-Score, generally seen as more biased resistant 
than conventional performance metrics, was noticeably 
high with 0.908 (Supplementary Appendix 3).

Discussion

The development of our ML model to predict IDH muta-
tion status in glioma represents a crucial step in devel-
oping personalized medicine approaches in patients 
who are treated for these aggressive tumors with limited 
therapeutic options. The primary focus of our research is 
the development of an ML model on a clinically relevant 
dataset and the external validation of the ML model in a 
heterogeneous dataset. This approach is vital for ensuring 
the model’s clinical applicability and generalizability.36,37 
The high sensitivity and specificity achieved in our model, 
particularly in the external validation phase, highlight its 
potential for clinical deployment. Such performance is 
crucial for models intended for real-world clinical use, as 
they must reliably identify both IDH mutant and wild-type 
gliomas in diverse patient populations.38 Especially in re-
gard to clinical decision-making, aiding in targeted therapy 
of IDH mutated gliomas, robust predictive models might 
be of rising interest in the future.16

Our study’s external validation in a diverse clinical set-
ting aligns with recent trends in healthcare modeling, em-
phasizing the importance of model generalization beyond 
the initial development environment.39,40 The systematic al-
location of patients into distinct cohorts for internal and ex-
ternal validation addresses the critical need for models that 
can adapt to varied clinical scenarios,41,42 especially in a 
clinical context where diagnostic accuracy is paramount.43 
This stratification strategy, as seen in our study, enhances 
the robustness of the predictive model, a key aspect that 

has been highlighted in recent studies.44,45 The application 
of our model to an external dataset has provided insights 
into its performance variability, an aspect often overlooked 
in ML studies.

The model’s high sensitivity in the training phase and 
its gradual improvement in specificity from the training 
to the external validation phase emphasize its potential 
in medical diagnostics. The slight decrease in accuracy 
and sensitivity from the training to the external valida-
tion phase might be attributed to the model’s exposure to 
a more diverse set of data, a common occurrence in ML 
models.46 Contrary to expectations based on prior studies, 
the specificity was higher in external validation compared 
to internal validation, which may stem from the relatively 
smaller size of our external validation set.15

Moreover, the broader CI in the external validation phase, 
particularly for the AUC, indicates variability in the model’s 
performance across different external datasets. This varia-
bility could be due to differences in data quality, distribu-
tion, or other external factors.47 Such findings highlight the 
need for further investigation into the factors influencing 
the model’s performance in diverse clinical settings.

Our research demonstrates the model’s high efficacy in 
identifying positive cases with notable accuracy and sen-
sitivity. However, the variability observed in the external 
validation phase underscores the challenges faced in ML 
when models are applied to diverse datasets.36 This finding 
is crucial for medical diagnostics, as it highlights the need 
for models that are not only accurate but also adaptable to 
different patient populations and imaging conditions.

The inclusion criteria, based on the latest WHO classifi-
cation, along with rigorous imaging data acquisition and 
tumor segmentation processes within PACS, have con-
tributed to the model’s accuracy. The use of advanced 
radiomic feature extraction, including shape, intensity, 
and texture characteristics, parallels the methodologies 
employed in similar studies.48,49 The selection of these 
features using an elbow plot analysis has optimized the 

Table 2. Evaluation Metrics in the Training and Validation Phases

Sequences Phase ACC SEN SPEC AUC 95% CI

Whole FLAIR + Core + Necrotic Training 0.885 0.926 0.562 0.846 (0.827, 0.865)

Internal validation 0.865 0.885 0.713 0.862 (0.842, 0.881)

External validation 0.851 0.850 0.847 0.835 (0.698, 0.978)

Core + Necrotic Training 0.885 0.910 0.684 0.857 (0.836, 0.876)

Internal validation 0.872 0.891 0.733 0.891 (0.877, 0.905)

External validation 0.821 0.833 0.733 0.805 (0.706, 0.884)

Whole FLAIR + Necrotic Training 0.871 0.908 0.591 0.842 (0.823, 0.860)

Internal validation 0.862 0.872 0.786 0.872 (0.854, 0.889)

External validation 0.739 0.744 0.707 0.749 (0.646, 0.906)

Whole FLAIR + Core Training 0.891 0.928 0.594 0.859 (0.839, 0.878)

Internal validation 0.850 0.864 0.739 0.864 (0.842, 0.883)

External validation 0.792 0.789 0.813 0.814 (0.701, 0.973)

Each modality had a different number of optimal features since the optimal number of features suggested by the elbow plot varies from the data used 
for prediction. AUC, area under the curve.
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model’s performance, as evidenced by its AUC scores in 
both the internal and external validation phases.

The integration of multi-modal MRI data, as employed in 
our study, is in line with the current best practices in ML for 
healthcare applications.39,45 The use of advanced radiomics 
features and a U-Net Deep Learning segmentation tool 
reflects the state-of-the-art in medical image analysis, en-
suring high fidelity in tumor delineation crucial for subse-
quent feature extraction.41,44

Future research should focus on expanding the model’s 
applicability to other glioma subtypes and incorporating 
additional clinical variables for more comprehensive 
predictions. The integration of genomic data, alongside 
radiomic features, could further enhance the model’s pre-
dictive capabilities.50 Additionally, ongoing validation with 
larger and more varied external datasets will be essential 
to continually assess and refine the model’s performance.

Limitations

Our study, with its retrospective nature, encounters several 
limitations. The heterogeneity of the external dataset, par-
ticularly in terms of imaging protocols and equipment, may 
have introduced variability impacting model performance. 
The sample size, although substantial, may not capture 
the full spectrum of clinical scenarios, limiting the gener-
alizability of our findings. Additionally, the complexity of 
the model might challenge clinical interpretability, and the 
absence of longitudinal data limits insights into long-term 
efficacy. The study’s focus on radiomic features, excluding 
broader clinical and genomic data, potentially restricts its 
comprehensive applicability. Finally, further validation in 
diverse global healthcare settings is necessary to confirm 
the model’s universal effectiveness.

Conclusion

Our study contributes significantly to the field of neuro-
oncology by providing a robust, externally validated ML 
model for predicting IDH mutation status in gliomas. Its 
successful validation across heterogeneous patient co-
horts and clinical settings lays the groundwork for its po-
tential clinical implementation, offering a promising tool 
for personalized patient management in glioma treatment. 
The implications of this research extend to potentially 
improving patient outcomes and informing treatment 
strategies, marking a pivotal step towards more tailored 
and effective neuro-oncological care.

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).

Keywords: 

gliomas | machine learning | MRI | neuro-oncology

Funding

JL received funding from the doctoral scholarship of Heinrich-
Heine-University. American Society of Neuroradiology Fellow 
Award 2018 (MA). This publication was made possible by 
KL2 TR001862 (MA) from the National Center for Advancing 
Translational Science (NCATS), components of the National 
Institutes of Health (NIH), and NIH Roadmap for Medical 
Research. Its contents are solely the responsibility of the au-
thors and do not necessarily represent the official view of NIH. 
Arman Avesta is a PhD Student in the Investigative Medicine 
Program at Yale which is supported by CTSA Grant Number UL1 
TR001863 from the National Center for Advancing Translational 
Science, a component of the National Institutes of Health (NIH). 
Arman holds securities in Hyperfine. The content is solely the 
responsibility of the authors and does not necessarily represent 
the official views of the National Institutes of Health. MingDe 
Lin is an employee and stockholder of Visage Imaging, Inc., 
and unrelated to this work, receives funding from NIH/NCI R01 
CA206180 and is a board member of Tau Beta Pi Engineering 
Honor Society.

Conflict of interest statement

MingDe Lin is an employee and stockholder of Visage Imaging, 
Inc., and unrelated to this work, receives funding from NIH/NCI 
R01 CA206180 and is a board member of Tau Beta Pi Engineering 
Honor Society. Khaled Bousabarah is an employee of Visage 
Imaging, GmbH. Michael Sabel is a consultant for Novocure and 
Codman.

Authorship statement

J.L. conceptualized the study framework, collected/ analyzed 
data, and prepared the primary manuscript. N.A. contributed 
to data analysis, and the conception of the study, and prepared 
the primary manuscript. L.J., M.vR., and K.W. contributed to data 
analysis, data collection, and manuscript revisions. N.T., S.M., 
and G.C.P. contributed to data collection and manuscript revi-
sions. A.A. and S.A. contributed to data analysis and manuscript 
revisions. D.R., A.O., A.N., S.B., K.B., and M.L. contributed to 
manuscript revisions. M.S. contributed to the study framework 
and manuscript revisions. M.A. was the primary supervisor of 
the project and contributed to the study framework, data collec-
tion, and manuscript revision.

Affiliations

Department of Neurosurgery, Heinrich-Heine University, 
Dusseldorf, Germany (J.L.); College of Medicine, Alfaisal 
University, Riyadh, Saudi Arabia (N.A.); DKFZ Division of 
Translational Neurooncology at the WTZ, German Cancer 
Consortium, DKTK Partner Site, University Hospital Essen, 
Essen, Germany (L.J.); University of Leipzig, Leipzig, Germany 

https://academic.oup.com/noa


 10 Lost et al.: IDH prediction in gliomas: Machine learning model

(M.R.); Department of Diagnostic and Interventional Radiology, 
Medical Faculty, University Dusseldorf, Dusseldorf, Germany 
(N.T.); University of Leipzig, Leipzig, Germany (K.W.); University 
of Ulm, Ulm, Germany (S.M.); University of Göttingen, Göttingen, 
Germany (G.C.P.); Department of Radiology, Massachusetts 
General Hospital, Boston, Massachusetts, USA (A.A.); 
Department of Radiology and Biomedical Imaging, Yale 
School of Medicine, New Haven, Connecticut, USA (D.R.); 
Department of Neurology and Yale Cancer Center, Yale School of 
Medicine, New Haven, Connecticut, USA (A.O.); Department of 
Radiology, Perelman School of Medicine, Hospital of University 
of Pennsylvania, University of Pennsylvania, Philadelphia, 
Pennsylvania, USA (A.N.); Division of Computational Pathology, 
Department of Pathology and Laboratory Medicine, Indiana 
University School of Medicine, Indianapolis, Indiana, USA 
(S.B.); Visage Imaging, Inc., Berlin, Germany (K.B.); Visage 
Imaging, Inc., San Diego, California, USA (M.D.L.); Department 
of Therapeutic Radiology, Yale School of Medicine, New Haven, 
Connecticut, USA (S.A.); Department of Neurosurgery, Heinrich-
Heine-University, Duesseldorf, Germany (M.S.); Department 
of Radiology, Children’s Hospital of Philadelphia (CHOP), 
Philadelphia, Pennsylvania, USA (M.A.)

References

1. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee Sh U. Glioblastoma 
multiforme: A review of its epidemiology and pathogenesis through 
clinical presentation and treatment. Asian Pac J Cancer Prev. 
2017;18(1):3–9.

2. Mesfin FB, Karsonovich T, Al-Dhahir MA. Gliomas. In: StatPearls 
[Internet]. Treasure Island, FL: StatPearls Publishing; 2024.

3. Mohammed S, Dinesan M, Ajayakumar T. Survival and quality of life 
analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: 
A retrospective study. Rep Pract Oncol Radiother. 2022;27(6):1026–1036.

4. Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Genetic and 
molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 
2019;15(7):405–417.

5. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification 
of tumors of the central nervous system: A summary. Neuro Oncol. 
2021;23(8):1231–1251.

6. Peng H, Huo J, Li B, et al. Predicting isocitrate dehydrogenase (IDH) mu-
tation status in gliomas using multiparameter MRI radiomics features. J 
Magn Reson Imaging. 2021;53(5):1399–1407.

7. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 
2008;359(5):492–507.

8. Giantini-Larsen AM, Abou-Mrad Z, Yu KK, et al. Treatment and outcomes of 
IDH1-mutant gliomas in elderly patients. J Neurosurg. 2023;140(2):367–376.

9. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations 
produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–744.

10. Zhang CB, Bao ZS, Wang HJ, et al. Correlation of IDH1/2 mutation with 
clinicopathologic factors and prognosis in anaplastic gliomas: A report 
of 203 patients from China. J Cancer Res Clin Oncol. 2014;140(1):45–51.

11. Han S, Liu Y, Cai SJ, et al. IDH mutation in glioma: Molecular mechanisms 
and potential therapeutic targets. Br J Cancer. 2020;122(11):1580–1589.

12. Hartmann C, Hentschel B, Wick W, et al. Patients with IDH1 wild type 
anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated 
glioblastomas, and IDH1 mutation status accounts for the unfavorable 

prognostic effect of higher age: Implications for classification of gliomas. 
Acta Neuropathol. 2010;120(6):707–718.

13. Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular 
heterogeneity in glioblastoma: Potential clinical implications. Front 
Oncol. 2015;5:55.

14. Friedmann-Morvinski. Glioblastoma heterogeneity and cancer cell plas-
ticity. 2014.

15. Lost J, Verma T, Jekel L, et al. Systematic literature review of machine 
learning algorithms using pretherapy radiologic imaging for glioma molec-
ular subtype prediction. AJNR Am J Neuroradiol. 2023;44(10):1126–1134.

16. Miller JJ, Gonzalez Castro LN, McBrayer S, et al. Isocitrate dehydro-
genase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) con-
sensus review on diagnosis, management, and future directions. Neuro 
Oncol. 2023;25(1):4–25.

17. Cryan JB, Haidar S, Ramkissoon LA, et al. Clinical multiplexed exome 
sequencing distinguishes adult oligodendroglial neoplasms from astro-
cytic and mixed lineage gliomas. Oncotarget. 2014;5(18):8083–8092.

18. Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit 
from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

19. Gutman DA, Dunn WD, Jr, Grossmann P, et al. Somatic mutations as-
sociated with MRI-derived volumetric features in glioblastoma. 
Neuroradiology. 2015;57(12):1227–1237.

20. Fathi Kazerooni A, Bakas S, Saligheh Rad H, Davatzikos C. Imaging sig-
natures of glioblastoma molecular characteristics: A radiogenomics re-
view. J Magn Reson Imaging. 2020;52(1):54–69.

21. Johnson DR, Guerin JB, Giannini C, et al. 2016 updates to the WHO 
brain tumor classification system: What the radiologist needs to know. 
Radiographics. 2017;37(7):2164–2180.

22. Jain R, Johnson DR, Patel SH, et al. “Real world” use of a highly reli-
able imaging sign: “T2-FLAIR mismatch” for identification of IDH mutant 
astrocytomas. Neuro Oncol. 2020;22(7):936–943.

23. Chow D, Chang P, Weinberg BD, et al. Imaging genetic heterogeneity 
in glioblastoma and other glial tumors: Review of current methods and 
future directions. AJR Am J Roentgenol. 2018;210(1):30–38.

24. Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ. Imaging prediction of 
isocitrate dehydrogenase (IDH) mutation in patients with glioma: A sys-
temic review and meta-analysis. Eur Radiol. 2019;29(2):745–758.

25. Niklas Tillmanns AEL, Cassinelli G, Merkaj S, et al. Identifying clini-
cally applicable machine learning algorithms for glioma segmentation: 
Recent advances and discoveries. Neurooncol. Adv. 2022;4(1):vdac093.

26. Bakas S, Shukla G, Akbari H, et al. Overall survival prediction in glio-
blastoma patients using structural magnetic resonance imaging (MRI): 
Advanced radiomic features may compensate for lack of advanced MRI 
modalities. J Med Imaging (Bellingham). 2020;7(3):031505.

27. Jekel L, Brim WR, von Reppert M, et al. Machine Learning applications 
for differentiation of glioma from brain metastasis—A systematic re-
view. Cancers. 2022;14(6):1369.

28. Cassinelli Petersen GI, Shatalov J, Verma T, et al. Machine learning 
in differentiating gliomas from primary CNS lymphomas: A system-
atic review, reporting quality, and risk of bias assessment. AJNR Am J 
Neuroradiol. 2022;43(4):526–533.

29. Bahar RC, Merkaj S, Cassinelli Petersen GI, et al. Machine learning 
models for classifying high- and low-grade gliomas: A systematic review 
and quality of reporting analysis. Front Oncol. 2022;12:856231.

30. Jian A, Jang K, Manuguerra M, et al. Machine learning for the predic-
tion of molecular markers in glioma on magnetic resonance imaging: A 
systematic review and meta-analysis. Neurosurgery. 2021;89(1):31–44.

31. Kocak B, Baessler B, Bakas S, et al. CheckList for EvaluAtion of Radiomics 
research (CLEAR): A step-by-step reporting guideline for authors and re-
viewers endorsed by ESR and EuSoMII. Insights Imaging. 2023;14(1):75.

32. Aboian M, Bousabarah K, Kazarian E, et al. Clinical implementation of 
artificial intelligence in neuroradiology with development of a novel 



N
eu

ro-O
n

colog
y 

A
d

van
ces

11Lost et al.: IDH prediction in gliomas: Machine learning model

workflow-efficient picture archiving and communication system-based 
automated brain tumor segmentation and radiomic feature extraction. 
Original Research. Front Neurosci. 2022;16:16:860208.

33. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational 
radiomics system to decode the radiographic phenotype. Cancer Res. 
2017;77(21):e104–e107.

34. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. pre-
sented at: Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining; 2016; San 
Francisco, California, USA. doi: 10.1145/2939672.2939785

35. Capper D, Weißert S, Balss J, et al. Characterization of R132H 
mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 
2010;20(1):245–254.

36. Qin Y, Alaa A, Floto A, Schaar MV. External validity of machine 
learning-based prognostic scores for cystic fibrosis: A retrospec-
tive study using the UK and Canadian registries. PLOS Digit Health. 
2023;2(1):e0000179.

37. Youssef A, Pencina M, Thakur A, et al. External validation of AI models 
in health should be replaced with recurring local validation. Nat Med. 
2023;29(11):2686–2687.

38. Du P, Liu X, Wu X, et al. Predicting histopathological grading of adult 
gliomas based on preoperative conventional multimodal MRI Radiomics: 
A Machine learning model. Brain Sci. 2023;13(6):912.

39. de Hond AAH, Kant IMJ, Fornasa M, et al. Predicting readmission or 
death after discharge from the ICU: External validation and retraining of 
a machine learning model. Crit Care Med. 2023;51(2):291–300.

40. Chen TL-W, Buddhiraju A, Seo HH, et al. Internal and external valida-
tion of the generalizability of machine learning algorithms in predicting 
non-home discharge disposition following primary total knee joint 
arthroplasty. J Arthroplasty. 2023;38(10):1973–1981.

41. Kunze KN, Kaidi A, Madjarova S, et al. External validation of a ma-
chine learning algorithm for predicting clinically meaningful functional 

improvement after arthroscopic hip preservation surgery. Am J Sports 
Med. 2022;50(13):3593–3599.

42. Mari T, Asgard O, Henderson J, et al. External validation of binary ma-
chine learning models for pain intensity perception classification from 
EEG in healthy individuals. Sci Rep. 2023;13(1):242.

43. Li G, Li L, Li Y, et al. An MRI radiomics approach to predict sur-
vival and tumour-infiltrating macrophages in gliomas. Brain. 
2022;145(3):1151–1161.

44. Luo AL, Ravi A, Arvisais-Anhalt S, et al. Development and internal 
validation of an interpretable machine learning model to predict 
readmissions in a United States healthcare system. Informatics. 
2023;10(2):33.

45. Huang C-Y, Güiza F, Wouters P, et al. Development and validation of the 
creatinine clearance predictor machine learning models in critically ill 
adults. Crit Care. 2023;27(1):272.

46. Liu Y, Zheng Z, Wang Z, et al. Using radiomics based on multicenter 
magnetic resonance images to predict isocitrate dehydrogenase muta-
tion status of gliomas. Quant Imaging Med Surg. 2023;13(4):2143–2155.

47. Dal Bo M, Polano M, Ius T, et al. Machine learning to improve inter-
pretability of clinical, radiological and panel-based genomic data of 
glioma grade 4 patients undergoing surgical resection. J Transl Med. 
2023;21(1):450.

48. Kumar A, Jha AK, Agarwal JP, et al. Machine-learning-based radiomics 
for classifying glioma grade from magnetic resonance images of the 
brain. J Person Med. 2023;13(6):920.

49. Kim B-H, Lee H, Choi KS, et al. Validation of MRI-based models to pre-
dict MGMT promoter methylation in gliomas: BraTS 2021 radiogenomics 
challenge. Cancers. 2022;14(19):4827.

50. Xu J, Ren Y, Zhao X, et al. Incorporating multiple magnetic reso-
nance diffusion models to differentiate low- and high-grade adult 
gliomas: A machine learning approach. Quant Imaging Med Surg. 
2022;12(11):5171–5183.

https://doi.org/10.1145/2939672.2939785

	Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging  
	Methods
	Study Design
	Subjects
	Imaging Data Protocol
	Tumor Segmentation
	Feature Extraction
	ML Pipeline
	IDH Mutation Assessment
	Statistical Analysis

	Results
	Clinical Characteristics of Patients
	Feature Selection
	Performance of the Classification Model

	Discussion
	Limitations

	Conclusion
	Supplementary material
	References

	Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging  
	Methods
	Study Design
	Subjects
	Imaging Data Protocol
	Tumor Segmentation
	Feature Extraction
	ML Pipeline
	IDH Mutation Assessment
	Statistical Analysis

	Results
	Clinical Characteristics of Patients
	Feature Selection
	Performance of the Classification Model

	Discussion
	Limitations

	Conclusion
	Supplementary material
	References


