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Cigarette smoking is one of the leading risks for lung cancer and is associ-

ated with the insensitivity of non-small cell lung cancer (NSCLC) to epi-

dermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs).

However, it remains undetermined whether and how cigarette smoke

affects the therapeutic efficacy of EGFR TKIs. In this study, our data

showed that chronic exposure to cigarette smoke extract (CSE) or tobacco

smoke-derived carcinogen benzo[a]pyrene, B[a]P, but not nicotine-derived

nitrosamine ketone (NNK), reduced the sensitivity of wild-type EGFR-

expressing NSCLC cells to EGFR TKIs. Treatment with TKIs almost

abolished EGFR tyrosine kinase activity but did not show an inhibitory

effect on downstream Akt and ERK pathways in B[a]P-treated NSCLC

cells. CSE and B[a]P transcriptionally upregulate c-MET and activate its

downstream Akt pathway, which is not inhibited by EGFR TKIs. Silenc-

ing of c-MET reduces B[a]P-induced Akt activation. The CSE-treated

NSCLC cells are sensitive to the c-MET inhibitor crizotinib. These findings

suggest that cigarette smoke augments oncogene addiction to c-MET in

NSCLC cells and that MET inhibitors may show clinical benefits for lung

cancer patients with a smoking history.
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1. Introduction

Lung cancer is one of leading cancer types in both

males and females, and has a high incidence and

mortality worldwide (Siegel et al., 2016). Lung cancer

is grouped into two major types: non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC).

NSCLC accounts for 80–85% of lung cancer and can

be further classified into three major sub-types: ade-

nocarcinoma, squamous cell carcinoma and large cell

carcinoma. Cigarette smoke and secondhand smoke

have been demonstrated as the risk factors for lung

cancer (de Groot and Munden, 2012; Kenfield et al.,

2008; Molina et al., 2008). The vast majority (85%)

of lung cancer occurs in people aged over 50 years

with a history of cigarette smoking (Siegel et al.,

2016); only 10–15% of cases were non-smokers (Thun

et al., 2008).

Cigarette smoke is a mixture including more than

5000 chemicals (Adams et al., 1987; Borgerding

and Klus, 2005; Talhout et al., 2011; Thielen et al.,

2008). Over 60 carcinogens, including benzene, benzo

[a]pyrene (B[a]P), dibenz[a,h]anthracene, catechol,

nitromethane, 4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanone (NNK), N0-nitrosonornicotine (NNN), were

identified in the mixtures of cigarette smoke (Adams

et al., 1987; Hecht, 2003; Talhout et al., 2011). These

carcinogens can be classified into three groups: strong

carcinogen, weak carcinogen and co-carcinogen.

Strong carcinogens, including polycyclic aromatic

hydrocarbon (PAH) nitrosamines and aromatic ami-

nes, can induce tumor formation in immune-completed

laboratory animals after treatment at microgram or

milligram level. Weak carcinogens, including acetalde-

hyde, induce carcinogenesis at a relatively high dose.

Co-carcinogens are chemicals such as nicotine that

promote the effects of a carcinogen in the induction of

cancer (Hecht, 2012). Among these chemicals, NNK

and PAH are two major carcinogens and induce lung

cancer formation in fully immune laboratory animals

(Hecht, 2003; Huang and Chen, 2011). NNK, a nico-

tine-derived nitrosamine ketone, can induce multiple

cancer formation, including lung (major), nasal, oral,

liver, pancreatic and cervical cancers (Hecht, 2003;

Huang and Chen, 2011). It not only mutates or acti-

vates oncogenes and tumor suppressor, such as Adrb2,

K-Ras, p53 and TxA2 (Huang and Chen, 2011; Huang

et al., 2011; Kerr et al., 2007; Matzinger et al., 1995;

Zheng and Takano, 2011) but also induces hyperme-

thylation of multiple tumor suppressor gene promot-

ers, such as IGFBP-3, FHIT, p16IKK4a and RARB

(Harada et al., 2013; Lin et al., 2010). Some studies

showed that NNK stimulated Erk signaling pathway

and induced cell transformation and proliferation

through the EGFR signaling pathway (Askari et al.,

2005; Laag et al., 2006). Benzo[a]pyrene, a PAH, can

be metabolized by cytochrome P450s (CYPs), such as

CYP1A1, CYP1A2 and CYP1B1 (Chinai et al., 2015;

Eling et al., 1986; Shimada, 2006). B[a]P induces car-

cinogenesis in mouse models through diolepoxide and

radical-cation mechanism, leading to G to T and G to

A mutations in codon 12 of K-Ras in lung cancer (Mass

et al., 1993), G to T mutation at codon 13, and A to T

mutation at codon 61 in H-Ras in skin cancer (Chakra-

varti et al., 2008). Tp53 tumor-suppressor gene is also

mutated by B[a]P in skin and lung cancer through G to

T transversion mutation in codons 157, 248 and 273

(Denissenko et al., 1996; Ruggeri et al., 1993).

In addition to genetic alternations associated with

tumorigenesis, cigarette smoking behavior was also

associated with the insensitivity to EGFR TKIs and

poor progression-free survival (PFS) in different types

of cancer patients with EGFR overexpression (Gaz-

dar, 2009; Lee et al., 2006; Miller et al., 2004;

Takano et al., 2004). EGFR belongs to the mem-

brane-bound ErbB (HER) tyrosine kinase receptor

family and is important for maintaining cell survival,

differentiation and mitogenesis in various cancer

types, including NSCLC (Scaltriti and Baselga, 2006).

Upon binding with its ligands, EGFR forms homod-

imers or heterodimers with other ErbB family mem-

bers including ErbB2, ErbB3 and ErbB4, leading to

activation of its tyrosine kinase and downstream sig-

nals, such as PI3K/AKT and p42/p44 MAPK path-

ways (Scaltriti and Baselga, 2006). Overexpression or

aberrant activation of EGFR has been demonstrated

to cause tumor growth and progression of NSCLC

(Dacic et al., 2006; Fontanini et al., 1995; Normanno

et al., 2005). Based on this prevailing phenomenon,

EGFR is therefore a rational and feasible target for

suppression of tumor growth. Gefitinib (ZD1839,

Iressa) and erlotinib (OSI-774, Tarceva) are small

molecule EGFR TKIs that function by binding to

their ATP-binding pocket (Noble et al., 2004) and

have been approved for NSCLC patients. However,

they are more effective in certain populations of

NSCLC patients: Asian women, never-smokers and

adenocarcinoma patients. The good response of non-

smoker NSCLC patients to EGFR TKIs is associated

with activating EGFR mutations (Lynch et al., 2004;

Paez et al., 2004; Pao et al., 2004). The majority of

these activating mutations are L858R mutation and

exon 19 deletion of EGFR (Riely et al., 2006;

Sharma et al., 2007), which showed protein structural

alteration and higher binding affinity with EGFR

TKIs at their ATP-binding sites (Carey et al., 2006)
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and rendered this receptor more vulnerable to TKI

inhibition. Therefore, these activating mutations have

been viewed as a single biomarker to select patients

for these TKIs (Lynch et al., 2004; Sordella et al.,

2004; Zhang and Chang, 2008). However, it remains

unknown whether and how cigarette smoke influences

the sensitivity to EGFR TKIs in lung cancer. More-

over, even though their response rate is lower than

with mutant EGFR-expressing patients, 20–30% of

NSCLC patients with amplified wtEGFR can still

derive significant survival benefit from an EGFR TKI

regimen (Bell et al., 2005; Cappuzzo et al., 2005;

Tsao et al., 2005). Furthermore, no EGFR mutation

was identified in about 10–20% gefitinib-responsive

patients (Bell et al., 2005; Cappuzzo et al., 2005;

Huang et al., 2004; Kim et al., 2008; Nishimura

et al., 2008; Pao et al., 2004). These observations sug-

gest that certain NSCLC patients with wtEGFR

expression still respond to EGFR TKIs. Therefore,

identification of the cigarette smoke-induced factors

causing the insensitivity to these drugs may be helpful

not only for the selection of wtEGFR-expressing

responders but also for the development of precise

medicine to treat smoker patients.

In this study, we used a non-biased strategy to

explore whether c-MET upregulation and downstream

Akt activation can be elicited by cigarette smoke and

its component B[a]P and contribute to EGFR TKI

resistance. Our findings not only define the molecular

mechanism accounting for the insensitivity to EGFR

TKIs in NSCLC patients with a history of cigarette

smoking, but also suggest that treatment with c-MET

inhibitors may benefit such patients.

2. Materials and methods

2.1. Chemicals and reagents

B[a]P was purchased from Sigma-Aldrich (St. Louis,

MO, USA). NNK was purchased from Toronto

Research Chemicals (North York, Canada). Crizotinib

was purchased from MedChem Express (Monmouth

Junction, NJ, USA). Recombinant human hepatic

growth (HGF) was purchased from PEPROTECH

(Rocky Hill, NJ, USA). All chemicals were dissolved

in DMSO and stored at 4 °C or �20 °C.

2.2. Cell culture

Non-small cell lung cancer mucoepidermoid carcinoma

NCI-H292 cell line was cultured in RPMI 1640

(HyClone, Logan, UT, USA) supplemented with 10 mM

HEPES, 10 mM sodium pyruvate, 10% FBS (GIBCO-

BRL, Gaithersburg, MD, USA), 100 units�mL�1 peni-

cillin, and 100 g�mL�1 streptomycin (Thermo Scientific,

Waltham, MA, USA). NSCLC adenocarcinoma

HCC827 and PC9 lines were cultured in RPMI 1640

(HyClone) supplemented with 10% FBS, 100 uni-

ts�mL�1 penicillin and 100 g�mL�1 streptomycin

(Thermo). All cells were incubated in a humidified incu-

bator in 5% CO2 at 37 °C. HCC827 and PC9 cell lines

express EGFR exon19del E746–A750 mutant. These

cell lines were gifts from Prof. Mien-Chie Hung (MD

Anderson Cancer Center, Houston, TX, USA).

2.3. Preparation of cigarette smoke extract

medium

Commercial cigarettes (from Taiwan Tobacco &

Liquor Corporation, Taipei, Taiwan) contain nicotine

(0.8 mg per cigarette) and tar (10 mg per cigarette).

Twenty-five cigarettes were used to prepare 250 mL of

culture medium (RPMI 1640 with or without HEPES

serum-free medium). Smoke from burning 25 cigarettes

was inflated into 250 mL culture medium by pump

and the pH of medium was adjusted to 7.4. The cigar-

ette smoke extract (CSE) medium was filtrated with a

0.22-lm filter to remove large particles. The CSE stock

medium was stored at �30 °C until use. The stock of

CSE medium is 100% (1 cigarette per 10 mL medium)

and was diluted to the working concentrations with

complete medium (Ishii et al., 2001; Ratovitski, 2010;

Su et al., 1998; Sundar et al., 2012; Yang et al., 2006).

2.4. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-tetrazolium bromide] assay

Cells (5 9 103 cells per well) were seeded in 96-well tis-

sue culture plates and then treated with various EGFR

TKIs including erlotinib or gefitinib at the indicated

concentrations. Cell viability analysis was measured

after treatment for 3 days using MTT (Sigma-Aldrich),

which was dissolved in DMSO. After treatment with

TKIs, cells were washed with PBS twice and dissolved

in DMSO for the measurement at absorbance 570 nm.

2.5. Analysis of phospho-receptor tyrosine kinase

array

Total lysates prepared from both control and B[a]P-treated
cells were subjected to Human Phospho-Receptor Tyro-

sine Kinases Array Kit (R&D Systems, Minneapolis,

MN, USA), according to the manufacturer’s protocol.

The changes of phospho-receptor tyrosine kinase

(RTK) expressions were quantified using IMAGEJ (NIH,

Bethesda, MD, USA).
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2.6. Gene silencing by lentiviral small hairpin

RNA

HEK293T cells (2.4 9 106) were seeded in 6-cm culture

dish in 5 mL DME/F-12 with 10% FBS and incubated

at 37 °C overnight. Three plasmids (pLKO.1-shRNA

or pLenti-gene:pCMV-DR8.91:pMD.G = 2:2:0.2 lg)
were co-transfected into HEK293T cells with 10.6 lL
F2000 transfection reagent. The medium was

refreshed with 10% FBS, P/S and 1% BSA after incu-

bation for 6 h. Medium containing lentivirus was col-

lected after 24 h of transfection and stored at �80 °C
until use.

Cells (2 9 105 cells per well) were seeded in six-well

tissue culture plate and incubated overnight. Next day,

cells were infected with lentivirus at MOI 125 with

8 g�mL�1 polybrene (hexadimethrine bromide, Sigma-

Aldrich). After infection for 16–18 h, culture medium

was refreshed and 1 lg�mL�1puromycin added for

selection for 3 days.

2.7. Genomic DNA isolation

Genomic DNA was extracted from stable clones

with cell lysis buffer (10 mM pH 8.0 Tris-HCl,

100 mM EDTA and 0.5% SDS), and incubated at

37 °C until completely dissolved, followed by treat-

ment with RNase A at 37 °C for 15–60 min.

Ammonium acetate was then added and mixed by

vortex, and centrifuged at 14 000 g for 1 min.

Supernatant was transferred to new tubes and

300 lL 100% isopropanol added, shaken 50 times,

and centrifuged at 14 000 g for 1 min. Supernatant

was removed and the pellet was washed in 300 lL
70% ethanol, and centrifuged at 14 000 g for

1 min. The pellet was dried for 15 min and re-dis-

solved in TE buffer (pH 8.0). An optical density at

260 (OD260) and 280 (OD280) were determined for

the concentration and purity of samples, respec-

tively.

2.8. RNA extraction

Total RNA was extracted from stable clones with

TriPure Isolation Reagent (Roche, Mannheim, Ger-

many). First, each sample was mixed with 0.2 mL

chloroform per 1 mL TriPure and then centrifuged

at 12 000 g for 15 min to separate the aqueous

phase, interphase and organic phases. Total RNA

from the aqueous phase was mixed with 0.4–0.6 mL

isopropanol at �30 °C for over 30 min. The mix-

tures were then centrifuged at 12 000 g for 15 min,

washed in 1 mL 75% ethanol twice, and centrifuged

at 12 000 g for 15 min. Finally, supernatant was

removed and the RNA pellet dried, followed by re-

dissolution in diethyl pyrocarbonate (DEPC) water

at 4 °C overnight.

2.9. Reverse-transcription and polymerase chain

reaction

The RT was performed with 1 lg of RNA using

MMLV First-Strand Synthesis Kit (GeneDireX, Las

Vegas, NV, USA). The relative mRNA expression of

c-MET was determined using SYBR FAST qPCR kit

(KAPA Biosystems, Wilmington, MA, USA). Primer

sequences for c-MET used in real-time quantitative

PCR were F’: 50- CCCGAAGTGTAAGCCCAACT-30,
R’: 50-AGGATACTGCACTTGTCGGC-30; 18s rRNA:

F’: 50-CGGCGACGACCCATTCGAAC-30, R’: 50-GA

ATCGAACCCTGATTCCCCGTC-30; c-MET genomic

exon 2: F’: 50-ATAAACCTCTCATAATGAAGGCC-30,
R’: 50-TTTGCTAGTGCCTCTTTACACTC-30.

2.10. Protein extraction and western blot analysis

Cells were lysed using RIPA lysis buffer with protease

and phosphatase inhibitors and centrifuged at

12 000 g for 30 min. Samples were quantified using

Braford assay (Bio-Rad, Hercules, CA, USA). All

samples were separated by 8–12% SDS/PAGE and

transferred to 0.45 lm polyvinylidene difluoride

(PVDF) membranes (Millipore, Billerica, MA, USA)

or 0.22 lm nitrocellulose (NC) membranes (GE

Healthcare, Amersham, UK). Non-specific protein

binding was blocked in 5% skim milk with Tris-buf-

fered saline Tween-20 (TBST) for 1 h at room tem-

perature. The membranes were hybridized with

primary antibodies against phospho-HER2 (Y1221/

1222), phospho-HER3 (Y1289), phospho-EGFR

(Y1068), phospho-MET (Y1234/1235), c-MET, Akt,

phospho-Erk (T202/Y204), Erk (Cell Signaling, Dan-

vers, MA, USA), phospho-Akt (S473), HER2, HER3

and EGFR (Santa Cruz Biotechnology, Dallas, TX,

USA), tubulin, actin (Sigma-Aldrich) and phosphoty-

rosine (Merck Millipore, Belmop�an, Belize) at 4 °C
overnight, followed by incubation with HRP-labeled

secondary antibodies at room temperature for 1 h.

The expression of proteins was detected with

enhanced chemiluminescence (ECL, GE Healthcare,

or Millipore).

2.11. Conditioned medium treatment

Cells were cultured and plated on 100-mm dishes.

After 24 h, conditioned media from H292 parental,
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H292/1%CSE, H292/5%CSE, H292/DMSO and

H292/B[a]P 1 lM cells was collected. Fresh condi-

tioned media was centrifuged at 200 g for 5 min

before H292 parental cells were treated with different

conditioned media for 6 h. HGF treatment was used

as positive control for c-MET activation. The treated

cells were lysed with RIPA lysis buffer to prepare total

protein.

2.12. ChIP analysis

Cigarette smoke extract-/B[a]P-treated H292 cells were

fixed with 1% formaldehyde at room temperature for

10 min to cross-link protein and DNA, and the reac-

tion was stopped by adding glycine. Cross-linked cells

were washed twice with cold PBS and resuspended in

1 mL PBS with protease inhibitor cocktail. These cells

were centrifuged at 700 g for 10 min at 4 °C and the

supernatant removed. DNA was digested by treating

with micrococcal nuclease (MNase, Thermo Scientific)

for an appropriate incubation time at 37 °C after add-

ing nuclear lysis buffer (50 mM Tris-Cl pH 8.0, 10 mM

EDTA, 1% SDS) to break the nuclear membrane.

These cell pellets were centrifuged at 900 g for 5 min

at 4 °C and then the supernatant was collected and

pre-cleaned with 60 lL protein A agarose (GE Health-

care, New York, NY, USA) in 900 lL dilution buffer

(0.01% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM

Tris-Cl (pH 8.0), 500 mM NaCl) with protein inhibitor

cocktail at 4 °C for 1 h. The supernatants were then

centrifuged at 860 g at 4 °C for 3 min and incubated

with primary antibody against MeCP2 (Millipore), 5-

methylcysine (Calbiochem, San Diego, CA, USA) or

control IgG at 4 °C overnight. Antibody-protein-DNA

complex was immunoprecipitated with 60 lL salmon

sperm DNA/protein A at room temperature for 2 h.

Pellets were eluted by freshly prepared elution buffer

(20% SDS and 1 M NaHCO3) for 15 min at 65 °C
after extensive washing. Nucleic acids were extracted

by adding phenol/chloroform/isoamyl alcohol

(25 : 24 : 1) (Invitrogen, Carlsbad, CA, USA) and

used as the template in SYBR FAST qPCR kit

(KAPA Biosystems). Primer sequences for the methy-

lation of c-MET promoter were M1 region (+84 to

+484), F0: 50-AGCACGTGTCTGTTCGTCCCTG-30,
R0: 50- CCTTGCCAGCTGTATCACCCTG-30; M2

region (�261 to +98), F0: 50- GGACAAACCTAGA

GCGACAGGG-30, R0: 50-ACGCGGCTGGAGTTTG-

TACC-30; M3 region (�563 to �223), F0: 50-GCT

TTGCGCGGGTGACTTTG-30, R0: 50-AGCACGTGT

CTGTTCGTCCCTG-30; M4 region (�710 to –409),
F0: 50-ATCCGTCCATGCACTCCCAAC-30, R0: 50-
CGGCAAGGTGAAACTTTCTAGG-30.

2.13. Statistical analyses

Data are presented as the mean � standard error of

the mean (SEM) of three independent results. A two-

tailed t-test was used for most comparisons, with

P < 0.05 considered significant.

3. Results

3.1. Cigarette smoke and B[a]P cause the

insensitivity of wtEGFR-expressing NSCLC to

EGFR TKIs

To investigate whether and how cigarette smoke influ-

enced the sensitivity to EGFR TKIs in NSCLC, we

first established CSE-treated clones from wtEGFR-

expressing NCI-H292 and mutEGFR-expressing

HCC827 and PC9 cells by chronic exposure to 1%

CSE or 5% CSE for at least 2 months. Since nuclear

factor kappa B (NF-jB) activation by cigarette smoke

has been reported (McMillan et al., 2011; Sundar

et al., 2012; Yang et al., 2006), we first examined p65

S536 phosphorylation as a positive control to monitor

the proper response of NSCLC cells to CSE treatment

(Fig. 1A). The viabilities of these clones under the

treatment with EGFR TKIs were then examined in

MTT assays. Our data showed that CSE renders H292

cells (Fig. 1B) but not HCC827 or PC9 cells (Fig. 1C,

D), more insensitive to both gefitinib and erlotinib as

compared with their parental cells. We also tested

whether B[a]P or NNK can affect the sensitivity of

lung cancer cells to EGFR TKIs. Our data showed

that H292/B[a]P stable clones are more resistant to

both gefitinib and erlotinib (Fig. 2A), but NNK treat-

ment did not change the sensitivity of H292 cells to

EGFR TKIs (Fig. 2B). Similar to the results in

HCC827/CSE and PC9/CSE clones, HCC827/B[a]P,
HCC827/NNK and PC9/B[a]P stable clones remain

sensitive to EGFR TKIs (Fig. 2C–E). These results

suggest that B[a]P among the CSE-derived carcinogens

may render wtEGFR-expressing lung cancer cells more

resistant to EGFR tyrosine kinase inhibitors.

We next examined whether EGFR and its down-

stream signaling pathway in H292, HCC827 and PC9

cells were affected by CSE, B[a]P or NNK. EGFR

activity in all CSE-, B[a]P- and NNK-treated cells was

not changed (Fig. 3A,B). However, the Akt activity in

wtEGFR-expressing H292 cells was significantly

enhanced in response to CSE and B[a]P but not NNK

(Fig. 3A). In EGFR mutant-expressing HCC827 cells,

Akt activation by CSE, B[a]P and NNK was barely

detected (Fig. 3B). In both H292 and HCC827 cells,

ERK activity was induced by CSE and B[a]P but not
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Fig. 1. Cigarette smoke extract treatment rendered wtEGFR- but not EGFR mutant-expressing NSCLC more resistant to EGFR tyrosine

kinase inhibitors. Whole-cell extracts prepared from H292/CSE, HCC827/CSE and PC9/CSE. Stable cells were subjected to western blot

analysis to determine p65 phosphorylation at ser536 (A). CSE-treated H292 (B), HCC827 (C) and PC9 (D) were treated with gefitinib (left) or

erlotinib (right) for 3 days and their viabilities were determined in MTT assays.
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Fig. 2. Treatment with B[a]P but not NNK reduces the sensitivity of H292 cells to EGFR tyrosine kinase inhibitors. H292 (A, B), HCC827 (C,

D), and PC9 (E) selected with 1 lM B[a]P (A, C, E) or 10 lM NNK (B, D) were treated with gefitinib (left) or erlotinib (right) for 3 days, and

their viabilities were determined in MTT assays.

711Molecular Oncology 12 (2018) 705–723 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

C.-Y. Tu et al. c-MET activation by smoking causes TKI resistance



NNK (Fig. 3A,B). These findings suggest that the ele-

vation of Akt activity may be critical for CSE- and B

[a]P-induced EGFR TKI resistance.

We further found that both basal and EGF-induced

EGFR signaling including Akt and ERK activation

can be completely inhibited by gefitinib and erlotinib

in both parental (Fig. 4A) and NNK-treated cells

(Fig. 4B). In B[a]P-treated H292 cells, however, the

enhanced Akt and ERK kinase activities were not

affected by these two EGFR TKIs; in fact, the EGFR

activity was dramatically inhibited (Fig. 4A). Both Akt

and ERK pathways remain sensitive to EGFR TKIs

in CSE- and B[a]P-treated HCC827 stable clones

(Fig. 4C), probably due to the stronger oncogene

addiction to the activated EGFR mutant in these cells.

These data suggested that the increased Akt and ERK

activities in response to CSE and B[a]P treatment may

result from an alternative signaling and thereby

contribute to the insensitivity of wtEGFR-expressing

smoker NSCLC patients to EGFR TKIs.

To examine whether this resistance was caused by

EGFR T790M mutation, which has been reported as a

Fig. 3. Activities of Akt and Erk were higher in CSE- and B[a]P-

selected H292 cells. The activities and protein levels of EGFR and

its downstream signaling Akt and ERK were detected in H292 (A)

and HCC827 (B) by western blot analysis with indicated antibodies.

Fig. 4. EGFR TKI failed to inhibit activation of Akt and Erk in H292/

B[a]P cells but not in HCC827/ B[a]P cells. H292 (A, B) and

HCC827 (C) cells selected with B[a]P or NNK were pretreated with

1 lM EGFR TKIs for 2 h followed by 50 ng�mL�1 EGF stimulation

as indicated. Whole-cell extracts were prepared and subjected to

western blot analysis to determine the expression of EGFR

signaling pathway with indicated antibodies.
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secondary mutation after treatment with EGFR TKIs

(Mitsudomi and Yatabe, 2007; Sharma et al., 2007),

cDNA of EGFR was extracted and prepared from

these CSE- and B[a]P-treated clones and sequenced.

Although G to A mutation at codon 787 was found,

this substitution is a silent mutation and did not alter

the amino acid sequence. However, no mutation at

codon 790 was found, suggesting that the resistance of

CSE- and B[a]P-treated H292 cells to EGFR TKI was

not caused by EGFR T790M mutation (Fig. S1). We

further investigated whether other receptor tyrosine

kinases were involved in the elevation of Akt and

ERK activities by B[a]P. We examined the expression

profile of protein tyrosine phosphorylation in B[a]P-
treated cells in western blot analysis with anti-phos-

photyrosine antibody. Interestingly, an increased tyro-

sine phosphorylation signal around 150 kDa was

detected in the B[a]P-treated H292 cells (Fig. 5A).

Therefore, we suggest that certain RTKs might be acti-

vated in response to B[a]P treatment to mediate the

activations of AKT and ERK signaling. To further

identify which RTK is activated by B[a]P, total lysates
prepared from both parental and B[a]P-treated cells

were subjected to RTK antibody array analysis. The

results showed that MET tyrosine phosphorylation is

dramatically increased in the H292/B[a]P cells. How-

ever, the phosphorylation status of EGFR, HER2 and

HER3 was not changed by B[a]P (Fig. 5B). As shown

in Fig. 5C, the activation of c-MET was 19-fold higher

in H292/B[a]P cells than in parental cells in the quanti-

tated data from RTK antibody array analysis. Other

RTKs, including c-RET and EphA2, were also acti-

vated in response to B[a]P. However, IGF-IR, Axl and

Alk, which were known to play some roles in the

acquired resistance to EGFR TKI (Bae et al., 2015;

Guix et al., 2008; Maione et al., 2015), were not acti-

vated by B[a]P and may not be involved in the insensi-

tivity of smoker NSCLC to EGFR TKI (Fig. 5D).

3.2. CSE and B[a]P enhance the oncogene

addiction of wtEGFR-expressing NSCLC to c-MET

To prove that cigarette smoke renders NSCLC cancer

cells more resistant to EGFR TKI through induction

of c-MET signaling, we first confirmed the c-MET

activation in H292/B[a]P cells by western blot analysis.

As shown in Fig. 6E, c-MET tyrosine phosphorylation

was indeed dramatically increased in B[a]P-treated
cells, and total c-MET expression is also induced. By

contrast, NNK suppressed c-MET expression

(Fig. S2). In addition, exposure to CSE, B[a]P or

NNK had no dramatic effect on c-MET phosphoryla-

tion or protein expression in PC9 and HCC827 cells

(Fig. S2). The tyrosine phosphorylation of HER2 and

HER3 was also determined, but no difference between

B[a]P-treated cells and control cells was detected

(Fig. 5E). We further checked the mRNA level of c-

MET in CSE- and B[a]P-selected cells by RT-qPCR

analysis and found an elevation of c-MET mRNA

expression in response to these treatments (Fig. 5F),

suggesting that B[a]P transcriptionally upregulates c-

MET gene expression. In support of this finding, the

published microarray dataset of 226 lung cancer

patients (GSE31210) also showed that cMET mRNA

is higher in the lung tumor tissue in smoker than in

non-smoker patients (Fig. 5G).

In addition to c-MET gene expression, the induction

of c-MET activity may also be due to the stimulation by

autocrine ligand, which could be induced by CSE and B

[a]P and released into the medium. According to Bog-

ler’s model, autocrined HGF activates c-MET signaling

to enhance HGF expression in DEGFR-expressing

GBM cells (Garnett et al., 2013). We therefore collected

the conditioned medium (CM) from control cells or

from CSE or B[a]P stable cells to treat parental H292

cells, followed by examination of c-MET signaling.

Unlike the stimulation by HGF, however, the condi-

tioned medium from CSE- (Fig. 6A) or B[a]P-treated
(Fig. 6B) cells did not induce c-MET activity in parental

H292 cells. Therefore, we excluded the possibility that

the CSE- or B[a]P-induced c-MET activity is due to the

autocrine ligand stimulation. There is a CpG island

(from –708 to +233) on the promoter of c-MET gene,

and methylation of this region suppressed c-MET tran-

scription through recruitment of MeCP2 (Morozov

et al., 2008; Plummer et al., 2013). To examine whether

CSE and B[a]P upregulated c-MET expression by mod-

ulating the DNA methylation status on c-MET pro-

moter, ChIP was performed with anti-5-methylcytosine

(5-mC) and anti-MeCP2 antibodies, followed by quanti-

tative PCR with four different primer sets for c-MET

promoter (as illustrated in Fig. 6C). The results showed

that all four regions of c-MET promoter were detectable

in both anti-5mC and anti-MeCP2 immunoprecipitates

of parental H292 cells (Fig. 6D,E). More importantly,

treatments with CSE and B[a]P can suppress cytosine

methylation and MeCP2 recruitment on c-MET pro-

moter in M1, M2 and M4 regions. These results suggest

that CSE and B[a]P may upregulate c-MET expression

through removal of DNA methylation on its promoter.

To further investigate whether the increased c-MET

expression and activity is responsible for Akt and Erk

activation and cell viability of CSE- and B[a]P-treated
cells, expression and kinase activity of c-MET were

down-regulated by shRNA and pharmacological inhibi-

tor, respectively. As shown in Fig. 7, Akt but not ERK
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activity was reduced in CSE- and B[a]P-treated cells but

not in parental cells after silencing c-MET expression

(Fig. 7A,B) and treatment with c-MET inhibitor crizo-

tinib (Fig. 7C). In addition, inhibition of c-MET by

crizotinib also showed a suppressive effect on the viability

of both CSE-treated and parental cells (Fig. 7D). These

results indicated that cigarette smoke increased the PI3K/

Akt survival pathway for insensitization to EGFR TKIs

through enhancing c-MET expression and activity.

In conclusion, we demonstrated that cigarette smoke

extract and its derived carcinogen, benzo[a]pyrene, acti-
vated proto-oncogene MET signaling through ligand-

independent pathway to dominate Akt activation, which

may thereby lead to the EGFR TKI resistance in wild-

type EGFR-expressing NSCLC cell line but not in

mutant EGFR-expressing NSCLC cell lines (Fig. 8).

Therefore, our findings not only indicate the possibility

of c-MET activation as the molecular mechanism

Fig. 5. Proto-oncogene c-MET expression and activity were higher in H292/B[a]P cells than in control cells. (A) Whole-cell extract from

H292/B[a]P cells was subjected to western blot analysis with anti-phosphotyrosine antibody. (B) Total lysates prepared from the H292/

DMSO and H292/B[a]P were incubated with RTK antibody arrays, and phosphotyrosine was detected by anti-phospho-tyrosine-HRP. The

changes in tyrosine phosphorylation of RTK were labeled as indicated. The upregulation (C) and downregulation (D) of RTK tyrosine

phosphorylations in H292/B[a]P cells shown in (B) were quantitated using IMAGEJ software. (E) The RTK activities and protein levels in H292/

B[a]P cells determined by western blot analysis with indicated antibodies. (F) The mRNA level of c-MET in indicated cells was detected by

q-RT-PCR. (G) The c-MET mRNA levels in non-smoker and smoker NSCLC patients were analyzed from the GSE31210 GEO dataset.
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Fig. 6. Cigarette smoke extract and B[a]P induced c-MET expression through promoter de-methylation. Parental H292 cells were treated

with conditioned medium of (A) H292/CSE or (B) H292/B[a]P cells for 6 h. The whole-cell lysates were then prepared and subjected to

western blot analysis with indicated antibodies. (C) The CpG island on c-MET promoter and primer sets used in ChIP analysis were

illustrated. Parental H292 cells and their CSE and B[a]P clones were subjected to ChIP analysis with 5-methylcytosine (5-mC) (D) or anti-

MeCP2 (E) antibodies followed by quantitative PCR with primers targeting c-MET promoter. ‘Fold of Input’ is expressed as the ratio

between the amount of total immunoprecipitated DNA (bound) and the amount of input DNA. Data are expressed as means � SD.

**P < 0.005; ***P < 0.001.
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underlying cigarette smoke-related EGFR TKI resis-

tance, but also suggest that c-MET inhibitors may bene-

fit NSCLC patients who smoke, who harbor wtEGFR-

expression.

4. Discussion

Cigarette smoke is an important risk factor of lung

cancer progression. Clinical studies showed that lung

cancer patients who are former or current smokers,

are more resistant to EGFR TKIs (Organ and Tsao,

2011). Induction of cytochromes CYP1A1/1A2 by

cigarette smoking has been hypothesized to alter erloti-

nib pharmacokinetics (Hamilton et al., 2006). How-

ever, our data showed that EGFR TKIs almost

abolished the EGFR activity in CSE/B[a]P-treated cell

lines, suggesting that drug metabolism may not

contribute to the EGFR TKI insensitization of

NSCLC by cigarette smoke. In this study, we found

that CSE and its carcinogen B[a]P may render

wtEGFR-expressing lung cancer cells more insensitive

to EGFR TKI through activation of the c-MET/Akt

signaling axis. However, CSE/B[a]P-induced c-MET

activation was not observed in HCC827 or PC9 cells

and did not cause EGFR TKI resistance. Consistent

to our findings, c-MET amplification was frequently

detected in wtEGFR, but not in mutant EGFR-expres-

sing NSCLC patients, and is associated with a poor

prognosis (Song et al., 2017). Since HCC827 cells

express EGFR activating mutant, which dominantly

controls pro-survival Akt signal, cigarette smoke may

only switch the oncogene addition from the EGFR to

MET pathway in wtEGFR-expressing NSCLC cancer

cells. Interestingly, the activation of b1-adrenergic

Fig. 7. The activity of Akt was reduced by inhibition of c-MET in H292/CSE and H292/B[a]P cells. c-MET expression was knocked down by

shRNA in H292/CSE (A) and H292/B[a]P (B) cells for 3 days. (C,D) These stable clones were treated with 1 lM crizotinib for 3 days. Total

lysates were collected and subjected to western blots with indicated antibodies (C) and the cell viability was analyzed in MTT assay (D).
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receptor (b1-AR), a G protein-coupled receptor, has

been reported to mediate the NNK-induced IGF-1R

activation and tumorigenesis of human bronchial

epithelial cells (Min et al., 2016). b-AR2 was recently

demonstrated to cause EGFR TKI resistance through

inactivation of LKB1 and induction of interleukin-6

expression in NSCLC harboring EGFR activating

mutation (Nilsson et al., 2017). However, our data did

not show a change in TKI sensitivity of H292 and

HCC827 cells caused by NNK (Fig. 2). These studies

suggest that NNK-activated b1-AR may be involved in

NSCLC carcinogenesis but not its EGFR TKI resis-

tance.

The receptor-tyrosine kinase c-MET is the receptor

for hepatocyte growth factor (HGF) and activates a

wide range of different cellular signaling pathways,

including PI3K/Akt, MAPK, JNK, PKC and FAK,

which contribute to proliferation, motility, migration

and invasion (Organ and Tsao, 2011). In the network

enrichment analysis, c-MET has been identified as a

hub which plays key roles in cancer initiation and pro-

gression of cigarette smoking-associated NSCLC

(Pazhouhandeh et al., 2017). Activation of the HGF/

c-MET signaling pathway has also been found to be

associated with a poor prognosis in various solid

tumors including NSCLC (Guo et al., 2014; Zhang

et al., 2015), indicating a predictive value for this dis-

ease. The critical role of crosstalk between the c-MET

and ErbB family in the development of resistance to

cancer therapeutics has been well elucidated (Lai et al.,

2009). The increased expression and activation of

c-MET in response to EGFR TKIs (Engelman et al.,

2007) and cytotoxic anticancer agent (Ozasa et al.,

2014) contribute to drug resistance in lung cancer cells

through compensatory enhancing of Akt signaling.

Suppression of c-MET expression by siRNA or inhibi-

tion of c-MET activation by pharmacological inhibitor

re-sensitized the resistant cells to these anticancer

agents (Ozasa et al., 2014), indicating the importance

of c-MET overexpression in the development of

acquired resistance. In support of our finding, NSCLC

patients with soluble c-Met levels > 766 ng�mL�1 have

shown significant short median PFS after EGFR-TKI

treatment (Gao et al., 2016).

Mechanisms resulting in constitutive or prolonged

activation of c-MET during tumor growth or cancer

progression include the occurrence of specific genetic

lesions, including translocations, gene amplifications

and activating mutations; and transcriptional upregu-

lation of the c-MET protein in the absence of gene

amplification or via ligand-dependent autocrine or

paracrine mechanisms (Danilkovitch-Miagkova and

Zbar, 2002). High c-MET gene copy number is associ-

ated with poor survival in NSCLC, ovarian clear cell

adenocarcinoma and gastric cancer (Beau-Faller et al.,

2008; Cappuzzo et al., 2009; Chen et al., 2011; Go

et al., 2010; Park et al., 2012; Shi et al., 2012; Yama-

shita et al., 2013). In oral lichen planus, the expression

of c-MET was found to be higher in smokers than

non-smokers (Kłosek et al., 2011). However, few

Fig. 8. Current hypothetic model of this study. Cigarette smoke de-represses c-MET expression through reduction of promoter methylation.

The induced c-MET induced drug resistance to EGFR TKIs by maintaining Akt activity in wtEGFR-expressing lung cancer cells.
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studies reported how cigarette smoke increases c-MET

expression and activity. Previous studies suggested that

mutation of c-MET at the sema or juxtamembrane

domain, including N375S, R988C, T1010I, S1058P or

splicing mutation, caused c-MET activation (Lawrence

and Salgia, 2010; Onozato et al., 2009). In

Soundararajan’s study, most of the N375S mutation

carriers were eastern Asian, male, squamous and

smokers (Johnson et al., 2012; Krishnaswamy et al.,

2009). Based on these studies, the exon2 (sema

domain) and exon 14 (juxtamembrane domain) of c-

MET were amplified and sequenced. These mutations

did not occur after treatment with CSE and B[a]P
(data not shown). Gene amplification was also not

observed in the PCR analysis (data not shown). There-

fore, we ruled out the possibility that CSE- or B[a]P-
induced c-MET activation is due to the mutation or

amplification of c-MET gene. Activation of MET clas-

sically is through binding with its ligand, HGF, induc-

ing receptor homodimerization, and then the C-

terminal tail transphosphorylation, leading to the initi-

ation of downstream signals (Feng et al., 2012). Chen

et al. (2006) suggested that cigarette smoke could over-

express HGF in type II pneumocytes and lung cancer

cells. HGF-dependent MET activation via endocrine,

paracrine or autocrine signaling had been observed in

lung cancer (Feng et al., 2012). In our study, however,

the condition medium from benzo[a]pyrene-treated
clone did not stimulate MET tyrosine phosphoryla-

tion, suggesting that activation of MET in these cells

is not through the HGF autocrine-dependent pathway.

Several microRNAs, including miR-613 (Li et al.,

2016b), miR-138 (Li et al., 2016a), miR-206 (Zheng

et al., 2015), miR-185 (Fu et al., 2014) and miR-101

(Hu et al., 2013), have been demonstrated to target c-

MET for cancer proliferation and progression. Cigar-

ette smoke globally downregulates microRNA expres-

sion in human alveolar macrophages (Graff et al.,

2012). Further studies are required to demonstrate the

possibility that CSE induces c-MET expression

through downregulation of microRNAs. In addition,

physical protein interactions with other receptor tyro-

sine kinases have been reported to contribute to MET

activation (Cassinelli et al., 2009; Ju and Zhou, 2013;

Tanizaki et al., 2011). An association between integrin

beta1 and c-MET has also been reported to mediate

EGFR TKI resistance through activation of the c-

MET signaling pathway in NSCLC (Ju and Zhou,

2013). Further investigations are required to examine

the possibility that these potential mechanisms underlie

benzo[a]pyrene-induced MET activation.

In a meta-analysis, targeting c-MET therapies has

been found to improve progression-free survival (PFS)

and disease control rate (DCR) in advanced or meta-

static NSCLC patients. However, c-MET inhibitors

did not show the therapeutic benefits on their overall

survival and objective response rate (Ye et al., 2016).

It would be interesting to analyze the impact of cigar-

ette smoke on the therapeutic efficacy of c-MET inhi-

bitor in NSCLC patients. In our results, when MET

expression was silenced in CSE- and B[a]P-treated
cells, the activity of Erk is not affected by MET inhibi-

tion. This observation suggests that elevation of other

unidentified driver genes may be responsible for the

increased Erk signals, which may thereby become an

obstacle to the treatment of NSCLC patients who are

smokers, even if MET inhibitors are used. Therefore,

further investigation of the underlying mechanisms of

B[a]P-induced ERK activation are indicated.

5. Conclusions

In this study, our data showed that cigarette smoke

and its derivative B[a]P reduce the sensitivity of

wtEGFR- but not EGFR mutant-expressing NSCLC

cells to EGFR TKIs. c-MET is upregulated and acti-

vated by CSE and B[a]P for the compensatory Akt

activation and resistance to EGFR inhibitors. These

findings not only explain the critical role of c-MET in

the primary resistance of NSCLC patients who are

smokers, to EGFR TKIs, but also suggest that target-

ing c-MET may benefit such patients.
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Supporting information

Additional Supporting Information may be found

online in the supporting information tab for this

article:
Fig. S1. EGFR mutations were not found in CSE- or

B[a]P-treated cells. The EGFR cDNA in H292/1%CSE

(A), H292/5%CSE (B) or H292/B[a]P cells (C) were

prepared by RT-qPCR, and sequenced.

Fig. S2. c-MET phosphorylation and protein expres-

sion in NSCLC cells in response to cigarette smoke

and its oncogene ingredients. Total protein lysate of

H292, PC9 and HCC827 cells and their CSE, B[a]P
and NNK-treated clones were prepared and subjected

to western blot analysis with indicated antibodies.
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