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Abstract: Grain protein content (GPC) is one of the most important criteria to determine the quality
of common wheat (Triticum aestivum). One of the major obstacles for bread wheat production is the
negative correlation between GPC and grain yield (GY). Previous studies demonstrated that the
deviation from this inverse relationship is highly heritable. However, little is known about the genet-
ics controlling these deviations in common wheat. To fill this gap, we performed quantitative trait
locus (QTL) analysis for GY, GPC, and four derived GY-GPC indices using an eight-way multiparent
advanced generation intercross population comprising 394 lines. Interval mapping was conducted
using phenotypic data from up to nine environments and genotypic data from a 20k single-nucleotide
polymorphism array. The four indices were highly heritable (0.76–0.88) and showed distinct correla-
tions to GY and GPC. Interval mapping revealed that GY, GPC, and GY-GPC indices were controlled
by 6, 12, and 12 unique QTL, of which each explained only a small amount of phenotypic variance
(R2 ≤ 10%). Ten of the 12 index QTL were independent of loci affecting GY and GPC. QTL regions
harboured several candidate genes, including Rht-1, WAPO-A1, TaTEF-7A, and NRT2.6-7A. The study
confirmed the usefulness of indices to mitigate the inverse GY-GPC relationship in breeding, though
the selection method should reflect their polygenic inheritance.

Keywords: grain protein deviation; grain yield deviation; MAGIC; protein yield; QTL

1. Introduction

Wheat is the most widely grown crop worldwide, occupying 15% of arable land, with
common wheat (Triticum aestivum) being the most important species. As wheat provides
18% of consumed calories and 20% of protein intake, it is of critical importance for global
food safety [1]. Wheat production has surged in the last few decades, and further produc-
tion growth is necessary to meet future demands [2]. Boosting grain yield (GY) through
genetic improvement of cultivars has been highlighted as one of the most promising solu-
tions to reach this goal [3]. Wheat quality, which is associated with processing attributes,
is another important criterion for breeding wheat cultivars. The end-use of wheat is de-
termined by the grain protein content (GPC) and the composition of the proteins. Wheat
grains usually contain about 7–17% protein, of which about 80% belongs to the gluten
storage proteins glutenin and gliadin. The quantity, ratio, and allelic variants of these
gluten proteins are essential determinants for baking quality, as they affect the viscoelastic
properties of the dough and the final loaf volume. Other proteins important for wheat
quality include puroindolines, which affect grain hardness and, thereby, the milling and
baking properties, and enzymes such as starch-degrading α-amylase, which can result
in poor product quality. Although the composition of proteins is important for wheat
quality, the overall GPC is one of the most important criteria to determine the end-use of
wheat grains. Generally, wheat with a moderate-to-high GPC (>12%) is necessary for pan
breads, whereas wheat with a lower GPC is usually used for cookies, noodles, or animal
feed [4]. GPC is influenced by many factors, including genetics, the availability of water
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and nitrogen, heat stress, and the length of the grain-filling period [5,6]. One of the major
obstacles for the production of baking wheat is the well-documented inverse relationship
between GPC and GY. Oury and Godin [7] and Laidig et al. [8] investigated GY and GPC
in winter wheat variety trials in France and Germany across 11 and 32 years and found
mean correlations of −0.45 and −0.77, respectively. The large difference between the two
correlation coefficients indicates that environmental and genetic factors could influence
the relationship between the two traits. Indeed, it was demonstrated that the deviation
from the linear regression of GPC on GY, which was termed grain protein deviation (GPD),
is a heritable trait [9]. Several follow-up studies about possible physiological processes
conditioning GPD concluded that post-anthesis nitrogen uptake is the most crucial factor,
whereas remobilization of nitrogen within the plant is less important [10–12]. Consequently,
GPD and several other indices derived from GY and GPC were suggested as selection
criteria to mitigate the negative relationship between the two traits in future wheat varieties.
Genetic studies to identify quantitative trait loci (QTL) affecting GPD and related indices
were conducted in durum wheat (Triticum turgidum) [13,14], hybrid wheat [15], and triticale
(×Triticosecale) [16]. In common wheat, several studies analysed the genetic basis of GY
and GPC to distinguish antagonistic QTL controlling both traits from QTL affecting only
one of them [17–19]. However, apart from an initial gene expression study [20], nothing is
known about the genetic architecture of GY-GPC indices in inbred lines of common wheat.

To fill this gap, we performed QTL analysis using the eight-way multiparent advanced
generation intercross (MAGIC) population BMWpop, which captures a large part of the
allelic diversity of the German wheat gene pool [21]. The studied traits included GY, GPC,
and the derived indices GPD, grain yield deviation (GYD), grain protein yield (GPY), and
an index with equal weights for GY and GPC (EWPY). To identify possible pleiotropic
effects, the BMWpop was also analysed for heading date (HD), plant height (PH), thousand-
grain weight (TGW), grain width (GW), and grain length (GL). The aims of our study were
to (1) estimate the heritability and correlations of the GY-GPC indices, (2) investigate their
genetic architecture, and (3) identify putative candidate genes underlying these traits.

2. Results
2.1. Phenotypic Analysis

Heritability estimates in the BMWpop were moderate to high, with 0.83 for GY and
0.93 for GPC. For the derived traits GPD, GYD, GPY, and EWPY, we estimated heritabilities
between 0.76 and 0.88. Genotypic effects were significant for all traits, whereas environ-
mental effects were significant for all traits except for the indices GPD, GYD, and EWPY,
which have, by definition, an expected environmental effect of zero. The BMWpop had an
average GY of 8.1 t/ha and a mean GPC of 13.6% (Table 1). The mean of the BMWpop was
not significantly different from the mean of the founders for any of the traits. Ambition was
the founder with the highest GY (9.2 t/ha), GYD (0.7 t/ha), and GPY (1.2 t/ha). Two, one,
and 32 descendants exhibited higher phenotypic values for these traits, respectively. The
highest GPC (14.6%) and GPD (0.5%) among the eight founders was observed for Bussard,
which was surpassed by 29 and 65 lines, respectively. A total of 49 descendants showed
higher EWPY than the best founder Format (0.5). The distribution of the mean trait values
of the BMWpop is illustrated in Figure S1.

As expected, GY was inversely correlated with GPC across environments (r = −0.60).
Within the eight trials, correlation ranged between −0.37 and −0.76. The derived index
GPD was strongly associated with GPC (r = 0.92), whereas GYD (r = 0.86) was highly
correlated with GY. The indices GPY and EWPY showed less pronounced correlations with
GY and GPC (0.24 ≤ r ≤ 0.58). Late heading was negatively associated with GY and all
indices (−0.20 ≤ r ≤ −0.10), whereas no relation to GPC was observed. A tall plant stature
was accompanied by higher values for GPC, GPD, GPY, and EWPY (0.14 ≤ r ≤ 0.25). Large
grains were positively associated with GY, GPC, and all indices (0.13 ≤ r ≤ 0.39; Table 2).
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Table 1. Summary of phenotypic data for the BMWpop across ten environments: number of environ-
ments (Env.) for genetic analysis (filtered for rep2 ≥ 0.3 for all measured traits), range of repeatability
(rep2), heritability (h2), genotypic variance (σG

2), environmental variance (σE
2), residual variance

(σR
2), range of adjusted means, overall mean and standard deviation (SD).

Trait Env. rep2 h2 σG
2 σE

2 σR
2 Range Mean ± SD

Grain yield (GY; t/ha) 9 0.71–0.92 0.83 0.17 0.83 0.31 6.2–9.3 8.1 ± 0.5
Grain protein content (GPC; %) 9 0.80–0.93 0.93 0.40 1.11 0.28 11.8–16.2 13.6 ± 0.7

Grain protein deviation (GPD; %) 8 0.67–0.90 0.88 0.21 <0.01 0.22 −1.6–1.6 0.0 ± 0.5
Grain yield deviation (GYD; t/ha) 8 0.55–0.86 0.76 0.08 <0.01 0.19 −1.4–0.7 0.0 ± 0.3
Grain protein yield (GPY; t/ha) 8 0.38–0.83 0.76 <0.01 0.01 <0.01 0.9–1.2 1.1 ± 0.0

Equal weight protein yield
(EWPY) 8 0.29–0.83 0.79 0.19 <0.01 0.41 −1.9–1.3 0.0 ± 0.5

Heading date (HD; d) 7 0.84–0.93 0.96 2.38 18.62 0.73 25.6–35.1 30.1 ± 1.6
Plant height (PH; cm) 7 0.78–0.96 0.97 54.70 44.70 10.60 71.8–110.9 92.1 ± 7.5

Thousand-grain weight (TGW; g) 8 0.69–0.97 0.95 9.95 16.43 3.91 34.6–53.7 43.4 ± 3.2
Grain width (GW; mm) 7 0.70–0.95 0.94 0.01 0.02 <0.01 3.1–3.8 3.5 ± 0.1
Grain length (GL; mm) 7 0.81–0.99 0.97 0.05 0.02 0.01 5.6–6.9 6.2 ± 0.2

Table 2. Phenotypic correlations of the BMWpop across environments.

GY GPC GPD GYD GPY EWPY HD PH TGW GW

GPC −0.60
GPD −0.28 0.92
GYD 0.86 −0.20 0.18
GPY 0.58 0.24 0.58 0.90

EWPY 0.27 0.56 0.84 0.69 0.93
HD −0.17 ns −0.10 −0.18 −0.20 −0.19
PH ns 0.25 0.20 ns 0.14 0.17 ns

TGW 0.21 0.22 0.30 0.31 0.39 0.38 −0.20 0.51
GW 0.13 0.28 0.33 0.26 0.37 0.38 ns 0.46 0.86
GL 0.26 ns ns 0.26 0.23 0.16 −0.17 0.25 0.70 0.35

ns: not significantly different from zero at α = 0.05.

2.2. QTL Analysis
2.2.1. Summary

Composite interval mapping resulted in 62 QTL that were significant across envi-
ronments. These QTL were mapped to 44 unique genomic regions. The number of QTL
for a specific trait ranged between one for GPY and 12 for GPC. The highest R2 value
within a trait varied between 1% for EWPY and 27% for PH. The most important QTL are
characterized in Figure 1, Table 3, and the following subsections. Detailed results of QTL
analysis including environment-specific QTL and founder effects are listed in Table S1. A
summary of high-confidence gene models for detected QTL is shown in Table S2.

Table 3. Characterization of quantitative trait loci identified by composite interval mapping: chromo-
some (Chr.), QTL identifier, position on the genetic map with the support interval in centimorgans,
number of environments (Env.) in which the QTL was observed, −log10(p) value, explained pheno-
typic variance (R2), and candidate gene. All shown QTL were detected across trials.

Trait Chr. QTL Position Env. −log10(p) R2 Candidate Gene

GY

2A QGy.lfl-2A 139.6 (137.0–143.0) 3 8.0 0.10 -
4A QGy.lfl-4A 183.6 (176.0–184.6) 3 6.1 0.08 TaGS3-4A
5A QGy.lfl-5A 99.0 (89.1–109.0) 1 5.4 0.06 -
5B QGy.lfl-5B 126.7 (124.0–137.0) 0 5.2 0.06 -
6A QGy.lfl-6A 44.5 (40.5–50.0) 0 6.0 0.04 -
6B QGy.lfl-6B 245.0 (235.1–249.8) 2 5.7 0.04 -
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Table 3. Cont.

Trait Chr. QTL Position Env. −log10(p) R2 Candidate Gene

GPC

1A QGpc.lfl-1A 218.0 (212.3–220.2) 1 4.6 <0.01 -
2A QGpc.lfl-2A 127.3 (119.0–131.0) 6 13.1 0.09 -
2B QGpc.lfl-2B 271.0 (265.7–277.5) 0 5.2 0.04 -
2D QGpc.lfl-2D 108.6 (100.0–113.0) 3 7.1 0.07 -
3A QGpc.lfl-3A 111.0 (98.0–116.1) 1 7.0 0.08 -
4A QGpc.lfl-4A 139.0 (137.6–144.0) 2 9.5 0.06 -
4B QGpc.lfl-4B 75.0 (71.0–80.5) 3 13.2 0.10 Rht-B1; TaGSe-4B
4D QGpc.lfl-4D 29.0 (17.0–38.0) 4 8.4 0.07 Rht-D1
5A QGpc.lfl-5A 29.0 (24.0–38.0) 0 8.4 0.07 -
5B QGpc.lfl-5B 302.5 (291.5–302.5) 1 5.9 0.04 -
6A QGpc.lfl-6A 179.2 (170.0–186.0) 1 8.6 0.07 -
6B QGpc.lfl-6B 156.1 (154.0–161.0) 2 8.4 0.05 -

GPD

2A QGpd.lfl-2A.1 127.8 (122.0–131.9) 2 9.1 0.08 -
2A QGpd.lfl-2A.2 230.6 (227.0–234.7) 0 6.6 0.06 -
3A QGpd.lfl-3A 112.0 (109.9–125.0) 1 5.6 0.08 -
3B QGpd.lfl-3B 255.9 (254.4–266.0) 1 4.6 <0.01 -
4D QGpd.lfl-4D 12.0 (0.0–17.0) 1 6.9 0.04 -
5B QGpd.lfl-5B 61.0 (52.0–63.7) 0 4.7 0.03 -
7A QGpd.lfl-7A.1 80.4 (78.0–82.5) 1 10.4 0.04 TaTEF-7A
7A QGpd.lfl-7A.2 219.5 (215.0–227.0) 1 6.2 0.05 NRT2.6-7A
7A QGpd.lfl-7A.3 323.5 (322.0–326.0) 2 4.8 0.04 WAPO-A1

GYD
1B QGyd.lfl-1B 73.3 (68.0–76.0) 2 5.8 0.08 -
2A QGyd.lfl-2A 139.0 (134.0–143.0) 0 5.4 0.06 -
4A QGyd.lfl-4A 159.3 (154.0–161.8) 1 5.3 0.08 TraesCS4A02G446700

GPY 1B QGpy.lfl-1B 67.2 (57.0–75.0) 2 4.9 0.08 -

EWPY
1B QEwpy.lfl-1B 59.4 (52.8–67.7) 1 5.4 0.06 -
2B QEwpy.lfl-2B 186.8 (182.3–199.0) 1 6.3 0.07 -
7A QEwpy.lfl-7A 323.5 (323.0–327.0) 0 4.5 0.01 WAPO-A1

HD

1B QHd.lfl-1B 333.0 (324.0–345.0) 3 8.1 0.04 -
3A QHd.lfl-3A 214.5 (209.4–223.0) 1 4.3 0.05 -
4B QHd.lfl-4B 116.7 (110.0–124.0) 3 7.4 0.06 -
5B QHd.lfl-5B 103.8 (96.2–105.8) 3 8.2 0.10 -
6D QHd.lfl-6D 70.0 (63.0–78.0) 3 7.8 0.02 -
7A QHd.lfl-7A 94.0 (91.2–102.0) 1 8.2 0.09 -

PH

4B QPh.lfl-4B 89.4 (83.0–95.7) 6 13.3 0.11 Rht-B1
4D QPh.lfl-4D 27.4 (23.0–31.0) 7 50.4 0.27 Rht-D1
6A QPh.lfl-6A 159.4 (148.0–161.0) 7 17.4 0.12 Rht24
6D QPh.lfl-6D 68.5 (67.5–94.0) 6 7.5 0.03 -

TGW

2A QTgw.lfl-2A 125.3 (121.8–136.5) 5 8.8 0.05 -
2B QTgw.lfl-2B 178.8 (168.6–188.9) 6 4.3 0.07 -
4D QTgw.lfl-4D 25.0 (17.0–38.0) 5 6.7 0.13 Rht-D1
6A QTgw.lfl-6A 130.0 (128.7–134.0) 2 8.3 0.03 -

GW

1A QGw.lfl-1A 155.8 (153.3–165.0) 2 4.5 0.08 -
2A QGw.lfl-2A 136.0 (126.3–144.7) 2 5.2 0.08 -
4D QGw.lfl-4D 23.0 (17.0–34.0) 6 12.8 0.20 Rht-D1
6A QGw.lfl-6A 156.0 (145.0–164.0) 2 4.7 0.04 Rht24
6B QGw.lfl-6B 72.9 (60.0–80.0) 3 5.5 0.06 -

GL

1A QGl.lfl-1A 174.9 (164.0–181.0) 3 4.9 0.03 -
1B QGl.lfl-1B.1 23.0 (20.0–33.6) 6 6.9 0.11 -
1B QGl.lfl-1B.2 238.9 (235.0–242.0) 5 8.0 0.06 -
2B QGl.lfl-2B 182.3 (178.8–183.8) 4 10.3 0.04 -
3A QGl.lfl-3A 239.0 (230.2–241.0) 3 6.3 0.06 -
3B QGl.lfl-3B 142.9 (139.0–150.0) 4 4.7 0.04 -
6D QGl.lfl-6D 153.0 (140.0–157.0) 5 10.8 0.06 -
7A QGl.lfl-7A.1 60.0 (52.5–70.0) 4 7.5 0.10 -
7A QGl.lfl-7A.2 324.0 (310.0–327.0) 3 5.1 <0.01 WAPO-A1
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Figure 1. p-value curves for quantitative trait loci detected across environments: grain yield (GY),
grain protein content (GPC), grain protein deviation (GPD), grain yield deviation (GYD), grain
protein yield (GPY), equal-weight protein yield (EWPY), heading date (HD), plant height (PH),
thousand-grain weight (TGW), grain width (GW), and grain length (GL). The significance threshold
is represented by the red line. Support intervals are drawn as magenta stripes.

2.2.2. Grain Yield

Interval mapping revealed six QTL for GY on chromosomes 2A, 4A, 5A, 5B, 6A, and 6B.
Four of these QTL were detected in up to three of nine environments, whereas two of them
were only detected across trials. The proportion of explained phenotypic variance across
environments ranged between 4% and 10%. The highest R2 was observed for QGy.lfl-2A,
which was detected in three trials. Lines that shared the lowest and highest yielding
haplotypes at this locus differed by 0.7 t/ha. Interestingly, the most significant markers for
another QTL, namely QGy.lfl-4A, were located 1.2 megabases (Mb) proximal to a homolog
of GRAIN SIZE 3 (TaGS3-4A) from rice (Oryza spp.). This locus explained 8% of the GY
variance and was detected in three trials. The two most contrasting haplotypes differed
by 0.6 t/ha.

2.2.3. Grain Protein Content

GPC was controlled by 12 QTL on chromosomes 1A, 2A, 2B, 2D, 3A, 4A, 4B, 4D, 5A,
5B, 6A, and 6B. These QTL were found in one to six of the nine evaluated trials except for
two QTL, which were only detected across trials. The amount of explained phenotypic
variance ranged between <1% and 10%. The largest proportion of variance was explained
by QGpc.lfl-4B, which was detected in three environments. This locus was mapped to the
marker TG0010, which is a gene-derived marker for the reduced height gene Rht-B1. Using
this marker, we found that the height-reducing allele Rht-B1b was associated with a GPC
decrease of 0.54 percentage points. Besides this candidate gene, we found the glutamine
synthetase TaGSe-4B 3.9 Mb proximal to Rht-B1. Another candidate gene associated with
GPC was the semi-dwarfing gene Rht-D1, represented by QGpc.lfl-4D with the gene-derived
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marker TG0011. Rht-D1 was detected in four environments and explained 4% of phenotypic
variance, and the height-reducing allele Rht-D1b reduced GPC by 0.43 percentage points.

2.2.4. Indices Derived from Grain Yield and Grain Protein Content

For GPD, we detected nine QTL on chromosomes 2A, 3A, 3B, 4D, 5B, and 7A. These loci
explained between <1% and 8% of the GPD variance and exhibited significant effects in one
or two of eight trials, with two QTL being found only across environments. Seven of these
QTL were independent of the QTL for GY and GPC. The highest amount of phenotypic
variation was contributed by QGpd.lfl-2A.1, which was found in two environments. The
two haplotypes with the lowest and highest GPD differed by 0.5 percentage points. On
chromosome 7A, we detected three QTL for GPD in the vicinity of candidate genes. QGpd.lfl-
7A.1 was found to be located 1.4 Mb downstream of the transcription elongation factor
gene TaTEF-7A. This QTL explained 4% of the phenotypic variance, was detected in one
environment, and showed a maximum effect of 0.5 percentage points. The second QTL on
this chromosome, QGpd.lfl-7A.2, was located near the nitrate transporter gene NRT2.6-7A.
Four of the most significant markers for this locus were located 3.8–13.6 Mb distal to the
candidate gene, whereas one peak marker on the genetic map was mapped 280.9 Mb
proximal on the physical map. The effect of QGpd.lfl-7A.2 was observed in one environment
and explained 5% of the phenotypic variance. The most extreme haplotypes differed by
0.3 percentage points. The third QTL on chromosome 7A, QGpd.lfl-7A.3, was mapped
1.3 Mb distal to the candidate gene WHEAT ORTHOLOG OF APO1 (WAPO-A1). This
locus was observed in two environments and explained 4% of the GPD variance. Based on
the findings of a preceding study [22], we assigned the eight founder haplotypes to two
alleles and estimated that WAPO-A1b decreased GPD by 0.13 percentage points compared
to WAPO-A1a.

QTL mapping for GYD resulted in three QTL on chromosomes 1B, 2A, and 4A. They
contributed between 6% and 8% to the phenotypic variance and were observed in one
and two of eight separate environments, with one QTL being detected only across en-
vironments. Two of these QTL were independent of the QTL for GY and GPC. The
largest part of the GYD variance was contributed by QGyd.lfl-1B, which was observed in
two trials and exhibited a maximum effect of 0.1 t/ha. One of the three QTL, QGyd.lfl-
4A, was mapped 3.8–8.7 Mb proximal to a candidate gene encoding a sucrose synthase
(TraesCS4A02G446700). This locus explained 8% of the GYD variance, was observed in one
environment, and exhibited a maximum effect of 0.3 t/ha.

For GPY, we detected one QTL on chromosome 1B. QGpy.lfl-1B explained 8% of the
observed variation and was detected in two environments. The haplotypes associated with
the lowest and highest GPY differed by <0.1 t/ha. QGpy.lfl-1B did not show significant
effects on GY or GPC, which this index was derived from.

EWPY was controlled by three QTL on chromosomes 1B, 2B, and 7A. These loci were
detected in one environment or only across environments and contributed between 1%
and 7% to the total EWPY variance. All three QTL were independent of the QTL for GY
and GPC. The largest proportion of EWPY variation was explained by QEwpy.lfl-2B, which
was found in one environment and showed a maximum effect of 0.4. Another QTL on
chromosome 7A (QEwpy.lfl-7A) was mapped 1.3 Mb distal to WAPO-A1. QEwpy.lfl-7A was
only found across environments and explained 1% of the EWPY variance. WAPO-A1b
reduced EWPY by 0.14 compared to WAPO-A1a.

2.2.5. Heading Date and Plant Height

QTL analysis for HD revealed six QTL on chromosomes 1B, 3A, 4B, 5B, 6D, and 7A,
which explained between 2% and 10% of the phenotypic variance and were observed in
one to three of seven environments. None of these QTL colocalized with the QTL for GY,
GPC, and the traits derived thereof.

PH was controlled by QTL on chromosomes 4B, 4D, 6A, and 6D. These loci ex-
plained 3–27% of the phenotypic variance and could be detected in either six or all seven
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environments. The largest part of PH variation could be explained by QPh.lfl-4D, which
was mapped to the gene-derived marker TG0011 and, thus, could be identified as the
semi-dwarfing gene Rht-D1. Rht-D1 was found in all seven trials. Using the diagnostic
marker, we estimated an effect of 10.4 cm. Although QPh.lfl-4B was mapped 32.1 Mb
downstream of the semi-dwarfing gene Rht-B1 and its marker TG0010, this gene is the
most likely candidate. Rht-B1 explained 11% of the PH variance and was found to be
significant in six trials, and based on marker TG0010, we estimated an effect of 6.1 cm. We
could not find a candidate gene in the vicinity of the peak marker for QPh.lfl-6A. However,
a neighbouring marker on the genetic map (0.5 centimorgan distal) was located 2.6 Mb
upstream of the reduced height gene Rht24, which most likely corresponds to this QTL.
QPh.lfl-6A contributed 12% to PH variation, was found in all seven trials, and showed a
maximum haplotype effect of 8.8 cm. Besides these previously described genes, we addi-
tionally detected a QTL on chromosome 6D (QPh.lfl-6D) in six trials. This locus explained
3% of phenotypic variation and affected PH by up to 4.2 cm.

2.2.6. Grain Morphometric Traits

QTL analysis of TGW, GW, and GL detected a total of 18 QTL on chromosomes 1A, 1B,
2A, 2B, 3A, 3B, 4D, 6A, 6B, 6D, and 7A. These loci were detected in two to six environments,
and the R2 ranged between <1% and 20%. The two QTL QTgw.lfl-4D and QGw.lfl-4D on
chromosome 4D were found to explain the largest part of the phenotypic variance for
TGW (13%) and GW (20%). The two QTL were detected in five of eight and six of seven
environments and could be mapped to the gene-derived marker for Rht-D1. Using this
marker, we found that allele Rht-B1b reduced TGW and GW by 2.7 g and 0.1 mm. The
most important locus for GL was QGl.lfl-1B.1, which was found to be significant in six of
seven environments, explained 11% of the phenotypic variance, and showed a maximum
effect of 0.3 mm between founder haplotypes. QGl.lfl-7A.2 could be assigned to WAPO-A1,
which was located 1.2 Mb proximal. QGl.lfl-7A.2 was detected in three environments and
explained <1% of GL. WAPO-A1b reduced GL by 0.03 mm compared to WAPO-A1a.

2.2.7. Coinciding QTL

Overall, we identified ten genomic regions that affected more than one trait, of which
the following loci involved QTL for GY, GPC, or any of the derived indices. Chromosome
1B harboured a region with coinciding QTL for three indices: QGyd.lfl-1B, QGpy.lfl-1B,
and QEwpy.lfl-1B. The direction of the founder effects was in line with the high positive
correlation among the three traits. The haplotype of Ambition was always associated with
the lowest value, whereas the haplotypes of FIRL3565 and Format were the most favourable.
On chromosome 2A, we found a QTL cluster controlling six traits including GY (QGy.lfl-
2A), GPC (QGpc.lfl-2A), indices (QGpd.lfl-2A.1 and QGyd.lfl-2A), and grain morphometric
traits (QTgw.lfl-2A and QGw.lfl-2A). The effect directions of this locus reflected the inverse
relationship between GY vs. GPC and derived indices. The haplotype of Event resulted in
the lowest value for GY, GYD, TGW, and GW. The same haplotype was associated with
the highest value for GPC and the second-highest value for GPD. A genomic region on
chromosome 2B affected the index EWPY and two grain morphometric traits. Although
effect directions were not always conclusive, the haplotype with the highest TGW and
GW (BAYP4535) was accompanied by above-average EWPY values, and the haplotype of
Bussard showed the lowest values for all three traits. The effects of the two colocalized
QTL for GPC and GPD on chromosome 3A followed the same direction across all eight
founders, with the haplotypes of BAYP4535 and Format yielding the lowest and highest
values for both traits. QPh.lfl-4D (Rht-D1) coincided with the QTL for GPC, TGW, and
GW. The height-reducing allele Rht-D1b was always associated with lower GPC, TGW, and
GW, indicating that this gene contributes to the positive correlation among these traits.
The same observation was made for QPh.lfl-6A (Rht24) and its effect on GW. Although
QPh.lfl-4B (Rht-B1) did not overlap with any other QTL, we mapped QGpc.lfl-4B to the
gene-derived marker for Rht-B1. Analogous to the effects of Rht-D1, the height-reducing
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Rht-B1b allele from BAYP4535 was accompanied by a low GPC. QPh.lfl-6D was the only PH
QTL not affecting GY parameters, GPC, or derived indices. Instead, the height-reducing
haplotype of this QTL was associated with early heading. On chromosome 7A, we found
three coinciding QTL for GPD, EWPY, and GL and suggested WAPO-A1 as the causative
gene. Assigning the eight haplotypes to the two WAPO-A1 alleles showed that WAPO-A1b
decreased GPD, EWPY, and GL compared to WAPO-A1a.

3. Discussion
3.1. Candidate Genes for GY, GPC, and Derived Indices
3.1.1. Rht-B1, Rht-D1, and Rht24

The present study detected four loci for PH, of which three could be identified as
Rht-B1, Rht-D1, and Rht24. The two homologs Rht-B1 and Rht-D1 on chromosomes 4B and
4D are the two most effective dwarfing genes in the worldwide wheat gene pool. They
encode DELLA proteins that repress sensitivity to gibberellins, and the mutated alleles Rht-
B1b and Rht-D1b are thought to produce more effective repressors, leading to a decreased
stem elongation [23]. Besides several other pleiotropic effects, Rht-1 mutants were reported
to increase grain set and the number of tillers per area, whereas grain size/weight and
GPC are known to be negatively affected. The effect of these alleles on GY depends on the
genetic background and environmental conditions [24–27]. The present study confirmed
the reported effects of Rht-1 on grain morphometric traits (Rht-D1) and GPC (Rht-B1 and
Rht-D1). This was also reflected by the positive correlation among these traits. However,
this observation did not manifest a significant effect of Rht-1 on GY or any of the indices
derived from GY and GPC. These contradictory findings can be explained by both (1) a
non-significant increase in GY and (2) a deviation from the inverse GY-GPC relationship,
which was also below the threshold for significance. The high heritability of GPC compared
to GY and derived indices may also support this explanation. Rht24 on chromosome 6A is a
globally distributed height-reducing gene, which was recently found to encode a gibberellin
2-oxidase [28–30]. The allele Rht24b confers a higher gene expression and, thereby, leads to
a reduced plant height. An initial study on the pleiotropic effects of Rht24 in near-isogenic
lines showed no impact on GY or any of its components [30]. Contrary to these previous
findings, Rht24b was shown to decrease not only PH, but also GW in the present study. This
suggests that, although Rht-1 and Rht24 play different physiological roles in the regulation
of PH, these genes may have similar effects on yield-related traits. Taken together, we
confirmed the pleiotropic effects of Rht genes on grain morphometric traits (Rht-D1, Rht24)
and GPC (Rht-1), but neither of these genes contributed to a significant deviation from the
inverse GY-GPC relationship.

3.1.2. WAPO-A1

On chromosome 7A, we found the genomic region harbouring WAPO-A1 to control
GPD, EWPY, and GL. WAPO-A1, also known as TaAPO-A1, is an ortholog of APO-1, which
encodes an F-box protein, which is a component of a ubiquitin ligase and is known to
affect panicle development and spikelet number in rice [31]. Three independent QTL
mapping studies suggested that WAPO-A1 is a major causative gene for the variation
of spikelet number per spike in common wheat [32–34]. Using mutants and transgenic
plants, this hypothesis was recently confirmed [35]. There are three haplotypes, H1–H3,
which correspond to the alleles WAPO-A1a, WAPO-A1b, and WAPO-A1c-d, respectively.
In common wheat, WAPO-A1a and WAPO-A1b are by far the most frequent alleles, and
WAPO-A1b is associated with the highest number of spikelets per spike, followed by
WAPO-A1c-d and WAPO-A1a [32,35]. Studies on the effect of WAPO-A1 on GY are still
inconclusive. Whereas Muqaddasi et al. [33] found a slight negative effect of WAPO-A1b
on GY in European varieties (mainly winter wheat), Kuzay et al. [32], Voss-Fels et al. [34],
and Kuzay et al. [35] found positive effects in the genetic background of spring wheat. The
effect on grain morphometric traits is also unclear [32]. In a preceding study exploiting the
BMWpop, WAPO-A1 was already suggested as a candidate gene for spikelet number using
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phenotypic data collected from two trials in the United Kingdom and one trial in Germany.
Sequencing of parental alleles showed that the BMWpop segregated for WAPO-A1a and
WAPO-A1b and that the latter increased the number of (fertile) spikelets per spike and
spike length [22]. In the present study, WAPO-A1b was associated with a decreased GPD,
EWPY, and GL, indicating that the benefit of an increased grain number per spike might be
offset by unfavourable effects on GY and GPC. Indeed, WAPO-A1b was associated with a
non-significant negative effect on both GY and GPC (data not shown). Together with the
findings from Muqaddasi et al. [33], the results of the present study suggest that the effect
of WAPO-A1b on spikelet number cannot be exploited to boost GY in all environments
and genetic backgrounds. Especially wheat breeding programs aiming for high GPC at
below-average GY penalty could benefit from WAPO-A1a instead.

3.1.3. TaGS3-4A

Chromosome 4A was found to harbour a QTL for GY (QGy.lfl-4A) near TaGS3-4A. This
candidate gene is a homolog of OsGS3, which is known to control the yield components
grain weight, GW, GL, and grain thickness in rice [36]. Similar effects were observed
in common wheat by Zhang et al. [37], who demonstrated that TaGS3-4A is a negative
regulator of TGW and GL. However, effects of TaGS3-4A on GY have not been investigated
yet, and in the present study, QGy.lfl-4A did not colocalize with loci for grain morphometric
traits. Thus, we concluded that TaGS3-4A is not a strong candidate for QGy.lfl-4A, and
further research is necessary to study the effect of TaGS3-4A and neighbouring genes on GY.

3.1.4. TaGSe-4B

The locus QGpc.lfl-4B affecting GPC was mapped to Rht-B1, which is located 3.9 Mb
distal from the glutamine synthetase TaGSe-4B on chromosome 4B. Glutamine synthetase
is important for the assimilation of nitrogen by incorporating ammonium into glutamate.
TaGSe-4B belongs to GSe, which is one of four glutamine synthetase families that can be
separated according to a phylogenetic study in wheat [38]. Glutamine synthetase genes in
wheat were associated with multiple GY-related traits, nitrogen uptake, and GPC [39–42].
Due to the proximity of Rht-B1 and TaGSe-4B, the mapping resolution of the present study
does not allow a definite conclusion on the causative gene for this QTL. However, since
both Rht-1 genes are known to affect GPC across many germplasm sources and geographic
regions [24] and the interval is too large for complete linkage disequilibrium in the wheat
gene pool, we assumed that Rht-B1 is the more likely a candidate gene for QGpc.lfl-4B.
The effect of TaGSe-4B and Rht-B1 on GPC could be investigated in future studies by
genome editing.

3.1.5. TaTEF-7A

One of three QTL on chromosome 7A controlling GPD (QGpd.lfl-7A.1) was found in
the vicinity of the transcription elongation factor TaTEF-7A. This candidate gene was found
to affect grain number per spike in a Chinese wheat mini core collection and near-isogenic
lines. Overexpression of TaTEF-7A in Arabidopsis thaliana enhanced grain length, silique
number, and silique length. There are three haplotypes differing in polymorphisms in
the promoter region, of which Hap-7A-3 leads to the highest gene expression and most
favourable effect on grain number per spike [43]. Interestingly, the same haplotype was also
associated with an increased GL in a panel of mostly European winter wheat cultivars [44].
However, no effect on GPD or GPC has been shown so far. Further work is required to
characterize the effects of the three haplotypes on GPD.

3.1.6. TaNRT2.6-7A

Besides TaTEF-7A and WAPO-A1, we found a third candidate gene for GPD, TaNRT2.6-
7A, on chromosome 7A (QGpd.lfl-7A.2). The nitrate transporter gene TaNRT2.6-7A is part of
the NRT2 gene family belonging to the high-affinity transport system, which predominates
under a low nitrate concentration [45]. Phylogenetic analysis of NRT2 genes across species
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revealed that the three homoeologous TaNRT2.6 copies shared the highest similarity with
AtNRT2.7 from Arabidopsis thaliana and OsNRT2.4 from rice. TaNRT2.6 is mainly expressed
in the leaves at all growth stages, whereas all other wheat NRT2 genes were mainly
expressed in the roots [46], indicating that TaNRT2.6 may be important for nitrate transport
from the leaves to the spike. However, TaNRT2.6-7A has not been functionally characterized,
and its effect on agronomic traits is still unknown. Interestingly, a member of the same gene
family, NRT2-6A, was shown to be significantly associated with GPD in durum wheat [14].
Furthermore, the two nitrate transporters NRT2.1 and TaNRT2.5 were both shown to
control post-anthesis nitrogen uptake, which is associated with deviations from the inverse
relationship between GY and GPC [47,48]. These findings indicate that TaNRT2.6-7A and
other members of the NRT2 family are important targets for future studies on indices
derived from GY and GPC.

3.1.7. Sucrose Synthase (TraesCS4A02G446700)

On chromosome 4A, we found a QTL for GYD (QGyd.lfl-4A) near the sucrose synthase
TraesCS4A02G446700. Sucrose synthase catalyses the conversion from sucrose to UDP-
glucose and fructose, which is the first step in the sucrose–starch conversion pathway. In
a recent study, TraesCS4A02G446700 was found to be significantly associated with spike-
layer uniformity, which is an important factor influencing GY [49]. Although this gene
has not been characterized further, other wheat sucrose synthase genes, such as the two
homoeologous series TaSus1 and TaSus2, have been investigated in more detail. The effect
of these genes on TGW has been demonstrated in several studies [50–53]. Whereas sucrose
synthase has a major impact on TGW, no associations have been found with GY or derived
indices so far.

3.1.8. Limitations of Identified Candidate Genes

The identification of the abovementioned candidate genes is a crucial first step, which
could be followed by validation, allele screening, functional characterization, and possibly,
modification by genome editing. As a consequence of the limited mapping resolution,
we searched for candidate genes in relatively large intervals of at least 10 Mb, which
contained an average of 149 gene models. Thus, we focused on genes and gene families
that were shown to affect relevant traits in previous studies. Since this procedure involves
a high level of uncertainty, the identified candidate genes should be validated carefully
by fine-mapping.

3.2. Colocalizing QTL from Previous Studies

Comparing the detected QTL with those from previous studies using physical posi-
tions of support intervals revealed that 11 of 62 QTL overlapped with previously reported
loci. For GY, HD, PH, and grain morphometric traits, the QTL QGy.lfl-6A, QHd.lfl-4B,
QPh.lfl-4B, QTgw.lfl-2A, QGw.lfl-2A, and QGl.lfl-1B.1 were mapped to meta-QTL for the re-
spective traits [54]. Three of the original QTL used for a meta-QTL analysis of GPC [55] were
found to overlap with the following QTL from the present study: QGpc.lfl-2A, QGpc.lfl-3A,
and QGpc.lfl-4B. Furthermore, two of the marker–trait associations for GPD in hybrid wheat
and durum wheat could be confirmed (QGpd.lfl-3A and QGpd.lfl-5B), whereas no coinciding
QTL were found for other indices [14,15]. The observation that only 11 loci were mapped
to reported QTL regions could be explained by the fact that many markers for previously
identified QTL are not annotated in the reference genome sequence. Indeed, only 33% and
34% of the QTL reported in the meta-analyses by Saini et al. [54] and Gudi et al. [55] were
anchored to the reference sequence of Chinese Spring using published marker annotations.

3.3. Implications for Quality Wheat Breeding

All indices derived from GY and GPC had a significant genetic variance and a high
heritability, confirming that they are suitable for selection in wheat breeding, as suggested
by previous studies [7,9,10,56]. The importance of these indices for selection is further
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substantiated by the fact that ten of the 12 unique index QTL were exclusively detected for
derived indices, whereas only two of these QTL colocalized with the QTL for GY or GPC.
The choice of the optimal index for selection depends on the focus of the breeding program.
The observed correlations suggest that selection for high GPD will result in genotypes with
a focus on high GPC and a below-average GY penalty. However, selection for this index
will not exclude genotypes with low GY. In contrast, selection for high GYD will favour
breeding lines with high GY at above-average GPC. Analogous to GPD, the selection for
high GYD does not discard genotypes with low GPC. Using GPY as a criterion will result
in a less unidirectional selection, though this index still favours a high GY versus high
GPC. The index EWPY also showed balanced correlations to the original traits, allowing
simultaneous improvement of both GY and GPC. As suggested by Neuweiler et al. [16], this
index could be modified by adjusting the weights for these traits to the specific requirements
of the breeding program. All indices revealed a polygenic inheritance with many QTL
explaining only a small or medium amount of phenotypic variance. These findings indicate
that marker-assisted selection is not suitable for the selection of favourable QTL alleles in
elite breeding programs. Instead, we recommend phenotypic selection, genomic selection,
or, as suggested by Michel et al. [57], genomics-assisted selection to counteract the inverse
GY-GPC relationship. For quality wheat breeding, it is important to consider that essential
quality traits such as loaf volume not only depend on GPC, but also on protein composition:
it has been shown that the GPC of German winter wheat cultivars decreased significantly
during 1983–2014, while at the same time, important quality traits were improved by
breeding [8]. The composition of proteins is likely to gain importance, since nitrogen
fertilization will be reduced due to economic and ecological reasons. Thus, future wheat
breeding should follow a strategy combining both an improved protein quality and a high
deviation from the inverse GY-GPC relationship.

4. Materials and Methods
4.1. Plant Material

QTL analysis was performed in an eight-way MAGIC population termed the BMWpop.
This population comprises 394 F6:8 recombinant inbred lines derived from the Central
European winter wheat lines Event, BAYP4535, Ambition, FIRL3565, Format, Potenzial,
Bussard, and Julius, which cover all four quality groups as defined by the German Federal
Plant Variety Office. The BMWpop and its parental lines were characterized in detail by
Stadlmeier et al. [21].

4.2. Phenotyping and Phenotypic Data Analysis

The BMWpop was evaluated together with the eight founders and the check variety
RGT Reform in ten field trials during 2016–2021. The field trials were conducted at seven
locations across Germany: Feldkirchen, Frankendorf, Groß Lüsewitz, Hadmersleben, Mor-
genrot, Roggenstein, and Söllingen. The experiment was laid out as an alpha lattice with
two replications in all environments. The population was grown in plots of 5.3–13.5 m2.
Field management followed the recommended agricultural practices including the applica-
tion of fungicides and growth regulators. PH was measured in cm from the ground to the
top of the spike after anthesis. HD was defined as the number of days from 1 May until half
of the plants showed spikes emerging above the flag leaf ligule. GY was measured in t/ha
at 86% dry-matter content. TGW and grain dimensions were assessed using the MARViN
seed analyser (MARViTech GmbH, Germany). GPC was determined by near-infrared
spectroscopy. Outliers were removed from the raw phenotypic data using an iterative
Grubbs outlier test [58,59]. Indices derived from GY and GPC were calculated on a plot
basis within each trial. As suggested by Monaghan et al. [9], GPD was defined as the
residuals from a linear regression of GPC on GY. Correspondingly, the residuals from a
regression of GY on GPC represented GYD. GPY was derived by multiplying GY with GPC.
EWPY was defined as the sum of standardised values for GY and GPC. Standardisation
was achieved by subtracting the mean and dividing by the standard deviation as described
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by Rapp et al. [13]. Adjusted entry means for all traits and indices were calculated using
a two-stage approach. In the first stage, lattice-adjusted means were estimated for each
environment based on the following linear mixed model:

yijk = µ+ gi + rj + bjk + eijk,

where yijk is the observed plot value, µ is the overall mean, gi is the fixed effect of genotype
i, rj is the fixed effect of replication j, bjk is the random effect of the incomplete block k
nested in replication j, and eijk is the random residual error of a plot. The repeatability
within an environment was estimated as

rep2 =
σ2

G

σ2
G + σ2

e
2

.

The genotypic variance σ2
G and the residual variance σ2

e were estimated using the
first-stage model by assuming a random genotypic effect. In the second stage, adjusted
means across environments were estimated for all measured traits and indices using a
linear mixed model of the form

yij = µ+ gi + tj + eij,

where yij is the adjusted mean from the first stage, µ is the overall mean, gi is the fixed effect
of genotype i, t is the random effect of trial j, and eij is the random residual. The heritability
of a trait was estimated according to the formula:

h2 =
σ2

G

σ2
G + σ2

e
T

,

where T is the number of trials. Variance components for estimating h2 were derived from
the second-stage model assuming a random genotypic effect. Traits with a repeatability <0.3
in a given environment were excluded from further analysis. Linear mixed models for
phenotypic data analysis were fit using the R package lme4 [60,61].

4.3. Genotyping and Genotypic Data Analysis

Total genomic DNA was extracted as described by Plaschke et al. [62]. The BMWpop
was genotyped by TraitGenetics GmbH, Germany, using an Illumina® iSelect® 20k single-
nucleotide polymorphism (SNP) array, which includes a total of 17,267 SNPs from the
90k iSelect array described by Wang et al. [63] and the 820 k Axiom® array reported by
Winfield et al. [64]. Physical SNP positions on the RefSeq v1.0 [65] were provided by
TraitGenetics GmbH. A genetic map for QTL analysis in the BMWpop was previously
published by Stadlmeier et al. [21]. The map comprised 5436 markers distributed over 2804
unique loci (Table S3).

4.4. QTL Analysis

QTL detection was performed by composite interval mapping (CIM) implemented in
the R package mpMap [66] using phenotypic data across environments and from individual
trials. The probability that an allele was identical by descent with one of the eight founders
was calculated for all founders at a grid of 1-centimorgan intervals and at all 2804 unique
marker loci. A genome-wide significance threshold for QTL detection was determined by
10,000 permutations of the phenotypic data. The number of cofactors for CIM was set as
the number of QTL detected by an initial QTL scan using simple interval mapping. A QTL
support interval was defined as the interval in which the −log10(P) value was within one
unit of its maximum. A QTL was only declared significant if it was detected analysing
phenotypic means across environments. Effects of founder alleles were estimated in a
single-QTL regression model with discrete founder alleles as independent variables. If
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none of the eight founder probabilities at a given locus reached the threshold of 0.5, the
descent of the allele was defined as unknown. The effect of a founder allele was reported
as the centred mean of all lines that were identical by descent for the particular allele.

4.5. Candidate Genes and Previously Identified QTL

To identify candidate genes for the detected QTL, we focused on genes and gene fami-
lies that were shown to affect GY parameters or GPC-related traits in previous experiments
in wheat and rice. We considered a total of 85 high-confidence genes encoding for pro-
teins such as nitrate transporter, nitrate reductase, nitrite reductase, glutamine synthetase,
glutamate dehydrogenase, alanine aminotransferase, and sucrose synthase, among others
(Table S4). Candidate genes were searched in the interval spanned by the QTL peak mark-
ers ±5 Mb. No candidate genes were searched for QTL that were mapped more than one
centimorgan away from the next marker. Gene IDs and physical positions were retrieved
from the IWGSC RefSeq v1.0 and v1.1 annotation (https://wheat-urgi.versailles.inra.fr/
Seq-Repository/Annotations; accessed on 9 June 2022). Gene descriptions were obtained
from the Ensembl Plants database (http://plants.ensembl.org; accessed on 9 June 2022)
using the R package biomaRt [67]. To identify colocalizing QTL from previous studies, we
compared physical support intervals of the QTL of the present study to those detected in the
two meta-QTL analyses by Saini et al. [54] (for GY, HD, PH, and grain morphometric traits)
and Gudi et al. [55] (for GPC) and the genome-wide association studies by Nigro et al. [14]
and Thorwarth et al. [15] (for GY-GPC indices).

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11162146/s1, Figure S1: Distribution of adjusted means
in the BMWpop for the traits grain yield (GY), grain protein content (GPC), grain protein deviation
(GPD), grain yield deviation (GYD), grain protein yield (GPY), equal-weight protein yield (EWPY),
heading date (HD), plant height (PH), thousand-grain weight (TGW), grain width (GW), and grain
length (GL); Table S1: QTL detected within and across environments: genetic position, flanking
markers, p-value, explained variance, maximal effect, and centred effects of eight founder haplotypes.
QTL between markers are denoted by “loc”, followed by the position in centimorgans. Some founder
effects could not be estimated (NA) because the founder probability did not reach the threshold;
Table S2: Interval for the identification of candidate genes and the number of annotated gene models
(RefSeq v1.1); Table S3: Linkage map of the BMWpop; Table S4: Genes considered as candidates for
the detected QTL.
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